
Komplexchemie II

Gliederung

- Lewis-Säure-Base-Konzept
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie
- Lewis-Säure:
 Elektronen paarakzeptor
- > Zentralteilchen
- Lewis-Base:
 Elektronen paardonator
- Liganden

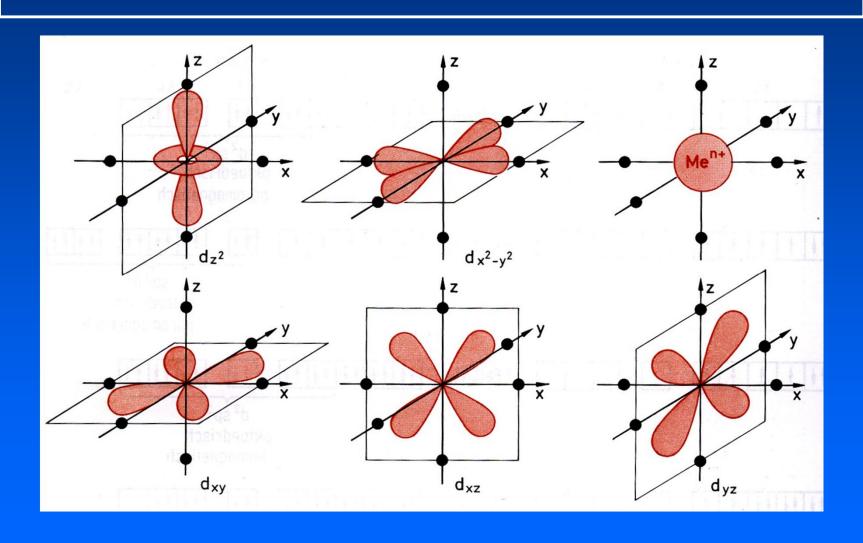
- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie
- Linearkombination von Orbitalen
- Bsp.: d²sp³ oder sp³d²
 (Oktaeder)
- Koordination aus "Kästchendarstellung"

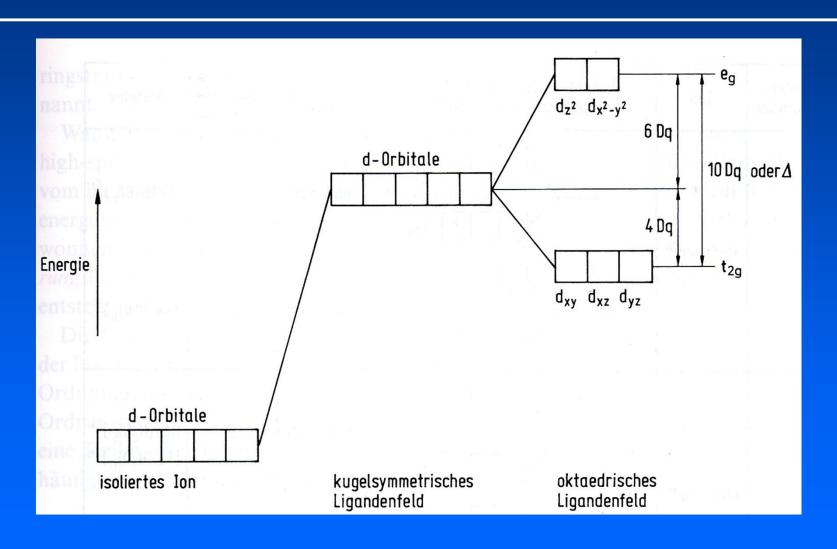
Übung

Stabilität mittels VB-Modell für:

- Fe(II)/Fe(III)
- Co(II)/Co(III)
- Cu(I)/Cu(II)

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie


- Erklärt magnetisches Verhalten
- Erklärt teilweise räumlichen Aufbau
- Keine Aussage über Farbigkeit
- Keine Vorhersagen


- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie
- Betrachtet Wechselwirkung zwischen Liganden und Elektronen in d-Orbitalen des Zentralteilchens
- Liganden: negative Punktladungen
- Zentralteilchen: positive Punktladung
- Rein elektrostatisches Modell

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie

Annahmen:

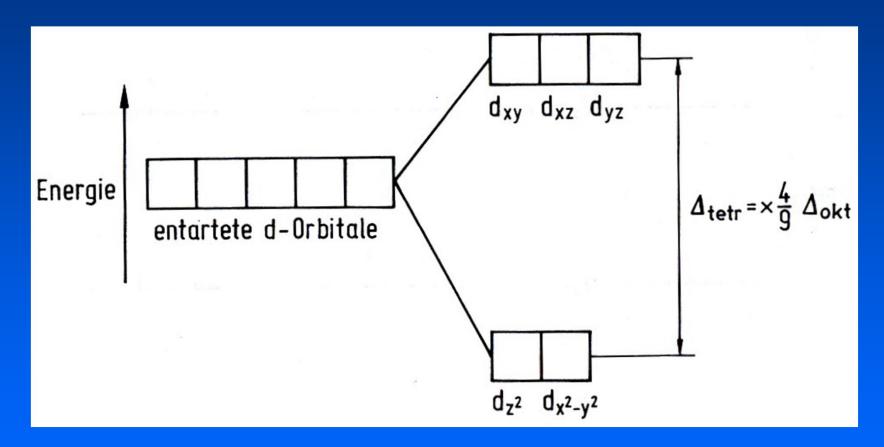
- Nur ein Elektron in d-Orbitalen
- Annäherung der Liganden auf "Koordinatenachsen"
- Oktaedrischer Komplex

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie

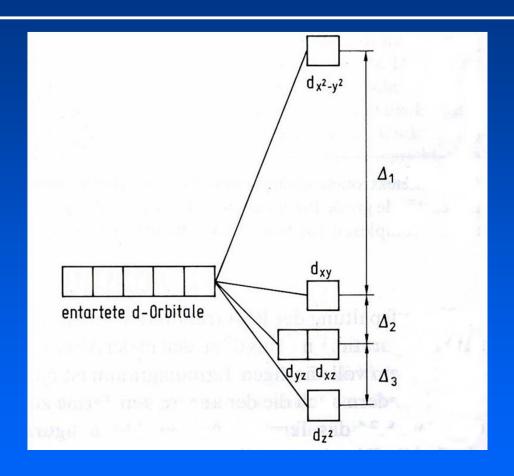
Besetzungsmöglichkeiten der Orbitale:

- Größtmögliche Anzahl ungepaarter Elektronen: high-spin-Zustand
- Kleinstmögliche Anzahl ungepaarter Elektronen: low-spin-Zustand

Elektronen- konfiguration	Ion	Besetzung der d-Orbitale im oktaedrischen Ligandenfeld	Elektronen- zustand	Zahl ungepaarter Elektronen	Komplex
d ⁴	Cr ²⁺ ,Mn ³⁺	e _g	high-spin	4	[Cr(H ₂ O) ₆] ² *
		e _g	low - spin	2	[Mn (CN) ₆] ³⁻
d ⁵	Mn ² †,Fe ³ †	# # e _g	high-spin	5	[Mn (H ₂ 0) ₆] ²⁺ [Fe (H ₂ 0) ₆] ³⁺
		e _g	low - spin	1	[Fe (CN) ₆] ³⁻
d [€]	Fe ²⁺ ,Co ³⁺ Pt ⁴⁺	e _g	high-spin	4	[Co F ₆] ³⁻
		e _g	low - spin	0	[Fe (CN) ₆] ⁴⁻
d ⁷	Co ²⁺	eg tilit t _{2g}	high-spin	3	[Co(NH ₃) ₆] ² *
		e _g	low - spin	1	[Co(NO ₂) ₆] ⁴⁻


- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie
- ∆ < Spinpaarungsenergie: high-spin
- Δ > Spinpaarungsenergie:
 low-spin
- Spektrochemische Reihe

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie


Analog für

- Tetraedrische Komplexe
- Quadratisch-planare Komplexe

⇒ <u>Übung</u>

Tetraedrische Komplexe

Quadratisch-planarer Komplex

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie

Übung:

Erklärung der Stabilität quadratisch-planarer Komplexe von Pt(II) und Au(III)

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie

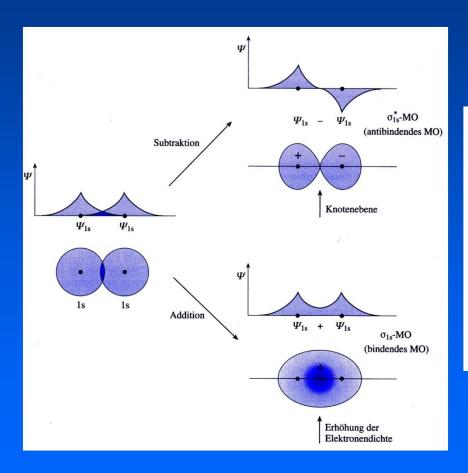
Farbigkeit durch:

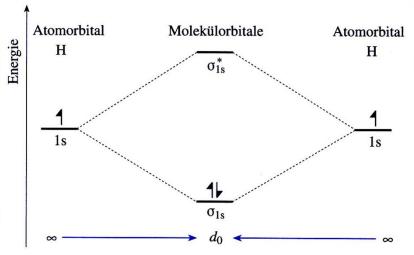
 Anregung von Elektronen in freies Orbital

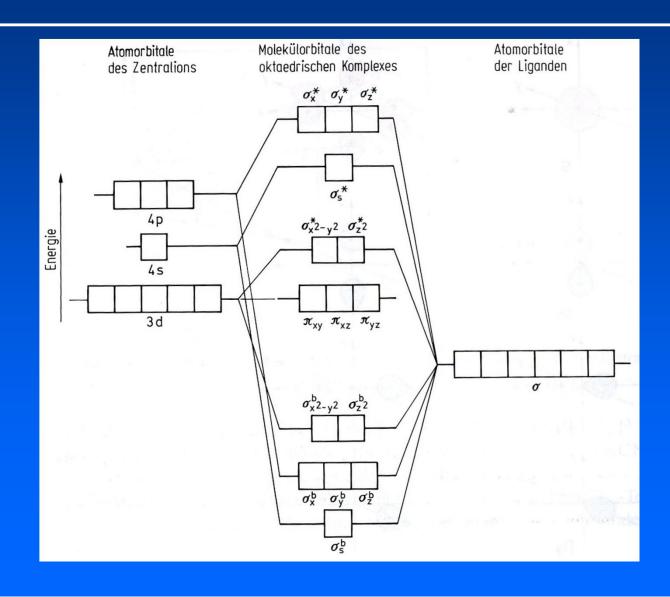
Charge Transfer

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie

Interner Redox-Vorgang


- Bsp.: Fe₄[Fe(CN)₆]₃
- Metall-Metall-Charge-Transfer
- Metall-Ligand-Charge-Transfer
- Ligand-Metall-Charge-Transfer


- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie


- Erklärt Farbigkeit
- Erklärt räumlichen Aufbau
- Erklärt nicht kovalente Wechselwirkungen

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie

- Molekülorbital (MO) Ergebnis aus Linearkombination von Atomorbitalen (AO)
- Konstruktive Überlagerung: Bindendes MO
- Destruktive Überlagerung:
 Antibindendes MO
- Summe MO entspricht
 Summe AO

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie

- Erklärt Farbigkeit
- Erklärt magnetisches Verhalten
- Erklärt wo sich Bindungen befinden
- Erklärt spektrochemische Reihe

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie

 π -Bindungen verändern Δ:

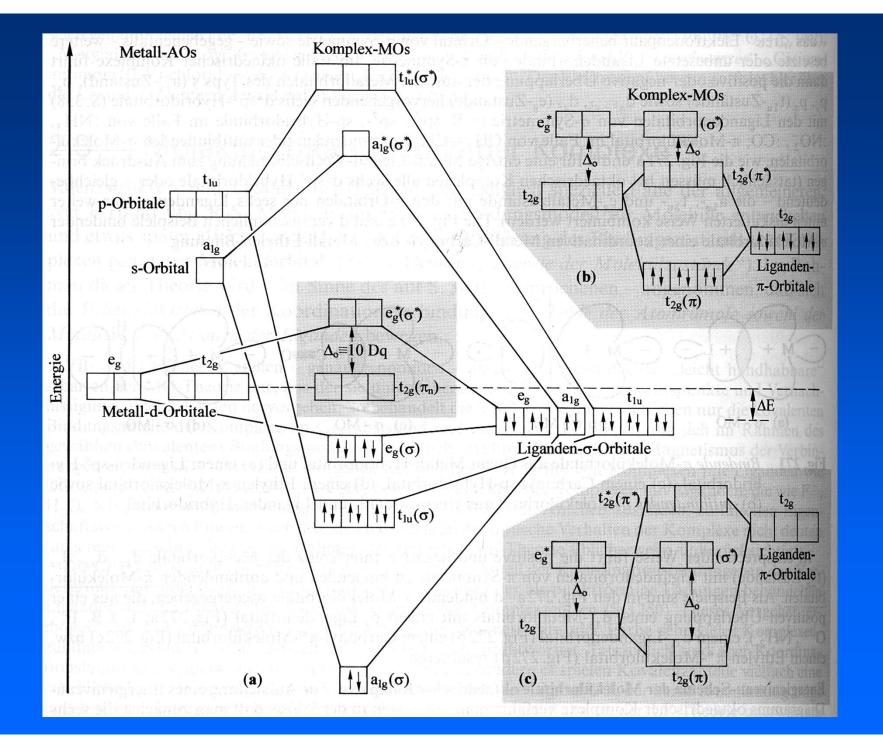
• π -Akzeptoren (CO) vergrößern Δ

• π -Donatoren (Halogenide) verringern Δ

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie

• π-Akzeptoren:

Dative π -Bindung Metall \rightarrow Ligand


Voraussetzung: Ligand besitzt leere π -Orbitale

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie

• π-Donatoren:

Dative π -Bindung Ligand \rightarrow Metall

Voraussetzung: Ligand besitzt gefüllte π -Orbitale

- Lewis-Säure-Base
- Valenzbindungs-Theorie
- Ligandenfeld-Theorie
- Molekülorbital-Theorie

Spektrochemische Reihe:

$$I^- < Br^- < CI^- < F < H_2O < NH_3 < CN^- < CO$$

Donatoren Nix Akzeptoren

Literatur

- Binnewies, Jäckel, Willner: *Allgemeine und Anorganische Chemie.* 1. Auflage, 2004
- Dickerson, Gray: Prinzipien der Chemie. 2. Auflage, 1988
- Holleman, Wieberg: Lehrbuch der anorganischen Chemie. 101. Auflage, 1992
- Huheey, Keiter, Keiter: Anorganische Chemie.
 3. Auflage, 2003
- Riedel: Anorganische Chemie. 5. Auflage, 2002
- Staatsexamensarbeit