9H-9-Borafluorene

Preparation and utilization in hydroboration reactions

UNIVERSITÄT FRANKFURT AM MAIN

<u>Alexander Hübner, Zheng-Wang Qu, Michael Bolte, Hans-Wolfram Lerner, Max C. Holthausen, Matthias Wagner*</u>

Institute of Inorganic and Analytical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue Str. 7, 60438 Frankfurt am Main, Germany

Introduction

The photophysical properties of π -conjugated materials can be tuned extensively by the incorporation of boron atoms into the organic framework.^[1] Given this background, our group is interested in the development of novel boroncontaining building blocks for luminescent organoboron compounds.

Concept

The ditopic analogue of **1**, 9,10-dihydro-9,10-diboraanthracene (**3**), is accessible from the bromo derivative **2** and Et₃SiH as a hydride source.^[2] We thus decided to prepare 9*H*-9-borafluorene (1) in a similar reaction by treating 9Br-9-borafluorene (4) with Et₃SiH.

We therefore decided to prepare 9H-9-borafluorene (1), which had so far remained elusive, and investigated suitability for hydroboration its reactions.

3 forms a B–H–B bridged coordination polymer in the solid state.^[2] Consequently, we expected **1** to form a highly symmetric dimer **5**.

The reaction product and its structure

NMR spectroscopic results 10 min after Et₃SiH addition:^[3]

- The ¹H NMR spectrum revealed a complete conversion of the starting material and 16 well-resolved multiplets, all of them possessing the same integral value.
- The ¹³C NMR spectrum showed 24 resonances, four of them were severely broadened (Fig. 1).
- Two-dimensional NMR techniques indicated that all resonances arise from only four different o-phenylene moieties. One of these rings shows very unusual chemical shift values (cf. selected signals marked in green; Fig. 1).

Figure 1: ¹³C NMR spectrum 10 min after the addition of Et₃SiH. The colors blue, green, red, and grey refer to four different o-phenylene rings.

• These initially observed NMR patterns change gradually with time.

Results of trapping experiments performed 10 min after Et₃SiH addition:

- After addition of pyridine or dimethyl sulfide (DMS), the corresponding adducts of **1** were isolated in quantitative yields (cf. Fig. 2).
- Addition of *t*BuCCH provided a mixture of the di- and monohydroboration products 6 and 7 (Fig. 2).

Conclusions:

- The initially observed primary product reacts like **1**.
- The NMR resonance patterns are in accord with a dimeric form of **1** possessing C_1 -symmetry. Consequently, the initially proposed structure **5** can be excluded.

Figure 2: The in situ generated product of the conversion of **4** with Et_3SiH exclusively reacts as the target compound 9H-9-borafluorene (**1**).

Results of quantum-chemical calculations on various conceivable isomers of dimeric 1:^[3]

• Compound $(1)_2$ is the thermodynamically most favourable isomer.

- All calculated chemical shift values of (1)₂ (¹H, ¹³C, ¹¹B) are in perfect agreement with the experimentally determined data. This is not the case for any of the other computed dimers.
- $(1)_2$, contains a unique boron-bridging *o*-phenylene ring, which is responsible for the peculiarities of the ¹³C NMR spectrum (cf. Fig. 1).
- $(1)_2$ consists of one 9-borafluorene fragment and one 1,2-(2,2'biphenylylene)diborane(6)-type moiety.

Selective mono- and dihydroboration with 1(DMS)

Modeling the reactivity of (1),

U U U

The 9*H*-9-borafluorene dimethyl sulfide adduct $\mathbf{1}(DMS)$ is a crystalline storage form of unstable $(1)_2$ and can be used for the selective mono- or dihydroboration of terminal alkynes.

[1] (a) C. D. Entwistle, T. B. Marder, Angew. Chem. Int. Ed. 2002, 41, 2927. (b) C. D. Entwistle, T. B. Marder, Chem. Mater. 2004, 16, 4574. (c) S. Yamaguchi, A. Wakamiya, Pure Appl. Chem. 2006, 78, 1413. (d) F. Jäkle, Coord. Chem. Rev. 2006, 250, 1107. (e) F. Jäkle, Chem. Rev. 2010, 110, 3985.

[2] A. Lorbach, M. Bolte, H. Li, H.-W. Lerner, M. C. Holthausen, F. Jäkle, M. Wagner, Angew. Chem. Int. Ed. 2009, *48,* 4584.

[3] A. Hübner, Z.-W. Qu, U. Englert, M. Bolte, H.-W. Lerner, M. C. Holthausen, M. Wagner, J. Am. Chem. Soc. **2011**, 133, 4596.

In order to understand the reactivity of $(1)_2$ toward Lewis bases, we added DMS to a C_6D_6 solution of 1,2-(2,2'-biphenylylene)diborane(6) (8), a model system of the partially ring-opened half of $(\mathbf{1})_2$.

The immediate and quantitative formation of $\mathbf{1}(DMS)$ (together with BH_3SMe_2) provides further evidence that $(\mathbf{1})_2$ can act as a direct source of $\mathbf{1}$.

Alexander Hübner wishes to thank the Verband der Chemischen Industrie (VCI/FCI) for a Ph. D. grant and the *Beilstein Institute* for financial support within the research collaboration NanoBiC.

