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Introduction

Enumerative geometry is characterized by the question for the number of geo-
metric objects satisfying a number of conditions. A great source for such prob-
lems is given by the pattern “how many curves of a given type meet some given
objects in some ambient space?”. Here, one might choose to fix a combination
of genus and degree of the embedding of the curve to determine its “type”, and
as “objects” one could choose points and lines. However, the number of objects
is not free to choose – it should be determined in such a way that the answer
to the question is a finite integer. For example one might ask [KV03]:

How many plane rational curves of degree d pass through 3d − 1
points in general position?

This question has successfully been answered and the solution is quite il-
lustrative for how enumerative problems might be approached. The first step
is to set up a moduli space parametrizing the objects of interest. By means
of suitable morphisms the point incidence conditions are pulled back from P2

to this moduli space. The resulting subvarieties are then intersected using the
calculus of intersection theory to yield a zero-dimensional Chow cycle including
multiplicities. A simple degree evaluation then gives rise to integers which have
been found to indeed answer the question asked above.

The numbers obtained in the way just described can be defined in more gen-
eral settings and are referred to as Gromov-Witten invariants. However, passing
to positive genus introduces new phenomena causing a discrepancy between the
invariants and the number sought by the enumerative question. Consider for
example the problem:

How many elliptic curves of degree d are there which meet a number
of a given lines and b given points in P3 in general position, where
4d = a+ 2b?

Gromov-Witten invariants in the elliptic case can still be computed, but
they are not answering the question. In fact, they are not even integers! In his
1996 paper [Get97, theorem 6.1] Getzler claims the answer to this question to
be given by the formula

N
(1)
ab +

1

12
(2d− 1)N

(0)
ab ,

where N
(1)
ab and N

(0)
ab are elliptic and rational Gromov-Witten invariants respec-

tively. However, to the best of our knowledge no proof for the statement has
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been made public. Therefore we made it the goal of this thesis to prove Getzler’s
claim.

We now present an outline of our proceeding. In chapter 1 we will formally
define the moduli space Mg,n(X, d) of so-called stable maps of genus g with
n marks and degree d (definition 1.9) – a notion due to Kontsevich. In this
notation X is the ambient space which we will take to be P3 in the end. This
moduli space naturally comes with so-called evaluation maps ev : Mg,n(X, d)→
X (see definition 1.24) that enable us to translate incidence conditions in X into
Chow cycles of the moduli space:

V ⊆ X! ev∗V ⊆Mg,n(X, d).

With this technique at hand we may introduce Gromov-Witten invariants in
definition 1.25 by intersection these cycles and finally we restate Getzler’s claim
as main result of this thesis in theorem 1.28. However, the definition of concepts
like virtual dimension and virtual fundamental class even though important will
be largely omitted.

The discrepancy between Gromov-Witten invariants and enumerative num-
bers arises from a phenomenon referred to as excessive dimension. This is
caused by the compactification of the moduli space Mg,n(X, d) of smooth genus
g curves that was defined in chapter 1. In chapter 2 we will explore the extent
of the problem by determining all irreducible components of the moduli space
of elliptic curves in P3 whose dimension exceeds the expected value (corollary
2.14). In order to do so we will prove some theorems constituting a dimension
calculus for irreducible components (theorems 2.4 and 2.12).

In the third and final chapter we determine for each of the components found
in chapter 2 the impact they have on the Gromov-Witten invariants. We start
by identifying most of the excessive dimensional components as enumeratively
irrelevant in theorem 3.7. This is done by constructing a morphism to a space of
sufficiently small dimension which still keeps all of the enumerative information.
Then we utilize the projection formula from intersection theory to move the
computation of Gromov-Witten invariants from the original moduli space to
the condensed space, where the result will be trivial for dimensional reasons.

Section 3.2 is dominated by the central computation of this thesis. We use
the calculus of Chern classes to actually compute a virtual fundamental class
of one of the excessive dimensional components. The result is expressed via
tautological classes of the moduli spaces involved (theorem 3.21). In theorem
3.22 the coefficient claimed by Getzler shows up for the first time.

Finally in section 3.3 we use the compatibility of virtual fundamental classes
with pull-back along forgetful morphisms to prove the main theorem.

Careful investigation of the central theorems in this thesis shows why we
chose the special case of genus 1 curves in P3: In order for the Gromov-Witten
invariants to have a chance of being enumerative we need dimMg,n(X,β) =
vdimMg,n(, β), otherwise the virtual fundamental class restricted to Mg,n(X,β)
cannot be equal to the usual fundamental class. However our proof of theorem
2.12 works only for genus at most 1.

As for the choice of an ambient space X we restricted ourselves to Pr because
we needed to use smoothness and the Euler sequence at various occasions. The
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choice of r = 3 is a bit more subtle however. Looking at the expression for the
virtual dimension

vdimMg,n(X, d) = −KXd+ (dimX − 3)(1− g) + n

we see that it is independent of g only if dimX = 3. This independence is
needed to state theorem 3.22, i.e. in order to be able to express the push-
forward of [M1,n(X, d)]virt along the map used in theorem 3.22 as a multiple of
[M0,n(X, d)]virt. This does of course not rule out the possibility of generaliza-
tion, however if either of the constraints should be relaxed, different (and most
likely more involved) tools will have to be employed.
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Notation

Throughout this thesis, whenever we say “scheme” we mean “k-scheme”, where
k is an algebraically closed, fixed base field of characteristic 0. Correspondingly
all morphisms are morphisms of k-schemes. A variety is a separated scheme of
finite type.

Curly capitals will always denote sheaves, fraktur font indicates categories.
For example Mod(R) is the category of modules over the ring R and Ab is the
category of Abelian groups.

x when the number of variables is clear from the context or irrele-
vant we will write this instead of x1, . . . , xN

()∨ dual module, vector space, sheaf, etc.
Pr r-dimensional projective space, Pr := Proj k[x0, . . . , xr]
OX structure sheaf of a scheme or variety X
OX(D) sheaf corresponding to the divisor D ∈ Div(X)
OPr (n) Serre twisting sheaf; OPr (n) ··= OPr (n·H), whereH ⊆ Pr denotes

a hyperplane
Hi(X,F) i-th cohomology k-module of the scheme X with coordinates in

the sheaf of OX -modules F
hi(X,F) ··= dimHi(X,F)
Ai(X) group of i-dimensional Chow cycles in X
Ai(X) group of Chow cycles of codimension i in X
A∗(X) Chow ring non-singular, quasi-projective variety X, ··=⊕∞

i=0A
i(X) with ring structure given by intersection product

V ·W intersection product of V,W ∈ A∗(X)
ci(E) i-th Chern class of a vector bundle E
c(E) total Chern class, c(E) ··=

∑∞
i=0 ci(E) ∈ A∗(X)

g(C) arithmetic genus of the curve C, g(C) ··= h1(C,OC)
ΩX cotangent sheaf of X
TX tangent sheaf of X, TX ··= Ω∨X
ωX canonical bundle of non-singular variety X, ωX ··=

∧dimX
ΩX

KX canonical divisor of X, OX(KX) = ωX
Γ(U,F) ··= F(U), sections of the sheaf F on U ⊆ X open
Γ(F) ··= F(X), global sections of F
Fx ··= lim−→x∈UΓ(U,F) the stalk of the sheaf F at the point x ∈ X
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Chapter 1

The Moduli Space
Mg,n(X, β)

As very first step towards making any enumerative question accessible, one has
to parametrize the objects of interest. In our case the objects of interest are
curves of genus 1 in P3, and already here there are many possible models for such
objects. We will work with a parametrized approach as opposed to an embedded
approach – for a survey on the underlying ideas see [PT14]. More concretely this
means that we will be working with stable maps and parametrize them by the
moduli space Mg,n(X,β) which is due to Kontsevich. Defining all the notions
involved and quoting the known existence results will be the first section of this
chapter and follows [FP95].

The moduli spaces constructed in section 1 are by design compact. This
means that they necessarily contain points which do not correspond to smooth
but rather reducible curves. These points are said to lie in the boundary of
Mg,n(X,β). In the second section we investigate the combinatoric structure of
these curves.

After the moduli space has been established we move on to intersection
theory on that space. In the third section we will introduce Gromov-Witten
invariants which arise as intersection numbers. We will then state the main
theorem of this thesis about the number of elliptic space curves meeting a certain
number of lines and points.

Finally, in the last section we introduce some special Chow classes of our
moduli space, the so-called psi- and lambda-classes. These will be used in Chap-
ter 3 to compute virtual fundamental classes and ultimately to prove the main
theorem.

1.1 Stable Curves and Maps

Definition 1.1. Let C be a projective, connected, reduced curve which has
nodal singularities at worst, and let C1, . . . , CN denote the irreducible com-
ponents of C. In order to distinguish between the Ci and other irreducible
components we will refer to them as twigs of C, in analogy to [KV03]. Note
that the Ci need not be smooth but may be nodal themselves.
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Furthermore let p1, . . . , pn ∈ C pairwise different smooth points, called
marked points or simply marks. The tuple (C, p1, . . . , pn) is said to be a
marked or n-pointed curve. Whenever the marks are clear from context we
will abuse notation and simply denote the marked curve by C again.

An automorphism of (C, p) is an element f ∈ Aut(C) such that f(pi) = pi
for all marked points pi.

A point p ∈ C is called special if it is a mark or a singularity of C.
We say that (C, p) is stable if all twigs with arithmetic genus 0 contain at

least three special points and every twig of arithmetic genus 1 contains at least
one special point.

Remark 1.2. The stability condition from definition 1.1 is equivalent to the
marked curve having only finitely many automorphisms, see [HM98, p. 47].

In order to define a moduli space of stable curves, we have to introduce a
notion of family of stable curves.

Definition 1.3. A scheme S is said to be algebraic if its structure morphism
S → Spec k is of finite type.

Definition 1.4. Let S be an algebraic scheme. A family of stable n-pointed
curves over S is given by the data of a flat, projective morphism of schemes
π : F → S and n sections σ1, . . . , σn : S → F such that for every s ∈ S the fibre
(Fs, σ1(s), . . . , σn(s)) is a stable curve.

An isomorphism between two families (F, π, σ1, . . . , σn) and (G, π′, σ′1, . . . ,
σ′n) is given by an isomorphism γ : F → G compatible with the structure, i.e.

F G

S

γ

π
π′

and

F G

S

γ

σi
σ′i

commute.
Consider the induced functor

Mg,n : Scheme→ Set

S 7→
{

(F, π, σ) family of stable curves
}
/ isomorphisms.

The representing object (if it exists) is the moduli space of stable n-pointed
curves of genus g and is denoted Mg,n. The locus of smooth curves is denoted
Mg,n.

Sometimes it is customary to index the marks with a set different from
{1, . . . , n}, say A. In this case we will adapt notation slightly by writing Mg,A

instead.

Of course the moduli spaces just defined do exist – this is a result due to
Deligne, Mumford and Knudsen.

Theorem 1.5. Coarse moduli spaces Mg,n exist as projective varieties ([HM98,
theorem 2.15]).

If 2g − 2 + n > 0 or equivalently

g ≥ 2 ∨
(
g = 1 ∧ n ≥ 1

)
∨
(
g = 0 ∧ n ≥ 3

)
then Mg,n is non-empty of dimension 3g − 3 + n ([Beh97, proposition 2]).
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Remark 1.6. The formula for the dimension of the moduli space of one-pointed
elliptic curves yields dimM1,1 = 1, i.e. there is a one parameter family of such
curves. This parameter is commonly referred to as j-invariant. Note however
that by definition M1,0 = ∅ despite the expression for the dimension seemingly
equating to 0.

We now turn towards stable maps. They add more structure to the abstract
curves used above by introducing a map establishing a relation with some am-
bient space X.

Definition 1.7. Let X be an algebraic scheme and let (C, p) be an n-pointed
curve of genus g (i.e. projective, connected, reduced, and nodal at worst). Fur-
thermore fix some β ∈ A1(X). A tuple (C, p, f) where f : C → X is a morphism
is called stable map of degree β if and only if

1. f∗[C] = β and

2. for every twig D ⊆ C with f∗[D] = 0, the twig is stable as marked curve,
that is (

g(D) ≥ 2
)
∨
(
g(D) = 1 ∧ s ≥ 1

)
∨
(
g(D) = 0 ∧ s ≥ 3

)
,

where s is the number of special points on D. A twig which is mapped to
a point is said to be contracted.

If C and the marks are clear from context we denote the stable map simply by
f again.

An automorphism of a stable map is an element γ ∈ Aut(C) which respects
the marks in the sense of definition 1.1 and the map f in the sense of the diagram

C C

X

f

γ

f

commuting.
A stable map is said to be irreducible or smooth if its domain curve is

irreducible or smooth respectively.

Remark 1.8. The stability condition from the above definition is equivalent to
the group of automorphisms of f being finite ([Gat03b, remark 1.1.10]).

Again, eventually we want to introduce a moduli space of stable maps and
therefore need a concept of family.

Definition 1.9. Fix some algebraic schemes X and S. A family of stable
maps of n-pointed curves of genus g is a tuple (π : F → S, σ1, . . . , σn, µ)
where π : F → S, µ : F → X are morphisms of schemes and σi : S → F are
sections subject to the condition

∀s ∈ S :
(
Fs, σ1(s), . . . , σn(s), µ|Fs

)
is a stable map.
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Two families (π : F → S, σ1, . . . , σn, µ) and (π′ : G→ S, σ′1, . . . , σ
′
n, µ
′) over

the same base scheme are isomorphic if there exists an isomorphism γ : F → G
such that all of the following diagrams commute.

F G

S

γ

π
π′

F G

S

γ

σi
σ′i

F G

X

γ

µ
µ′

Again there is a functor

Mg,n(X,β) : Scheme→ Set

S 7→

{
(π : F → S, σ, µ)

family of stable maps

}/
isomorphism

whose representing object (if it exists) is denoted by Mg,n(X,β) and called
moduli space of stable maps of n-pointed curved of degree β. The
locus of smooth maps is denoted by Mg,n(X,β). Their difference Mg,n(X,β) \
Mg,n(X,β) is called boundary.

The following existence result can be found in [FP95, Theorem 1].

Theorem 1.10. Let X be a projective, algebraic scheme. Then Mg,n(X,β)
exists as a projective coarse moduli space.

Remark 1.11. Recall that A1(Pr) = Z for any r ≥ 1. Thus, if we are looking at
the case X = Pr we may just as well write Mg,n(Pr, d) for some integer d rather
than having β = d[line] ∈ A1(Pr).

Definition 1.12. A variety X is called convex if

∀ maps µ : P1 → X : H1(P1, µ∗TX) = 0.

Lemma 1.13. Projective spaces Pr are convex for all r.

Proof. Set X ··= Pr and let µ : P1 → X be some morphism. Consider the Euler
sequence ([Gat03a, 7.4.15])

0→ OX → OX(1)⊕(r+1) → TX → 0.

and apply the pull-back µ∗. This results in another short exact sequence since
X is smooth and thus all sheaves of modules in the Euler sequence are vector
bundles. We obtain

0→ OP1 → µ∗
(
OX(1)

)⊕(r+1) → µ∗TX → 0. (1.1)

The term in the middle may be rewritten: µ∗OX(1) is a line bundle on P1 and
therefore can be expressed as OP1(z) for some z ∈ Z. The integer is given as
the degree of µ and therefore non-negative. But now consider part of the long
exact cohomology sequence induced by (1.1):

· · · → H1
(
P1,OP1(z)

)︸ ︷︷ ︸
∼=H0

(
P1,OP1 (−2−z)

)
=0

⊕(r+1) → H1(P1, µ∗TX)→ 0.︸︷︷︸
since dim P1=1

This proves the claim. �
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In [FP95, Theorem 2] we find more information on the rational case:

Theorem 1.14. Let X be a projective, smooth, convex variety. Then

1. M0,n(X,β) is a normal, projective variety of pure dimension

dimX +

∫
β

c1(TX) + n− 3.

2. M0,n(X,β) is locally a quotient of a non-singular variety by a finite group.

In particular, for X = Pr recall c1(TX) = Hr+1 and thus we get

dimM0,n(Pr, d) = rd+ r + d+ n− 3.

Remark 1.15. If Mg,n exists then Mg,n(X, 0) ∼= Mg,n ×X, see [BM96, section
7, property 1] and

dimMg,n+m(X,β) = dimMg,n(X,β) +m.

Remark 1.16. The modern theory of moduli spaces is formulated using the lan-
guage of stacks rather than schemes and varieties. Therefore, it would be most
accurate to use the term moduli stack rather than space. Generally speaking one
of the benefits of stacks is that they provide a more refined notion of quotient
space by allowing individual points of a stack to have non-trivial automorphism
groups. This already suggests why stacks are better suited to describe moduli
spaces: the “points” in a moduli space are geometric objects themselves and
as such may admit non-trivial automorphisms. The benefits of stacks however
come with the disadvantage of heavy technical machinery needed to only define
these objects, see [Beh14]. Given the scope of this thesis we will not pursue this
track.

1.2 The Boundary

By definition any element in the boundary of the compactified moduli space
M1,n(X,β) is a map defined on a reducible source curve C of genus 1. Obviously
these are not the type of curves we had in mind when we asked our enumerative
question on the number of genus 1 curves. But simply removing them and
working on M1,n(X,β) is not an option either: the locus of smooth curves is
not compact and thus the entire machinery of intersection theory would not be
available. Therefore we will keep them but make it the central issue of this thesis
to determine the influence these unwanted curves may have on our enumerative
counts. In this section we start by describing the combinatoric structure of
boundary curves.

Remark 1.17. The term “boundary” might be a bit misleading because it might
suggest that M = M1,n(X,β) is dense in M which is not the case – in fact we
will see in chapter 2 that M may even be considerably larger than M . Thus a
much more appropriate formulation would be: “M is a compact space containing
M and it arose by adding only geometrically meaningful points”. This longish
phrase indicates the definition of M we use here is neither canonical nor unique,
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but geometrically motivated. Additionally it is a particularly successful one, see
[PT14].

The notation comes with yet another disadvantage: at times it might be
necessary to speak about the topological closure on M in M but the canonical
symbol for this is obviously already in use. Therefore we use the clumsier
notation cl(M) to denote the closure when needed.

Construction 1.18. Boundary components of M1,n(X,β) are characterized by
the combinatoric structure of the source curve of a general element. By “com-
binatoric structure” we mean the number of twigs of various genera and how
they are attached to each other. An element is said to be “general” if all ele-
ments of that type constitute a dense, open set. Intuitively, if we were to pick a
random element from a component of M , we would get a general element with
probability 1.

In order to visualize such general elements and thereby a component of the
moduli space we will use a suggestive pictogram notation. Genus 0 twigs will
always be drawn as simple lines, genus 1 twigs will always contain a loop, see
1.1. This depiction of elliptic twigs might be confused with a rational twig
glued onto itself forming a singular curve. However the later situation is not
enumeratively relevant as we will see in corollary 2.14. Also twigs of higher
genus are not relevant as we will see in corollary 1.22. Marks are represented
by dots and – if relevant – the degree with which the twig is mapped to X is
written next to it. Please note that a pictogram always represents an abstract
curve and not its image under f in X.

(a) Genus 0 curve. (b) Smooth genus 1 curve.

Figure 1.1: Elementary components of pictogram notation.

In the next definition we construct a graph that captures the combinatoric
structure of a curve. This is a simplification of the construction performed in
[BM96].

Definition 1.19. Let C be a connected curve with double points as worst sin-
gularities. Define an undirected graph G = (V,E) with vertices V = {C1, . . . ,
CN} the twigs of C, and edges {Ci, Cj} for every singularity of C in which Ci
and Cj meet transversally. Note that this definition explicitly allows for parallel
edges and self loops in G. We say that C is a tree if and only if G is a tree.

Example 1.20. See figure 1.2.

The next lemma expresses the genus of a nodal curve in terms of the genera
of its twigs, see [Gat03b, 1.1.2] or [HM98, p. 48].
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(a) A tree. (b) Not a tree.

Figure 1.2: Example of a curve which is a tree, and one which is not.

Lemma 1.21. Let C be a curve with twigs C1, . . . , CN which are glued at s
points. The genus of C is given by the formula

g = s−N + 1 +

N∑
i=1

g(Ci) = s+ 1 +

N∑
i=1

(
g(Ci)− 1

)
.

In case of elliptic curves, i.e. g = 1 the lemma yields:

Corollary 1.22. Let C be a nodal genus 1 curve. Keeping notation from lemma
1.21 it holds that either

1. C is a tree, s = N − 1 and it contains exactly one twig of genus 1 (the
remaining twigs have genus 0) or

2. the graph constructed in definition 1.19 contains exactly one cycle (or self
loop), s = N and all twigs are of genus 0.

In particular twigs of genus larger than 1 do not occur.

Proof. Using g = 1 in lemma 1.21 gives

s =

N∑
i=1

(
1− g(Ci)︸ ︷︷ ︸

≤1

)
≥ N

and C being connected implies s ≥ N − 1. The two possible values for s give
rise to the different situations of the claim. �

In particular the curves from figure 1.2 are both of genus 1.

1.3 Gromov-Witten Invariants

We will now introduce Gromov-Witten invariants and thereby establish the
language needed to re-formulate Getzler’s theorem (theorem 1.28). In order to
get started we introduce some natural morphisms on the moduli space giving it
a geometric structure.

Construction 1.23. Let (C, p) be an n-marked curve of genus g which is not
stable. If C satisfies 2g − 2 + n > 0 the failure to being stable is caused by at
least one rational twig containing less than three special points. Let Cj be an

unstable, rational twig. We construct a new curve (C̃, p) by removing Cj and
then reattach any marks or further twigs formerly attached to Cj to C at the
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point C ∩ Cj . Geometrically one can imagine that Cj has been contracted to
a point. If this operation is iteratively performed for every unstable twig then
we will obtain a stable curve [C]stab (the condition 2g − 2 + n > 0 ensures that
the process terminates with at least one twig left). The curve [C]stab is called
stabilization of C, compare [BM96, proposition 1.13]. The same construction
can be carried out to stabilize maps.

Definition 1.24. a) Define for i = 1, . . . , n the evaluation map

evi : Mg,n(X,β)→ X,

f 7→ f(pi).

b) For any pi there is a forgetful morphism

πi : Mg,n(X,β)→Mg,{1,...,i−1,i+1,...,n}(X,β)

(C, p1, . . . , pn, f) 7→ [(C, p1, . . . , pi−1, pi+1, . . . , pn, f)]stab

and analogously for stable curves. In either case πn is the universal curve
(for stable curves see [Beh97], for stable maps see [BM96, corollary 4.6]).

c) There also exists a forgetful morphism which forgets the map to X:

ρ : Mg,n(X,β)→Mg,n

(C, p, f) 7→ [(C, p)]stab.

All of these maps are indeed morphisms of schemes (e.g. for evaluation maps
see [BM96, proposition 5.5]).

The evaluation maps from definition 1.24 are the key to approaching enumer-
ative questions by intersection theory. Let geometric objects, i.e. subvarieties
B1, . . . , Bn ⊆ X like points and lines be given. Then each of these objects gives
rise to a class [Bi] ∈ A∗(X) which may then be pulled back along evi to give
ev∗i [Bi] ∈ A∗(Mg,n(X,β)). Geometrically the support of a cycle representation
of such a class should consist of all maps f whose image in X is a curve run-
ning through Bi. Therefore we want to intersect all these pull-backs in order
to satisfy all incidence conditions at once. If n and the objects Bi were chosen
appropriately the intersection

ev∗1 [B1] · · · ev∗n[Bn]

should be a co-cycle in dimension 0 and therefore intersecting with the funda-
mental class followed by a degree evaluation should give us the answer to our
enumerative problem.

However, things are not going as smoothly as one could hope. Geometrically
we are interested in smooth elliptic curves and thus we want to choose the
conditions in a way that their codimensions sum up to dimM1,n(X,β). The
problem lies in the boundary: there are components with dimension strictly
larger than the smooth locus – they are determined in the next chapter. As a
consequence, the procedure just described fails.

In order to remedy this problem Behrend and Fantechi [BF97] introduced the
concept of virtual or expected dimension and the so-called virtual fundamental
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class. The idea is that vdimM is the number which one would expect for the
dimension of M – we will see in theorem 2.12 that in the special case of elliptic
curves in Pr it is in fact equal to dimM . The virtual fundamental class is then
a class [M ]virt ∈ AvdimM (M) and replaces the usual fundamental class. Of
course Gromov-Witten invariants are defined using this class:

Definition 1.25. Let γ1, . . . , γn ∈ A∗(X). The number

〈γ1 · · · γn〉g,β ··= deg
(
ev∗1γ1 · · · ev∗nγn ·

[
Mg,n(X,β)

]virt)
is called Gromov-Witten invariant (compare [Gat03b]). Recall that deg
denotes the degree of the dimension 0 part. Another common notation is

〈γ1 · · · γn〉g,n =

∫
[Mg,n(X,β)]virt

ev∗1γ1 · · · ev∗nγn

and correspondingly one speaks of “integrating” the cycle ev∗1γ1 · · · ev∗nγn over
[Mg,n(X,β)]virt.

At this point we are obviously lacking the definition of virtual dimension
and virtual fundamental classes. The reason why we do not simply state it here
lies in its sheer technical complexity. Both terms are defined using the language
of stacks and need concepts such as perfect obstruction theories and intrinsic
normal cones. This however is far beyond the scope of this thesis and thus we
have to content ourselves by remarking the following properties:

1. vdim and [−]virt can be defined for any separated Deligne-Mumford stack
admitting a perfect obstruction theory ([BF97]). In particular the concept
applies to more general situations than that of Mg,n(X,β).

2. For genus 0 and convex X the virtual fundamental class is given by the
usual fundamental class [M0,n(X, d)]virt = [M0,n(X, d)], [BM96, theorem
7.5].

3. vdimMg,n(X,β) = −KXβ + (dimX − 3)(g − 1) + n, [CK99, p. 175].

4. The construction of the virtual fundamental class is local.

Remark 1.26 (number of conditions). In order for Gromov-Witten invariants to
be non-zero, we have to ensure that the intersection does have non-trivial di-
mension 0 part. This is equivalent to∑

codimX γi = vdimMg,n(X,β).

Since we are interested in elliptic Gromov-Witten invariants in P3, this special-
izes as X = P3 and g = 1. Furthermore, in order to implement point and line
incidence conditions, the γi will be taken to be the class of a point or line. The
codimensions are obviously 3 and 2 respectively. If we call a the number of line
incidence conditions and b the number of point incidences we want to implement
(and thus n = a+ b) we get

3b+ 2a = 4d+ (a+ b)

⇐⇒ 2b+ a = 4d.

This tells us how many conditions we have to impose (compare [Get97]).
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Definition 1.27. We will use the following simplified notation for rational and
elliptic Gromov-Witten invariants with respect to a lines and b points:

N
(g)
ab
··= 〈γ1 · · · γa+b〉g,(2b+a)/4.

Obviously this only makes sense if 2b+ a is divisible by 4.

The following theorem was postulated by Getzler in [Get97, theorem 6.1]
and is the main theorem of this thesis. We will prove it in chapter 3.

Theorem 1.28. The number of elliptic curves in P3 of degree d passing through
a number of a generic lines and b generic points, where 4d = a+ 2b, equals

N
(1)
ab +

2d− 1

12
N

(0)
ab .

Example 1.29. Table 1.1 gives some values for rational and elliptic Gromov-
Witten invariants depending on the values for a and b as well as Getzler’s claim
for the corresponding number of curves. The table has been taken from [Get97,
Table 1].

1.4 Tautological Classes on M g,n and M g,n(X, β)

In this section we want to introduce the so-called psi- and lambda-classes on
the moduli spaces of stable curves and maps. Furthermore, we will quote some
results that allow for evaluation of these classes.

Construction 1.30 (psi-classes). Consider an element (C, p) ∈ Mg,n and fix an
index i. As C is one-dimensional and pi a smooth point of C, the cotangent
space of C at pi is one-dimensional as well. If we now allow the point (C, p)
to vary inside the moduli space this gives rise to a line bundle. More formally,
consider the relative cotangent sheaf ΩMg,n+1/Mg,n

of the universal curve

Mg,n+1 →Mg,n.

Then the pull-back along the section σn+1 corresponding to the forgotten (n+1)-
th mark is denoted Ti. This is precisely the desired line bundle. Its first Chern
class is denoted ψi ··= c1(Ti) ∈ A1(Mg,n) and referred to as i-th psi-class. The
same construction is used in the case of stable maps as well.

Lemma 1.31. ∫
[M1,1]

ψ1 =
1

24
.

Proof. [Wit91, equation 2.46]. �

Lemma 1.32. For the forgetful morphism π : M0,n+1(X, d) → M0,n(X, d) we
have

∀i = 1, . . . , n : π∗ψi = (2g − 2 + n)[M0,n(X, d)].

Proof. Special case of [Gat03b, corollary 1.3.5]. �
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Construction 1.33 (lambda-classes). Consider again the universal curve

π : Mg,n+1︸ ︷︷ ︸
=··C
→Mg,n︸ ︷︷ ︸

=··M

and its relative dualizing sheaf ωC/M . Define the Hodge bundle E ··= π∗ωC/M .
Its fibre at a point (C, p) is given by H0(C,ωC), where ωC is the dualizing sheaf
of C. Thus it is a rank g vector bundle and we may consider the Chern classes

λi ··= ci(E) ∈ A1(Mg,n)

for i = 1, . . . , g. They are called lambda-classes, compare [HM98, p. 155 –
156]. In the case of g = 1 we will abbreviate notation by writing λ = λ1.

Theorem 1.34. [FP03, Theorem 1]:∫
[Mg,n]

ψα1
1 · · ·ψαnn λg =

(
2g + n− 3

α1, . . . , αn

)∫
[Mg,1]

ψ2g−2
1 λg

and ∫
[Mg,1]

ψ2g−2
1 λg =

22g−1 − 1

22g−1

|B2g|
(2g)!

,

where Bn denotes the n-th Bernoulli number.

Put g = 1 in the above theorem to obtain:

Corollary 1.35. ∫
[M1,1]

λ =
1

24

Note that M1,1
∼= P1, hence λ = c[point] for some c ∈ Q. This coefficient is

precisely given by the degree evaluation, i.e. c = 1/24.

Construction 1.36. Let H be a hyperplane in X = Pr and consider the evalua-
tion map

evn+1 : M0,n+1(X, d)→ X.

The pull-back ev∗n+1H ∈ A1(M0,n+1(X, d)) has codimension 1 because the hy-
perplane enforces exactly one condition.

Lemma 1.37. Let π : M0,n+1(X, d) → M0,n(X, d) be the forgetful morphism
which drops the (n+ 1)-st point. Then

π∗ev
∗
n+1H = d[M0,n(X, d)].

Proof. Special case of [Gat03b, corollary 1.3.4]. �
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d (a, b) N
(0)
ab N

(1)
ab N

(1)
ab + 2d−1

12 N
(0)
ab

1 (0, 2) 1 -1/12 0
(2, 1) 1 -1/12 0
(4, 0) 2 -1/6 0

2 (0, 4) 0 0 0
(2, 3) 1 -1/4 0
(4, 2) 4 -1 0
(6, 1) 18 -4 1/2 0
(8, 0) 92 -23 0

3 (0, 6) 1 -5/12 0
(2, 5) 5 -2 1/12 0
(4, 4) 30 -12 1/2 0
(6, 3) 190 -78 1/6 1
(8, 2) 1312 -532 2/3 14
(10, 1) 9864 -3960 150
(12, 0) 80160 -31900 1500

4 (0, 8) 4 -1 1/3 1
(2, 7) 58 -29 5/6 4
(4, 6) 480 -248 32
(6, 5) 4000 -2023 1/3 310
(8, 4) 35104 -17257 1/3 3220
(10, 3) 327888 -156594 34674
(12, 2) 3259680 -1515824 385656
(14, 1) 34382544 -15620216 4436268
(16, 0) 383306880 -170763640 52832040

5 (0, 10) 105 -36 3/4 42
(2, 9) 1265 -594 3/4 354
(4, 8) 13354 -6523 1/2 3492
(6, 7) 139098 -66274 1/2 38049
(8, 6) 1492616 -677808 441654
(10, 5) 16744080 -7179606 5378454
(12, 4) 197240400 -79637976 68292324
(14, 3) 2440235712 -928521900 901654884
(16, 2) 31658432256 -11385660384 12358163808
(18, 1) 429750191232 -146713008096 175599635328
(20, 0) 6089786376960 -1984020394752 2583319387968

Table 1.1: Some example values for Gromov-Witten invariants and the claimed
number of elliptic curves. Notation as in theorem 1.28.
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Chapter 2

Dimension

In chapter 1 we introduced the moduli space of stable maps and already hinted
at the odd behaviour of the boundary. In this chapter we develop a calculus
allowing us to compute the dimension of basically any irreducible component
of M1,n(Pr, d). We then identify the components of excessive dimension in
corollary 2.14.

From now on the ambient space X will always be Pr and
we restrict ourselves to moduli spaces of elliptic curves!

The following lemma relates the gluing of curves to fibre products of sub-
schemes of suitable moduli spaces. It is a simple application of properties that
could be stated much more generally.

Lemma 2.1. Let D ⊆ Mg,n+1(X, d) and D′ ⊆ Mg′,n′+1(X, d′) be irreducible
components of their respective moduli spaces. Let (C, p, f) and (C ′, p′, f ′) be

general elements of D and D′ respectively. If G ⊆Mg+g′,n+n′(X, d+d′) denotes
the irreducible component with general element given by gluing C and C ′ at the
(n+ 1) and (n′ + 1)-st mark then there is a fibre product diagram

G D

D′ X.

� evn+1

evn′+1

Proof. By [BM96, section 7, property 2 and 3] there is a fibre product diagram

G X

D ×D′ X ×X.

�
∆

(evn+1,evn′+1)

It is now easy to construct an isomorphism G ∼= D′ ×X D using the universal
property of both fibre products. �

In order to turn lemma 2.1 into a dimension formula we use the following
general fact:

17



Lemma 2.2. Let f : A → C and g : B → C be flat, surjective morphisms of
schemes with C irreducible and A and B pure dimensional. Then

dim(A×C B) = dimA+ dimB − dimC.

Proof. Let x ∈ C be any point. By [Liu02, corollary 4.3.14] it holds

dim f−1(x) = dimA− dimC and

dim g−1(x) = dimB − dimC.

We check that all assumptions of [Liu02, corollary 4.3.14] are satisfied for h :
A×C B → C as well:

• the morphism is flat and surjective as both properties are stable under
base change and composition and

• the fibre product of pure dimensional schemes over irreducible C is pure
dimensional.

Hence by the afore mentioned corollary

dimh−1(x) = dim(A×C B)− dimC.

Furthermore, x = x×C x = x× x and thus we may write

h−1(x) = A×C B ×C x = (A×C x)× (x×C B) = f−1(x)× g−1(x)

and the claim follows from the dimension formula for products:

dim
(
f−1(x)× g−1(x)

)
= dim f−1(x) + dim g−1(x). �

Of course we want to combine the fibre product structure from lemma 2.1
with the dimension formula from lemma 2.2. For this we need to check that the
evaluation maps are flat and surjective. For flatness see [KV03, lemma 2.5.1]
(the argument can be applied in positive genus without any change) and for
surjectivity use the next lemma.

Lemma 2.3. Let d > 0 and I ⊆ {1, . . . , n}. We define the combined evaluation
map on the topological closure of the smooth locus

ev = (evi)i∈I : cl
(
M1,n(X, d)

)
→ X |I|.

If |I| < r + 1 then ev is surjective.

Proof. The group of linear automorphisms of kr+1 acts (r + 1)-transitively
on the set of linearly independent tuples of vectors in kr+1. In particular, if
m ··= |I| ≤ r + 1 it acts m-transitively and we define

Um ··=
{

(b1, . . . , bm) ∈ (kr+1)m
∣∣ dim〈b1, . . . , bm〉k = m

}
.

A tuple lying in Um amounts to the points being in general position. Passing to
projective space we get that the group of projective linear automorphisms of X
acts m-transitively on the set of m-tuples in general position. Let UPm denote
this set.
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Now let f : C → X be a general element of M1,n(X, d). Generality means
precisely that x ··= ev(f) is an m-tuple in general position. Hence for any other
y ∈ UPm there is a linear automorphism α of X such that α(x) = y. Note that
α ◦ f ∈ M1,n(X, d) because degα = 1 and thus it does not change the degree
of any twig. All together this shows that ev maps surjectively to the dense
open set UPm. Hence by continuity and compactness of cl(M1,n(X, d)) the claim
follows. �

The following theorem gives a useful formula for dimensions of boundary
components:

Theorem 2.4. Let D be a component of M1,n(X, d) and f : (C, p) → X be a
general element of D. Let C1, . . . , CN denote the twigs of C and say that Ci has
genus gi, is mapped with degree di and contains ni of the n marks. Moreover
let si denote the number of half-edges incident to Ci in the graph defined in
definition 1.19 (i.e. self-loops are counted twice) and finally let s be the total
number of gluing points. Then

dimD =

N∑
i=1

dimMgi,ni+si(X, di)− sdimX.

In particular, if all of the spaces occurring exist then by remark 1.15

dimD =

N∑
i=1

dimMgi,ni(X, di)− s(dimX − 2).

Proof. We proceed by induction on N . Let N = 1 and consider the cases:

1. s = 0 and thus C is irreducible and smooth: In this case we have D =
cl(M1,n(X, d)) and there is nothing to show.

2. C is of genus 0 and glued to itself in a single point: Then D is the space of
genus 0 curves with n + 2 marks such that evn+1 = evn+2. This space is
precisely the pull back of the diagonal ∆ ⊆ X ×k X along the morphism

(evn+1, evn+2) : M0,n+2(X, d)→ X ×k X,

i.e. there is a cartesian diagram

D X

M0,n+2(X, d) X ×X

�
∆

(evn+1,evn+2)

and we get dimD = dimM0,n+2(X, d)− dimX.

Now assume N > 1 and without loss of generality let C1 be a twig of C
such that C ′ ··= C2 ∪ · · · ∪ CN is still connected. Furthermore, if we add new
marks at points where C1 would be attached to C ′, it is again a stable map and
thus an element in M1−g1,n−n1+s1(X, d − d1). Since C ′ consists of only N − 1
twigs, induction hypothesis may be applied to the irreducible component D′

with general element C ′.
Again we distinguish two cases:
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1. C1 is glued to C ′ in only one point. In this case Mg1,n1+1(X, d1)×X D′ is
a dense, open subset of D and thus

dimD = dimMg1,n1+1(X, d1)− dimX + dimD′.

2. C1 is glued to the rest of C in 2 points. Analogously we have that
Mg1,n1+2(X, d1)×X×X D′ is a dense, open subset of D and thus

dimD = dimMg1,n1+2(X, d1)− 2 dimX + dimD′.

In either case the claim follows by application of the induction hypothesis to
D′. �

Note that theorem 2.4 essentially reduced the task of computing the di-
mension of the compactified moduli space M1,n(X, d) to the computation of
dimM1,n(X, d): the dimension of the compactified moduli space is the maxi-
mum of the dimensions of the individual components. The theorem expresses
the latter with respect to the dimension of not compactified moduli spaces.

We will now introduce a valuable tool for further investigation: let f : C →
X be a stable map and set P ··=

∑
pi the divisor of all marks. Then there is a

long exact sequence of hyper-Ext groups [CK99]:

· · · → Exti
(
f∗ΩX → ΩC(P ),OC

)
→ Exti

(
ΩC(P ),OC

)
→ Exti

(
f∗ΩX ,OC

)
→ Exti+1

(
f∗ΩX → ΩC(P ),OC

)
→ · · · (2.1)

Remark 2.5. Sequence (2.1) in the form presented here is an exact sequence of
k-modules for ever stable map f . Indeed there is an underlying exact sequence
of sheaves on the moduli space M1,n(X, d) such that (2.1) is just the fibre at
f . This should be kept in mind because later on we will need this global view
point. Until then it is important to keep any manipulations of the objects
involved natural such that they lift to operations on the underlying sheaves.

We will now present some simplifications of the terms occurring in sequence
(2.1). For a start we define the short hand notation

Ej ··= Extj
(
f∗ΩX → ΩC(P ),OC

)
.

Furthermore we employ smoothness of X and some basic properties of the Ext-
functor (see appendix A.3 for details) to obtain:

∀j : Extj
(
f∗ΩX ,OC

) ∼= Extj(OC , f∗TX) ∼= Hj
(
C, f∗TX

)
.

This already shows that the hyper-Ext sequence ends after Ext2(ΩC(P ),OC).

Remark 2.6. Before we simply further, some geometric explanations are in or-
der:

1. E0 is the space of infinitesimal automorphisms of f . It is always trivial
because f is stable, compare [CK99, p. 175].

2. Ext0(ΩC(P ),OC) are the infinitesimal automorphisms of C. In case C is
stable as a curve, this space is trivial as well. But in general this need not
be the case, see [CK99, p. 175].
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3. H0(C, f∗TX) are global sections of TX pulled back to C. The space thus
represents the ways in which the image of f in X may be deformed, or
equivalently, the deformations of f with C being fixed, see [HM98, p. 96]
or [CK99, p. 175].

4. E1 gives the deformations of f as stable map, meaning deformations of
the curve and the map combined. It is therefore isomorphic to the tangent
space of M1,n(X, d) at f (see [CK99, p. 175]). If the moduli space was
smooth, the dimension of this term would be independent of f and equal
to the dimension of the moduli space. However for genus 1 this is not the
case: there is a singular locus on which dimE1 exceeds the dimension of
the moduli space.

5. Ext1(ΩC(P ),OC) is the space of first-order deformations of (C, p), [HM98,
p. 99]. It is depends only on the curve and its marks, not on the map.

6. If the term H1(C, f∗TX) vanishes, it follows that the map in front of it is
surjective and thus every deformation of C lifts to a deformation of f . In
other words, the tangent space E1 is indeed comprised of combinations of
deformations of C and deformations of f which are not due to infinitesimal
automorphisms of C.

7. Finally E2 is an obstruction term and the last non-trivial term in sequence
(2.1) as we shall see now.

For smooth C the cotangent sheaf ΩC is a line bundle and thus we may
again apply basic properties of Ext. The result is

∀j : Extj
(
ΩC(P ),OC

) ∼= Hj
(
C, TC(−P )

)
(2.2)

which shows that Ext2(ΩC(P ),OC) is trivial. For nodal C this procedure cannot
be applied, but the result still holds:

Lemma 2.7. For all stable maps f : C → X it holds Ext2(ΩC(P ),OC) = 0.

Proof. By remark B.5 there is an isomorphism

Ext2
(
ΩC(P ),OC

) ∼= H0
(
C, Ext2(ΩC(P ),OC)

)
⊕H1

(
C, Ext1(ΩC(P ),OC)

)
.

As Exti is a local construction and ΩC(P ) is locally free away from the nodes
of C, we get by proposition A.4 that for i > 0 the sheaf Exti(ΩC(P ),OC) is
a skyscraper sheaf supported in the nodes C. Skyscraper sheaves are flabby,
hence

H1
(
C, Ext1(ΩC(P ),OC)

)
= 0.

It remains to compute Ext2(ΩC(P ),OC), or more precisely, its stalk in a given
node ν of C. We know (Ext2C(ΩC(P ),OC))ν = Ext2

OC,ν (ΩC,ν ,OC,ν) because
marks are always smooth points of C, i.e. ν is not contained in the support of
P . Locally we may assume without loss of generality

C = V (xy) ⊆ Spec k[x, y]

or, put differently: C = SpecR with R ··= k[x, y]/〈xy〉. We identify ν with
〈x, y〉 such that we may write OC,ν = Rν and

ΩC,ν = 〈dx, dy〉Rν/〈y dx+ xdy〉Rν .
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Consider the short exact sequence of Rν-modules

0→ 〈y dx+ xdy〉Rν → 〈dx, dy〉Rν → ΩC,ν → 0 (2.3)

and note that the first two elements are free, hence projective, hence their Exti-
groups over Rν are trivial for i > 0. Plugging this into the long exact Ext
sequence induced by (2.3) yields ∀i ≥ 2 : Exti(ΩC,ν , Rν) = 0 and hence the
claim. �

Summing up all the simplifications made to sequence (2.1) we get:

Corollary 2.8. For all stable maps f : C → X there is an exact sequence

0→ Ext0
(
ΩC(P ),OC

)
→ H0

(
C, f∗TX

)
→ E1

→ Ext1
(
ΩC(P ),OC

)
→ H1

(
C, f∗TX

)
→ E2 → 0.

(2.4)

The hyper-Ext groups in this sequence are related to the idea of a perfect
obstruction theory which we will not elaborate on. However we may at least
formally define the “expected” dimension.

Definition 2.9. We call vdimMg,n(X, d) ··= dimE1 − dimE2 the virtual or
expected dimension of Mg,n(X, d).

Remark 2.10. A priori it is not clear why this expression is well-defined. The
Ei and their dimensions do surely depend on the moduli point f . Nevertheless
it can be shown, that the difference in dimension is indeed constant on all of
Mg,n(X, d).

In [CK99, p. 175] we find the virtual dimension’s numerical value. Special-
ized to X = Pr we obtain

Theorem 2.11. For all genera g, degrees d and number of marks n it holds

vdimMg,n(Pr, d) = (r + 1)d+ (r − 3)(1− g) + n.

We now turn to the only component whose dimension has not yet been
computed: the smooth locus. The following theorem fills this gap and thereby
justifies the name “expected” dimension.

Theorem 2.12. For all d > 0 it holds

dimM1,n(X, d) = vdimM1,n(X, d)

and M1,n(X, d) is smooth.

Proof. We already remarked that E1 is isomorphic to the tangent space at f .
It therefore suffices to show that

1. dimE1 is independent of f in the smooth locus M1,n(X, d) (this implies
smoothness) and

2. E2 = 0 for every smooth f .
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The latter is accomplished by showing H1
(
C, f∗TX

)
= 0 and pointing to se-

quence (2.4). This is essentially a copy of the proof of lemma 1.13. Start with
the Euler sequence for X = Pr

0→ OX → OX(1)⊕(r+1) → TX → 0

and note that all occurring modules are locally free. Hence applying the pull
back along f gives again a short exact sequence

0→ OC → f∗
(
OX(1)

)⊕(r+1) → f∗TX → 0.

As always we investigate the long exact cohomology sequence

· · · → H1
(
C, f∗OX(1)

)⊕(r+1) → H1
(
C, f∗TX

)
→ H2

(
C,OC

)︸ ︷︷ ︸
=0

. (2.5)

In order to understand H1
(
C, f∗OX(1)

)
recall that line bundles and divisors

of smooth curves are in one-to-one correspondence. Therefore we can write
f∗OX(1) = OC(D) for some divisor D ∈ DivC. The invertible sheaf OX(1)
corresponds to the divisor H ∈ DivX, where H is an arbitrary hyperplane of
X. This tells us that

D = f∗
(
H ∩ f(C)

)
= f∗H ∩ C = f∗H,

where the middle equality is the projection formula of intersection theory. The
cardinality of the intersection H ∩ f(C) (counted with multiplicities and there-
fore written as degree) is given by Bézout’s theorem as deg

(
H ∩ f(C)

)
=

deg f(C) = d. Thus we have degD = d > 0 and therefore for curves of genus
g = 1

deg(KC −D) < degKC = 2g − 2 = 0

=⇒H1
(
C, f∗OX(1)

) ∼= H1
(
C,OC(D)

) ∼=
Serre duality

H0
(
C,OC(KC −D)

)∨
= 0.

Using sequence (2.4) completes the proof of the first claim. Note that we used no
property of the moduli point f except for smoothness of the underlying marked
curve. Thus the result is independent of f and the second part of the claim is
proven as well. �

Our dimension calculus for components of the moduli space is now complete
and we may start to apply it. The next corollary deals with the phenomenon
of components of excessive dimension at which we hinted in remark 1.17. We
define

Definition 2.13. An irreducible component D ⊆ Mg,n(X, d) is said to be
of excessive dimension and thus relevant to our computations if dimD ≥
vdimMg,n(X, d) and D 6= cl(Mg,n(X, d)).

The existence of excessive dimensional components might be unexpected
and indeed this is the reason why elliptic Gromov-Witten invariants are not
enumerative. The following corollary identifies all of them in the case X = P3

which is claimed in the main theorem.
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Corollary 2.14. An irreducible component D ⊆ M1,n(P3, d) with general ele-
ment f : C → P3 is of excessive dimension if and only if C is a tree with at
most three rational twigs and f contracts the genus 1 twig, see figure 2.1. In
this case

dimD = vdimM1,n(P3, d) + 3− s,

where s is the number of rational twigs of C.

0

(a) Component type
D1. dim = vdim+2.

0

(b) Component type
D2. dim = vdim+1.

0

(c) Component type
D3. dim = vdim.

Figure 2.1: The excessive dimensional components of M1,n(P3, d) are the ones
whose general element is of one of the forms depicted here. In each case there are
as many components as there are ways to distribute the degree d to the genus 0
twigs such that no twig is contracted (the components with contracted rational
twig lie in the boundary of another component and are thus not relevant).
Furthermore this gets multiplied by the possible distributions of the n marks to
the twigs.

Proof. Let f : (C, p1, . . . , pn) → P3 be a general element of some component
D ⊆M1,n(P3, d) and let C1, . . . , CN denote the twigs of C. Furthermore let ni
be the number of marked points on Ci, di the degree of f |Ci and si the number
of half edges adjacent to Ci in the graph defined in definition 1.19. In particular,

N∑
i=1

si = 2s.

Distinguish two cases based on the results of corollary 1.22:

1. Assume C is not a tree, i.e. all twigs are rational. In this case we plug
theorem 1.14 into the formula from theorem 2.4 and compute

dimD =

 N∑
i=1

4di + ni + si

− 3s

= 4d+ n− s
≤ 4d+ n = vdimM1,n(P3, d).

Equality holds only for s = 0, but this is not possible as the curve would
be rational in that case. Thus we see that D is not of excessive dimension.

2. Now assume C is a tree and without loss of generality let C1 be the elliptic
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twig. There are two sub-cases here: first assume d1 > 0. Then

dimD = 4d1 + n1 + s1 +

 N∑
i=2

4di + ni + si

− 3s

= 4d+ n− s,

which is the same result as above. Now however s = 0 is possible – in this
case D is the locus of smooth curves.

Finally let d1 = 0. Then

dimD = 3 + n1 + s1 +

 N∑
i=2

4di + ni + si

− 3s

= 4d+ n+ 3− s.

We see that D is of excessive dimension if and only if s ≤ 3. A priori there
are seven types of curves satisfying these conditions, however some of the
corresponding components are contained in the boundary of higher dimen-
sional ones, see figure 2.2. This leaves us precisely with the components
claimed. �

0

0 0

0 0 0 0

Figure 2.2: Inclusion structure of relevant components.

Remark 2.15. Any two components of typesDi andDj are not contained in each
other or any larger component, but they may intersect non-trivially. Consider
the general element of a type D2 component and let the nodes approach each
other. In the limit a contracted rational component connecting all three twigs
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will fork off. This curve however is contained in the boundary of a type D1

component, compare pictographic equation (2.6). The intersection is still of
excessive dimension:

dim(D1 ∩D2) = vdimM1,n(X, d).

0
0

d1

d2

=

0

d

∩
0

d1 d2

(2.6)

In the presence of marked points we additionally get an intersection be-
tween components of type D1, see pictographic equation (2.7). Here, too, the
intersection is of excessive dimension: vdimM1,n(X, d) + 1.

0
0

n− 1
pi =

0

n− 1

pi ∩
0

n
(2.7)
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Chapter 3

The Virtual Fundamental
Class

In this chapter we will compute the contribution of each of the excessive di-
mensional components to the Gromov-Witen invariants. In the end, the main
theorem 1.28 will be fully proven. We proceed as follows:

1. Show that components of type D2 and D3 do never contribute and D1-
type components only contribute if the number of marks on the elliptic
twig is at most 1 (theorem 3.7).

2. Let DR be the component (there is only one) of type D1 whose general
element has all marks placed on the rational twig, see figure 3.1. Then
the contribution of DR is determined in theorem 3.22.

3. Finally there are components DE,i of type D1 characterized by a gen-
eral element with all marks except pi placed on the rational twig. In
theorem 3.25 we will see that the combination of DR with all of the DE,i-
components produces exactly the coefficient from the main theorem. The
proof of the latter will follow easily.

0

n

(a) Component DR.

0

n− 1

pi

(b) Component DE,i.

Figure 3.1: Notation for special components of type D1. Now DR and DE,i

denote indeed components and not just types.

From now on our only goal is the main theorem, thus we will specialize the
assumptions on the ambient variety even more by defining the following short
hand notation:

X ··= P3 and if n and d are fixed but arbitrary
M ··= M1,n(X, d) and M ··= M1,n(X, d).
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3.1 Reducing to DR ∪DE,1 ∪ · · · ∪DE,n

In corollary 2.14 we identified all of the components of excessive dimension. A
priori, any of these components could contribute to the virtual fundamental
class of M and thereby to the Gromov-Witten invariants. We will show in this
section that for most of these components this is not the case.

Definition 3.1. Let m ∈ N≥0 and α, β ∈ Am(M). We define an equivalence
relation on Am(M) by

α ./ β :⇐⇒ ∀γ1, . . . , γn ∈ A∗(X) :

∫
α

ev∗1γ1 · · · ev∗nγn =

∫
β

ev∗1γ1 · · · ev∗nγn.

If α ./ β then we will say that they are enumeratively equivalent. A class
α ∈ Am(M) is said to be enumeratively irrelevant if α ./ 0. A closed
subscheme S ⊆M is called enumeratively irrelevant if every α ∈ AvdimM (S)
is enumeratively irrelevant.

From the definition we can see immediately that subschemes of dimension
less than vdimM are enumeratively irrelevant. Furthermore, every closed schub-
scheme S′ ⊆ S of an enumeratively irrelevant subscheme S is irrelevant itself as
well.

Remark 3.2. Until now we used the term “virtual fundamental class” only for
the entire moduli space M . As we are interested in braking this construct
down into pieces defined on irreducible components of M we need to refine
this notation. For this recall that in chapter 2 we stated the long exact hyper-
Ext sequence (2.4) which stems from an underlying exact sequence of sheaves
(remark 2.5). In this sequence the terms E1 and E2 gave rise to the virtual
dimension (compare definition 2.9). Furthermore, these terms govern the virtual
fundamental class [M ]virt as well. In particular, for any U ⊆ M open we may
restrict the sequence of sheaves to U and hence introduce a virtual fundamental
class of [U ]virt. If i : U ↪→ M is the inclusion, then the virtual fundamental
classes are related by pull-back:

i∗[M ]virt = [U ]virt.

The notion of enumerative irrelevance allows for an even closer connection
between [M ]virt and [U ]virt. This an easy corollary from the following well-
known lemma ([Gat03a, lemma 9.1.13]):

Lemma 3.3. Let X be a scheme, Y ⊆ X a closed subscheme. Then for all
k ≥ 0 there is an exact sequence

Ak(Y )→ Ak(X)→ Ak(X \ Y )→ 0.

Corollary 3.4. Let S ⊆ M be an enumeratively irrelevant, closed subscheme
and denote U ··= M \ S. Then

[M ]virt ./ [U ]virt.

Proof. Use lemma 3.3 with Y = S and X = M . Let i : S ↪→ M be the
inclusion. Note that the image of [M ]virt in U is by construction the restriction
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of the virtual fundamental class to U , which is just [U ]virt. By exactness there
exists a (not necessarily unique) α ∈ AvdimM (S) such that

[M ]virt = [U ]virt + α.

As S was assumed to be enumeratively irrelevant, the claim follows. �

Let us now proceed to the theorem claimed by the title of this section. The
key ingredient for the proof is a trick based on the projection formula from
intersection theory [Har77, theorem A 1.1.]:

Lemma 3.5 (projection formula). Let ϕ : M → Y be a proper morphism of
non-singular, quasi-projective varieties M and Y . Then

∀x ∈ A∗(M), y ∈ A∗(Y ) : ϕ∗(x · ϕ∗y) = ϕ∗x · y.

The following lemma uses the projection formula to establish a useful tool
to prove enumerative insignificance of a given closed subscheme D ⊆ M . The
idea is to shift the evaluation of pulled-back conditions from D to some space
where it has to be trivial for dimensional reasons.

Lemma 3.6. Let D be a closed subscheme of M . Assume there exists a smooth,
projective variety Y together with morphisms

ϕ : D → Y

ẽvi : Y → X, i = 1, . . . , n

such that all of the diagrams

D Y

X

ϕ

evi
ẽvi

commute. If dimY < vdimM then D is enumeratively insignificant.

Proof. Because of the evaluation maps factoring through ϕ we may write

ev∗1γ1 · · · · · ev∗nγn = ϕ∗
(
ẽv∗1γ1 · · · · · ẽv∗nγn︸ ︷︷ ︸

=:T

)
.

Now use the projection formula with α ∈ AvdimM (D) arbitrary:

ϕ∗(ϕ
∗T · α︸ ︷︷ ︸

dimension 0

) = T · ϕ∗α. (3.1)

As the dimension of Y is strictly smaller than the virtual dimension of the
moduli space, ϕ∗α ∈ AvdimM (Y ) = 0 is necessarily trivial and with it the entire
right hand side of equation (3.1). But the push-forward of 0-dimensional cycles
preserves degree (points are always mapped to points), hence

deg(ϕ∗T · α) = degϕ∗(ϕ
∗T · α) = deg(T · ϕ∗α) = 0.

The γi were arbitrary, thus the claim follows. �
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With lemma 3.6 at hand we only need to find a suitable space Y and mor-
phism ϕ in order to exclude the possibility of an irreducible component D con-
tributing to the Gromov-Witten invariants. This is done in the proof of the
next theorem for all excessive dimensional components at once. The idea be-
hind the construction is to remove the contracted elliptic twig from the general
element. The fact that the twig is contracted means that it does not really con-
tribute to enumerative questions, even though it does contribute to the excessive
dimension of D.

Theorem 3.7. Let D ⊆ M be a component of excessive dimension. Unless it
is of type D1 with its general element having at most one mark on the elliptic
twig, D is enumeratively insignificant.

Proof. Let f : C → X be a general element of D. By corollary 2.14 we know
that C has s ≤ 3 nodes and is a tree with the elliptic twig being contracted. Let
nE denote the number of marks on the elliptic twig. The component D can be
expressed as a fibred product with respect to evaluation maps corresponding to
successive attachment of rational twigs to the elliptic one:

D ∼=
(
· · ·
(
cl(M1,nE+s(X, 0))×X T1

)
×X · · ·

)
×X Ts

∼= cl(M1,nE+s(X, 0))×X
(
T1 ×X · · · ×X Ts︸ ︷︷ ︸

=··Y

)
,

where the Ti are of the form M0,ni+1(X, di) for suitable ni and di. Note that Y
may not be a subset of a moduli space of stable maps anymore as marks may
coincide or more than two twigs may be glued in a single point. Nevertheless
we may still consider elements of T as maps f ′ : (C ′, p′) → X defined on an
n-pointed curve C ′.

We define evaluation maps ẽvi : Y → X which are given by ẽvi(f
′) ··= f ′(p′i).

With this the evaluation maps evi on D factor through the projection

ϕ : D → Y

obtained from the representation (15), i.e. evi = ẽvi ◦ ϕ. Let us compute the
dimension of Y using the techniques from chapter 2:

dimD = dimM1,nE+s(X, 0) + dimY − 3

⇐⇒ dimY = dimD − dimM1,nE+s(X, 0) + 3

= (4d+ n+ 3− s)− (3 + nE + s) + 3

= 4d+ (n− nE) + (3− 2s).

If this number is compared to vdimM1,n(X, d) we obtain exactly the assumption
of the claim:

dimY < vdimM1,n(X, d)⇐⇒ (s = 1 ∧ nE > 2) ∨ s > 1.

We may now apply lemma 3.6 to complete the proof. �

Remark 3.8. By theorem 3.7 the only relevant components areM , DR, andDEi .
Let S denote the union of all other irreducible components of M together with
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the locus of intersection between the closure cl(M) of M and DR ∪DE,1 ∪ · · · ∪
DE,n. Now S is enumeratively irrelevant (partly due to dimensional reasons)
and thus we get by corollary 3.4

[M ]virt ./ [M \ S]virt

=
[
M ∪̇

(
(DR ∪DE,1 ∪ · · · ∪DE,n) \ S

)]virt
= [M ]virt +

[(
(DR ∪DE,1 ∪ · · · ∪DE,n) \ S

)]virt
.

Again by corollary 3.4 we may now pass under enumerative equivalence to the
closure. The resulting classes are technically not virtual fundamental classes
but we will still denote them with the same symbol, in particular we use the
notation

[DR ∪DE,1 ∪ · · · ∪DE,n]virt ∈ AvdimM (DR ∪DE,1 ∪ · · · ∪DE,n)

to denote a class that is equivalent to the virtual fundamental class. With this
notation we may write

[M ]virt ./ [M ]virt + [DR ∪DE,1 ∪ · · · ∪DE,n]virt. (3.2)

Remark 3.9. The map constructed in the proof of theorem 3.7 is defined on the
components DR and DE,i as well. In addition to the construction in the proof
we may forget the point of attachment in case of DR such that we have in either
case a map to M0,n(X, d). This map will be important in the following sections.
We refer to it as contraction of E and denote it by ϕ.

3.2 The Contribution of DR

The general construction of the virtual fundamental class is carried out in [BF97]
and relies heavily on the formalism of stacks which we cannot cover in this thesis.
However [BF97, proposition 5.6] is a special case that is of interest to us:

Proposition 3.10. Let M be a smooth Deligne-Mumford stack with a perfect
obstruction theory E•. Then h1(E•∨) is locally free of rank, say, r and

[M ]virt = cr
(
h1(E•∨)

)
· [M ].

In our case DR may be rewritten as product of smooth spaces

DR = M1,1 ×M0,1+n(X, d), (3.3)

in particular DR itself is smooth as well. Let E i denote the sheaf with fibre Ei

given the hyper-Ext sequence (2.4). Application of proposition 3.10 to DR gives
the following formula

[DR]virt = c2(E2|DR).

Remark 3.11. Another case were proposition 3.10 can be applied is that of (the
topological closure of) M1,n(X, d). By theorem 2.12 we know that E2 is trivial
over the smooth locus, i.e. a vector bundle of rank 0. Thus

[M1,n(X, d)]virt = [M1,n(X, d)].
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Notation 3.12. Throughout this section we will work on DR and use a general
element f : C → X in computations. By definition of DR the curve C is a union
E ∪R of a smooth elliptic twig E and a smooth rational twig R. Let ν ∈ E ∩R
denote the node. We will keep this notation throughout this section.

Lemma 3.13. For any line bundle L on C there is a short exact sequence of
OC-modules

0→ L → L|E ⊕ L|R → Lν → 0.

Lemma 3.14. H1(C,OC) ∼= H1(E,OE).

Proof. If we take L in lemma (3.13) to be OC we get

0→ OC → OE ⊕OR → OC,ν → 0

which induces

· · · → H1(C,OC)→ H1(E,OE)⊕H1(R,OR)→ 0. (3.4)

Here one should note [Liu02, exercise 5.2.3] to formally justify switching from
C to E and R inside the Hi. Recall that for any curve S by definition g(S) =
dimH1(S,OS). Hence (3.4) is a surjective morphism from a one-dimensional
vector space to another and hence an isomorphism. �

Lemma 3.15. Let p ··= f(ν) ∈ X. Then

H1
(
C, f∗OX(1)

) ∼= H1(E,OE)⊗k TX,p.

Proof. Again we want to use lemma (3.13), this time with L = f∗OX(1). We
start by computing the occurring terms.

Note that (f∗OX(1))|E = (f |E)∗OX(1) and the same for the restriction to
R. The former maps with degree 0, the latter with degree d. For the elliptic
twig we get

(f |E)∗OX(1)
def
= OE ⊗(f |E)−1OX (f |E)−1OX(1)

= OE ⊗OX,p OX(1)p

= OE ⊗k OX(1)p,

while the rational twig yields

(f |R)∗OX(1) =

{
OR
(
(f |R)∗H

)
= OR(d) if d > 0

OR ⊗k OX(1)p if d = 0, analogously to E above

In either case H1(R, (f |R)∗OX(1)) = 0. Thus we may assume for simplicity
d > 0 as it does not change the result.

Now the sequence from lemma (3.13) becomes

0→ f∗OX(1)→
(
OE ⊗k OX(1)p

)
⊕OR(d)→ OX(1)p → 0.
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Again we get an induced sequence in cohomology (numbers below terms denote
dimension)

0→ H0
(
C, f∗OX(1)

)
→
(
H0(E,OE)⊗OX(1)p︸ ︷︷ ︸

1

)
⊕H0

(
R,OR(d)

)︸ ︷︷ ︸
d+1

(∗)→ H0
(
C,OX(1)p

)︸ ︷︷ ︸
1

→ H1
(
C, f∗OX(1)

)
(♦)→
(
H1(E,OE)︸ ︷︷ ︸

1

⊗kOX(1)p︸ ︷︷ ︸
1

)
⊕H1

(
R,OR(d)

)︸ ︷︷ ︸
0

→ 0, (3.5)

where we used that OX(1)p is a finite dimensional k-vector space and hence can
be pulled out of the cohomology ([Liu02, lemma 5.2.26]). For the dimensions
use Riemann-Roch and for R ∼= P1, [Liu02, lemma 5.3.1] tells us

H0
(
R,OR(d)

) ∼= k[x, y]d.

The ring of global sections of the skyscraper sheaf is one-dimensional because
it is a line bundle supported in only one point, hence just a one-dimensional
vector space.

By exactness of (3.5) we see that (♦) is surjective. We claim that it is an
isomorphism. In order to prove this we check that the map (∗) is surjective. It
is given by(

Γ(OE)⊗k OX(1)p

)
⊕ Γ

(
OR(d)

)
→ Γ

(
OX(1)p

) ∼= OX(1)p

e⊗ c+ r 7→ ec− r(ν).

Now note that Γ(OE) ∼= OX(1)p ∼= k and hence every element of OX(1)p has a
pre-image even in the first direct summand. �

Lemma 3.16. Let C be a reduced, nodal curve consisting of two twigs C1 and
C2 meeting transversally in a single node ν. Then

TC ∼= TC1
(−ν)⊕ TC2

(−ν).

Proof. By [Har10, lemma 27.6] we have

TC ∼= (Iν,C1 ⊗ TC1)⊕ (Iν,C2 ⊗ TC2),

where Iν,Ci denotes the ideal sheaf of ν in Ci. An elementary computation in
the local setting Ci ∼= Spec k[x] shows that Iν,Ci = OCi(−ν). �

The next theorem expresses the sheaf E2 with respect to the vector bundles
defined in section 1.4. Note that all occurring classes live a priori on one of the
factors of DR in equation (3.3). In order to get classes on DR we implicitly use
the pull-back along the projections.

Notation 3.17. Recall and define notation:

• let E be the Hodge bundle on M1,1 with c1(E) = λ,

33



• let TE be the bundle on M1,1 defining the (only) psi-class, i.e. c1(TE) =
ψ ∈ A1(M1,1),

• TR analogously the bundle on M0,n+1(X, d) giving rise to the (n + 1)-st
psi-class, for convenience denoted by ψ1,

• and let H ⊆ X denote a hyperplane and ev : M0,n+1(X, d) → X be the
evaluation map corresponding to the (n + 1)-st mark, such that ev∗H ∈
A1(M0,n+1(X, d)).

Theorem 3.18. The sheaf E2 is given by

E2 ∼=
((

E∨ ⊗ ev∗H
)⊕4

/β
(
E∨
))/

α
(
T∨E ⊗ T∨R

)
,

where the maps α and β are given for each fibre in sequences (3.6) and (3.7)
below.

Proof. We proof the expression from the claim for every fibre using natural
identifications only. By naturality the result will lift to an isomorphism of
vector bundles.

Start by looking at the final three terms of the long exact hyper-Ext sequence
(2.4):

· · · → Ext1
(
ΩC(P ),OC

) α→ H1(C, f∗TX)→ E2 → 0. (3.6)

Next pull back the Euler sequence on X along f to obtain

0→ OC → f∗OX(1)⊕4 → f∗TX → 0,

which then induces

· · · → H1(C,OC)
β→ H1

(
C, f∗OX(1)

)⊕4 → H1(C, f∗TX)→ 0. (3.7)

In both sequence (3.6) and (3.7) we may interpret exactness as the final term
being the quotient of the previous ones. Combining them we obtain a first
expression for E2:

E2 ∼=
((

H1
(
C, f∗OX(1)

))⊕4

/β
(
H1(C,OC)

))
/α
(

Ext1
(
ΩC(P ),OC

))
.

By lemma 3.14 and lemma 3.15 this can be refined to

E2 ∼=
((

H1(E,OE)⊗k OX(1)p

)⊕4

/β
(
H1(E,OE)

))
/α
(

Ext1
(
ΩC(P ),OC

))
(3.8)

such that all that is left to show is

α
(

Ext1
(
ΩC(P ),OC

)) ∼= α
(
TE,ν ⊗ TR,ν

)
.

We resolve the global Ext with help of the local-to-global Ext spectral se-
quence from proposition B.4. Remark B.5 gives a decomposition

Ext1
(
ΩC(P ),OC

) ∼= Γ
(
Ext1(ΩC(P ),OC)︸ ︷︷ ︸

skyscraper sheaf

)
⊕H1

(
C,Hom(ΩC(P ),OC)︸ ︷︷ ︸

=TC(−P )

)
.

(3.9)
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The skyscraper sheaf is given by [HM98, proposition 3.31]

Γ
(
Ext1(ΩC(D),OC)

) ∼= TE,ν ⊗ TR,ν .

We claim that the cohomology with respect to TC(−P ) lies in the kernel of α.
By lemma 3.16 it decomposes as

H1
(
C, TC(−P )

)
= H1

(
E, TE(−P − ν)

)
⊕H1

(
R, TR(−P − ν)

)
. (3.10)

But now E and R are smooth and thus we know by theorem 2.12 that their
deformations lift to deformations of the stable maps f |E and f |R respectively.
This completes the proof. �

Remark 3.19. We would like to point out, that the decompositions in equations
(3.9) and (3.10) come with geometric interpretation:

• Ext1(ΩC(P ),OC)) is the space of first-order deformations of the pointed
curve C,

• TE,ν ⊗ TR,ν are resolutions of the singularity,

• H1(E, TE(−P −ν)) are deformations of E with an additional mark placed
in ν and

• H1(R, TR(−P − ν)) analogously for R.

This means that a deformation of C consists of deformations of the twigs to-
gether with a resolution of the singularity.

We have achieved a natural expression for E2 and we may now proceed
to compute its second Chern class. For this we use basic computation rules
for Chern clases, quickly summarized in the following lemma (statements from
[Har77, section A.3]).

Lemma 3.20. Let E, F and G be vector bundles on some non-singular, quasi-
projective variety and let (αi)i and (βj)j denote formal elements such that

c(E) =

rank E∏
i=1

(1 + αi) and c(F) =

rankF∏
i=1

(1 + βi).

These representations exist by the splitting principle. For reference we call the
αi and βi Chern roots of E and F respectively (compare [Gat03a, remark
10.3.9]).

a) Let 0 → E → F → G → 0 be exact. Then c(F) = c(E)c(G). Note that the
maps are of no importance.

b) In particular c(E ⊕ F) = c(E)c(F).

c) The Chern roots of E ⊗ F are given by (αiβj)i,j.

d) The Chern roots of E∨ are (−αi)i.

e) The Chern roots of a pull-back of a vector bundle are the pull-backs of the
Chern roots.

35



Theorem 3.21. With notation 3.17 we have

c2(E2) = −8Hλ+ 4Hψ+ 4Hψ1 + 3λ2− 3λψ− 3λψ1 + 6H2 +ψ2 + 2ψψ1 +ψ2
1 .

Proof. For each of the building blocks of the expression derived in theorem 3.18
we know the total Chern class (compare section 1.4):

c(E) = 1 + λ,

c(TE) = 1 + ψ,

c(TR) = 1 + ψ1,

c
(
OX(1)

)
= 1 +H.

Using lemma 3.20 part d) we obtain

c(E∨) = 1− λ,
c(T∨E) = 1− ψ and

c(T∨R) = 1− ψ1,

(3.11)

and by lemma 3.20 part e)

c
(
ev∗OX(1)

)
= 1 + ev∗H. (3.12)

To enhance readability we abuse notation and denote ev∗1H by H again. Now
we apply the Chern calculus to the expression derived in theorem 3.18.

c(E2) =
c
(
(E∨ ⊗H)⊕4

)
c(E∨)c(T∨E ⊗ T∨R)

by lemma 3.20 part a)

=
c(E∨ ⊗H)4

c(E∨)c(T∨E ⊗ T∨R)
by lemma 3.20 part b).

(3.13)

Finally we combine the expressions (3.11), (3.12), and (3.13) and use lemma
3.20 part c) to get

c(E2) =
(1− λ+H)4

(1− λ)(1− ψ − ψ1)
. (3.14)

Elements from the denominator can be inverted using the geometric series

1

1− θ
=

∞∑
i=0

θi = 1 + θ + · · ·+ θdimD

for any θ ∈ A1(D). Thus expression (3.14) can be expanded. However, as we
are ultimately only interested in the second Chern class of E2 we only need to
find codimension 2 terms. The classes λ, ev∗1H, ψ and ψ1 are all of codimension
1, hence it suffices to find the quadratic terms in these four symbols.

c(E2) =
(
1 + (H − λ)

)4(
1 + λ+ λ2 + · · ·

)
·
(
1 + (ψ + ψ1) + (ψ + ψ1)2 + · · ·

)
=
(
1 + 4(H − λ) + 6(H − λ)2 + · · ·

)
·
(
1 + (λ+ ψ + ψ1) + λ2 + (λ+ ψ + ψ1)(ψ + ψ1) + · · ·

)
= · · ·+ 4(H − λ)(λ+ ψ + ψ1) + 6(H − λ)2

+ λ2 + (λ+ ψ + ψ1)(ψ + ψ1) + · · ·

From here the claim can be read off. �
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The next theorem completes the task of determining the contribution of DR

to Gromov-Witten invariants. Note that in case n = 0 it yields precisely the

N
(0)
ab -coefficient from the main theorem 1.28.

Theorem 3.22. Let ϕ : DR →M0,n(X, d) be the contraction of E from remark
3.9. Then

ϕ∗c2(E2) =
1

24
(−4d+ 2− n)[M0,n(X, d)].

Proof. The map ϕ forgets the j-invariant of E as well as the point of attachment
of E to R, i.e. the dimensions are

DR = M1,1︸ ︷︷ ︸
1

×M0,n+1(X, d)︸ ︷︷ ︸
4d+n+1

→M0,n(X, d)︸ ︷︷ ︸
4d+n

.

More precisely ϕ loses one dimension in either factor of DR. Thus a codimension
2 cycle in DR yielding something non-trivial in A0(M0,n(X, d)) has to be of
codimension 1 in both M1,1 and M0,n+1(X, d). For the expression from theorem
3.21 this means that only Hλ, Hψ, ψ1λ and ψ1ψ contribute to ϕ∗c2(E2):

ϕ∗c2(E2) = −8ϕ∗(Hλ) + 4ϕ∗(Hψ)− 3ϕ∗(λψ1) + 2ϕ∗(ψψ1). (3.15)

Further note that ϕ factors as

DR = M1,1 ×M0,n+1(X, d) M0,n(X, d)

M0,n+1(X, d).

ϕ

τ π

Now recall that M1,1
∼= P1, i.e. λ and ψ are 0 dimensional. This means that

push forwards of intersection products from expression (3.15) along τ are just
deg λ and degψ times H and ψ1 respectively. From lemma 1.31 and corollary
1.35 these degrees are known to be

deg λ = degψ =
1

24
.

The push-forwards of H and ψ1 along π are known as well (lemma 1.37 and
lemma 1.32):

π∗H = d[M0,n(X, d)]

π∗ψ1 = (−2 + n)[M0,n(X, d)].

All in all we have

ϕ∗c2(E2) =

(
− 8

24
d+

4

24
d− 3

24
(−2 + n) +

2

24
(−2 + n)

)
[M0,n(X, d)]

=
1

24
(−4d+ 2− n)[M0,n(X, d)]. �
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3.3 Proof of the Main Theorem

In order to proceed to a proof of the main theorem 1.28 we need to determine
the influence of the components DR and DE,i combined. In case n = 0 this is of
course trivial – DR is the only component of type D1. The following property
of virtual fundamental classes is a special case of [Beh97, axiom IV] and enables
us to approach the task by induction.

Proposition 3.23. Let π : Mg,n+1(X, d)→Mg,n(X, d) a forgetful map. Then

Mg,n+1(X, d) Mg,n(X, d)

Mg,n+1 Mg,n

π

�

is a cartesian diagram and it holds

[Mg,n+1(X, d)]virt = π∗[Mg,n(X, d)]virt.

Remark 3.24. The reader might be worried that the Mg,n used in the above
diagram does not exist due to lack of marks. This may be true in the scheme
sense, however it does still exist as a stack and the statement remains true.

Intuitively proposition 3.23 tells us that for any (C, p, f) contained in the

support of a cycle representing [Mg,n−1(X, d)]virt any stable map arising from C
by adding a new mark at any position will be contained in a cycle representation
of [Mg,n(X, d)]virt.

The next theorem solves the remaining problem.

Theorem 3.25. Let ϕ : DR ∪ DE,1 ∪ · · · ∪ DE,n → M0,n(X, d) denote the
contraction of E from remark 3.9. Then

ϕ∗[DR ∪DE,1 ∪ · · · ∪DE,n]virt =
1− 2d

12
[M0,n(X, d)].

Proof. For n = 0 the claim follows from theorem 3.22. Hence assume n > 0.
Let T denote the union of all excessive dimensional, enumeratively not ir-

relevant component of M1,n−1(X, d). Then the diagram from proposition 3.23
restricts to

DR ∪DE,1 ∪ · · · ∪DE,n T

Mg,n+1 Mg,n,

π

where π is the morphism forgetting the n-th mark. Proposition 3.23 tell us that
π∗[T ]virt = [DR∪DE,1∪· · ·∪DE,n]virt. Note that by construction of pull-backs
in intersection theory we always pull-back elements of A∗. This means that we
tacitly used Serre duality, i.e. an intersection with the usual fundamental class.
The latter however is by definition a sum over all irreducible components and
thus we get

[DR ∪DE,1 ∪ · · · ∪DE,n]virt = π∗[T ]virt · [DR ∪DE,1 ∪ · · · ∪DE,n]

= π∗[T ]virt ·
(
[DR] + [DE,1] + · · ·+ [DE,n]

)
= (π|DR)∗[T ]virt + · · ·+ (π|DE,n)∗[T ]virt.

(3.16)
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Over DR the follwoing diagram is cartesian:

DR D

M0,n+1(X, d) M0,n(X, d).

π|DR

ϕ
�

Therefore we know that ϕ∗π
∗[T ]virt = π∗ϕ∗[T ]virt, with the right hand side

being given by induction.
Now we investigate DE,i. For this note that ϕ|DE,i factors through π :

DE,i → T :

DE,i T

M0,n(X, d).

π

ϕ τ

This however means that the push-forward

ϕ∗(π|DE,i)∗[T ]virt = τ∗ (π|DE,i)∗(π|DE,i)∗[T ]virt︸ ︷︷ ︸
=0

= 0

is trivial. Now apply ϕ∗ to equation (3.16) to complete the proof. �

This was the last ingredient we needed. We will now combine it with equation
(3.2) to finally obtain a proof for our main theorem.

Proof (of theorem 1.28). Let γ1, . . . , γn ∈ A∗(X) be classes of a points and b
lines such that 4d = 2a+ b. Furthermore denote

D ··= DR ∪DE,1 ∪ · · · ∪DE,n

and let ϕ : D → M0,n(X, d) be the contraction of E. Then by equation (3.2)
and remark 3.11

N
(1)
ab =

∫
[M1,n(X,d)]virt

ev∗1γ1 · · · ev∗nγn

=

∫
[M1,n(X,d)]+[D]virt

ev∗1γ1 · · · ev∗nγn

=

∫
[M1,n(X,d)]

ev∗1γ1 · · · ev∗nγn︸ ︷︷ ︸
number of elliptic curves satisfying the conditions γi

+

∫
[D]virt

ev∗1γ1 · · · ev∗nγn.
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For the remaining term on the right hand side we get∫
[D]virt

ev∗1γ1 · · · ev∗nγn

= degϕ∗

((
ev∗1γ1 · · · ev∗nγn

)
· [D]virt

)
definition 1.25

= degϕ∗

(
ϕ∗
(
ẽv∗1γ1 · · · ẽv∗nγn

)
· [D]virt

)
construction of ϕ

= deg
((
ẽv∗1γ1 · · · ẽv∗nγn

)
· ϕ∗[D]virt

)
projection formula

=

∫
ϕ∗[D]virt

ẽv∗1γ1 · · · ẽv∗nγn definition 1.25

=

∫
1−2d
12 [M0,n(X,d)]

ẽv∗1γ1 · · · ẽv∗nγn theorem 3.25

=
1− 2d

12
N

(0)
ab definition 1.25.

Combining the computations proves the claim. �

40



Appendix A

The Ext Functor

Let R be a ring and M an R-module. Consider the Hom-functor

HomR(−,M) : Mod(R)→Mod(R)

and note that it is a contravariant, left-exact functor.

Definition A.1. The right derived functors of HomR(−,M) are denoted

ExtiR(−,M) : Mod(R)→Mod(R), i ≥ 0.

The lower index is usually omitted.

Some basic properties follow directly from the definition:

• The Exti(−,M) are contravariant for all i ≥ 0.

• ∀M,N ∈Mod(R) : Ext0(M,N) = HomR(M,N)

• For any short exact sequence of of R-modules

0→ A→ B → C → 0

there is a long exact sequence

0→ Ext0(C,M)→ Ext0(B,M)→ Ext0(A,M)

→ Ext1(C,M)→ Ext1(B,M)→ Ext1(A,M)→ · · · .

Now let X be a ringed space. The same definition as above along with the
basic properties applies to the category of OX -modules as well. However in
Mod(OX) there are two notions of Hom-functor.

Definition A.2. Let F be a sheaf of OX -modules. The right derived functors
of the contravariant, left-exact

HomOX (−,F) : Mod(OX)→Mod(k)

are denoted ExtiOX (−,F). They are referred to as global Ext-functors.
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In contrast there is the internal Hom-functor

HomOX (−,F) : Mod(OX)→Mod(OX),

which is defined as

HomOX (G,F)(U) ··= HomOX
(
G(U),F(U)

)
.

It is again contravariant and left-exact. The right derived functors are denoted
by ExtiOX (−,F) and are called local Ext-functors.

In either case the lower index will be omitted when no confusion is expected.

We will now collect some more properties which we will need to perform
computations involving either of the Ext-functors.

Proposition A.3. Let X be a scheme and let F ,G,H be OX-modules.

a) ∀i ≥ 0 : Exti(OX ,F) ∼= Hi(X,F).

b) If L is locally finitely free then

∀i ≥ 0 : Exti(F ⊗ L,G) ∼= Exti(F ,L∨ ⊗ G).

Proof. a) [Mur06a, proposition 54].

b) [Mur06a, proposition 59]. �

Proposition A.4. a) Let f : (X,OX)→ (Y,OY ) be an isomorphism of ringed
spaces and F and G sheaves of modules on X. Then

∀i ≥ 0 : f∗ExtiX(F ,G) ∼= ExtiY (f∗F , f∗G).

b) Let X be a Noetherian scheme, F and G sheaves of modules on X with F
coherent. Then

∀i ≥ 0 and x ∈ X : Exti(F ,G)x ∼= ExtiOX,x(Fx,Gx).

c) For L locally finitely free and G any sheaf of OX-modules it holds ∀i > 0 :
Exti(L,G) = 0.

Proof. [Mur06a, proposition 60, proposition 63, and corollary 56]. �
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Appendix B

Spectral Sequences

A spectral sequence is an array of data. Roughly speaking it consists of:

1. for p, q ∈ Z and r ∈ Z≥0 objects Epqr in a fixed Abelian category,

2. morphisms dpqr : Epqr → Ep+r,q−r+1
r satisfying the property of a complex:

dp+r,q−r+1
r ◦ dpqr = 0. The arrow directions are visualized in figure B.1.

Notation:

Zr+1(Epqr ) ··= ker dpqr

Br+1(Epqr ) ··= Im dp−r,q+r−1
r .

3. And limit objects Epq∞ given as quotient

Epq∞ = Zpq∞/B
pq
∞ ,

where Bpq∞ ⊆ Zpq∞ ⊆ E
pq
0 are some subobjects.

For fixed r the doubly indexed family (Epqr )p,q is called r-th page. It is
required that every page is the cohomology of the previous one:

Epqr+1
∼= Zr+1(Epqr )/Br+1(Epqr ). (B.1)

Define objects Zk(Epqr ) and Bk(Epqr ) for k ≥ r + 1 by successively pulling back
along surjections:

Zk(Epqr ) Epqr

Zk(Epqr+1) Epqr+1 Epqr /Br+1(Epqr )

Epqr+1/Br+2(Epqr+1)

Zk(Epqk−2) Epqk−2

Zk(Epqk−1) Epqk−1 Epqk−2/Bk−1(Epqk−2).
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q

p

Figure B.1: Visualization of the p-q-plane. The dashed lines indicate loci with
p+q = n, the arrows indicate the direction of the dpqr morphisms for r = 1, 2, 3, 4.
Note how the direction of the maps moves clockwise with increasing r but always
maps to the next dashed line.

Through careful observation one can see that for all p, q ∈ Z and r ≥ 0 it holds

∀k ≥ r + 1 : Epqk
∼= Zk(Epqr )/Bk(Epqr )

and

0 ⊆ Br+1(Epqr ) ⊆ Br+2(Epqr ) ⊆ · · ·
· · · ⊆ Zr+2(Epqr ) ⊆ Zr+1(Epqr ) ⊆ Epqr .

Definition B.1. The spectral sequence is said to be weakly convergent if

Z∞(Epq0 ) = inf
k
Zk(Epq0 ) and

B∞(Epq0 ) = sup
k
Bk(Epq0 ).

It is said to be biregular if it is weakly convergent and the infimum and supre-
mum are attained. In this case we write Epqr =⇒ Epq∞ . In practice only the term
for r = 2 on the left hand side is written.

For the complete definition and basic constructions of spectral sequences see
[Mur06b].

Definition B.2. A spectral sequence is said to degenerate on page r if

∀p, q ∈ Z : dpqr = 0.

In particular if a biregular sequence degenerates on page r we have by con-
dition (B.1)

∀s ≥ r and p, q ∈ Z : Epqs
∼= Epqr .

For our purposes it is most important to observe that we get an isomorphism
Epqr
∼= Epq∞ in this case.
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Definition B.3. A spectral sequence is called first quadrant spectral se-
quence if

∀p < 0, q < 0 and r ∈ Z : Epqr = 0.

The following proposition gives a relation between local and global Ext func-
tors via a spectral sequence [Mur06b, proposition 14].

Proposition B.4. Let X be a ringed topological space and F and G sheaves of
OX-modules. There is a biregular first quadrant spectral sequence

Epq2
··= Hp

(
X, Extq(F ,G)

)
=⇒ Extp+q(F ,G),

called local-to-global Ext spectral sequence.

Remark B.5. We would like to highlight one particular special case of the corol-
lary: assume X is a curve, i.e. one-dimensional. In this case the local-to-
global Ext spectral sequence degenerates on the second page. The reason for
this is that Epq2 is non-trivial only for p ∈ {1, 2} and thus the morphisms
dpq2 : Epq2 → Ep+2,q−1

2 are necessarily all constant zero. By convergence we
get an isomorphism into the limit page:

∀n ∈ N≥0 : Extn(F ,G) ∼=
⊕
p+q=n

Hp
(
X, Extq(F ,G)

)
∼= H0

(
X, Extn(F ,G)

)
⊕H1

(
X, Extn−1(F ,G)

)
.

In general this isomorphism would be only up to grading, so we really need the
fact that we are working in the category of k-vector spaces.
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uary 2003. English translation of 1999 original, available at http:

//www.dmat.ufpe.br/~israel/kontsevich.html.

[Liu02] Q. Liu. Algebraic Geometry and Arithmetic Curves. Oxford Graduate
Texts in Mathematics. Oxford University Press, 2002.

[Mur06a] D. Murfet. Section 3.2 – Cohomology of Sheaves, October 2006. Avail-
able at http://therisingsea.org/post/notes/.

[Mur06b] D. Murfet. Spectral Sequences, October 2006. Available at http:

//therisingsea.org/post/notes/.

[PT14] R. Pandharipande and R. P. Thomas. 13/2 Ways of Counting Curves.
In Leticia Brambila-Paz, Peter Newstead, Richard P. Thomas, and Os-
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