Goethe-Universität Frankfurt Institut für Mathematik Wintersemester 2018

17. Dezember 2018

Komplexe Algebraische Geometrie

Prof. Dr. Martin Möller Dr. David Torres-Teigell M.Sc. Riccardo Zuffetti

Übungsblatt 9

Aufgabe 1 (7 Punkte)

The aim of this exercise is to show concretely in some examples that blow-ups can be used to resolve singularities of curves.

Let $\pi: \mathrm{Bl}_0(\mathbb{C}^2) \to \mathbb{C}^2$ be the blow-up of \mathbb{C}^2 at the origin and let $E \subset \mathrm{Bl}_0(\mathbb{C}^2)$ be the exceptional divisor. Recall that $\mathrm{Bl}_0(\mathbb{C}^{n+1})$ can be described as the subset of $\mathbb{P}^n \times \mathbb{C}^{n+1}$ satisfying the equations $z_i \cdot x_j = z_j \cdot x_i$ for $i, j = 0, \ldots, n$, where $(z_0, \ldots, z_n) \in \mathbb{C}^{n+1}$ and $(x_0 : \cdots : x_n) \in \mathbb{P}^n$.

- (a) Let $C_1 \subset \mathbb{C}^2$ be the reducible curve defined by $z_0 \cdot z_1 = 0$. Show that the closure of $\pi^{-1}(C_1 \setminus \{0\}) \subset \mathrm{Bl}_0(\mathbb{C}^2) \setminus E$ in $\mathrm{Bl}_0(\mathbb{C}^2)$ is a smooth curve. Describe it geometrically. Show that the points of E correspond to the lines through the origin in \mathbb{C}^2 .
- (b) Let $C_2 \subset \mathbb{C}^2$ be the irreducible singular curve defined by $z_0^2 z_1^2(z_1 + 1) = 0$. Is the closure of $\pi^{-1}(C_2 \setminus \{0\}) \subset \operatorname{Bl}_0(\mathbb{C}^2) \setminus E$ in $\operatorname{Bl}_0(\mathbb{C}^2)$ a smooth curve? **Hint:** we have already studied this curve, called *nodal cubic*, in Übungsblatt 2 Aufgabe 1. It is singular only in $(0,0) \in \mathbb{C}^2$, and we found the following parametrization by studying all lines passing through the origin in \mathbb{C}^2

$$\varphi: \mathbb{C} \longrightarrow \mathbb{C}^2$$

$$t \longmapsto (t^3 - t, t^2 - 1).$$

(c) Let C_3 be the singular curve defined by $(z_0 - z_1)(z_0^2 - z_1^2(z_1 + 1)) = 0$. Show that the closure of $\pi^{-1}(C_3 \setminus \{0\}) \subset \operatorname{Bl}_0(\mathbb{C}^2) \setminus E$ in $\operatorname{Bl}_0(\mathbb{C}^2)$ is a singular curve having only one singularity at a point $P \in E$. What happens if you repeat the same construction with another blow-up at P, i.e. consider the blow up $\operatorname{Bl}_P(\operatorname{Bl}_0(\mathbb{C}^2))$?

Aufgabe 2 (2 Punkte)

Consider the $\mathbb{Z}/2\mathbb{Z}$ -action $z\mapsto -z$ on \mathbb{C}^2 which has one fixed point and whose quotient \mathbb{C}^2/\pm is not smooth.

- (a) Show that the action lifts to a unique $\mathbb{Z}/2\mathbb{Z}$ -action on the blow-up $\mathrm{Bl}_0(\mathbb{C}^2)$ and that this action is not free. What is the fixed locus?
- (b) Prove that the quotient $X := \mathrm{Bl}_0(\mathbb{C}^2)/\pm$ is a manifold. **Hint:** the action is not free, so we can not use the results for quotients under actions of discrete groups. However, it is possible to construct explicitly a holomorphic atlas of X. To do that, write down the charts of $\mathrm{Bl}_0(\mathbb{C}^2)$ and modify them to find charts of X.

Aufgabe 3 (2 Punkte)

Let $\hat{X} \to X$ be the blow-up of a surface X at a point $x \in X$. Show that the pull-back of sections defines an isomorphism $H^0(X, K_X) \cong H^0(\hat{X}, K_{\hat{X}})$.

Hint: see Übungsblatt 2 Aufgabe 2 and Übungsblatt 5 Aufgabe 4, both proved using Hartogs' Extension Theorem.

Aufgabe 4 (5 Punkte)

Let X be a connected compact manifold, $x \in X$ a point and $\hat{X} := \operatorname{Bl}_x(X)$ the blow-up of X at x. Show that the line bundle $\mathcal{O}_{\hat{X}}(E)$, where E is the exceptional divisor, admits (up to scaling) only one section.

Hint: show that every section $s \in H^0(\hat{X}, \mathcal{O}_{\hat{X}}(E))$ is such that $s|_E \equiv 0$. Recall that the divisors associated to two non-trivial sections s, t are equal, i.e. Z(s) = Z(t), if and only if there is a map $f \in \mathcal{O}^*(\hat{X})$ such that $t = f \cdot s$.