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Real and complex analysis

The fields R and C together with their absolute values are
ubiquitous in mathematics.
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Archimedean Axiom

Archimedean Axiom:

For positive numbers x and y there exists a natural number n such
that nx > y.
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Archimedean Axiom

Archimedean Axiom:

For positive numbers x and y there exists a natural number n such
that nx > y.

Archimedes of Syracuse (287 - 212 b.c.) as
seen by Domenico Fetti (1620).
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Archimedean axiom

The Archimedean Axiom appears in the treatise On the Sphere and
Cylinder

where it is shown that the volume (surface) of a sphere is two
thirds of the volume (surface) of a circumscribed cylinder.

The terminology “Archimedean Axiom” was introduced in the 19th
century.
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Archimedean absolute values

The usual absolute values on the real and complex numbers satisfy
the Archimedean axiom, i.e.

For all x,y in R or in C with x = 0 there exists a natural number n
such that |nx| > |y]|.
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p—adic absolute value

The field Q of rational numbers does not only carry the real
absolute value but also for every prime number p the absolute value

H pve(m)+ve(m).

where v,(n) = exponent of p in the prime factorization of n.
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p—adic absolute value

The field Q of rational numbers does not only carry the real
absolute value but also for every prime number p the absolute value

H pve(m)+ve(m).
where v,(n) = exponent of p in the prime factorization of n.
| n|p= 1 for all natural numbers n, so that |nx|, < |x|,. Hence the

p—adic absolute value violates the Archimedean axiom. We say
that it is a non-Archimedean absolute value.

Geometry in the non-archimedean world Strasbourg, June 2014



Rational numbers

From the point of view of number theory, the real and the p—adic
absolute values on Q are equally important.

e Product formula: [[ | al|p-|a|r=1forall ac Q.
p
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Rational numbers

From the point of view of number theory, the real and the p—adic
absolute values on Q are equally important.

e Product formula: [[ | al|p-|a|r=1forall ac Q.
p

e R is the completion of Q with respect to | |r. Let Q, be the
completion of @ with respect to | |,.
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Rational numbers

From the point of view of number theory, the real and the p—adic
absolute values on Q are equally important.

e Product formula: [[ | al|p-|a|r=1forall ac Q.
p

e R is the completion of Q with respect to | |r. Let Q, be the
completion of @ with respect to | |,.
Then we sometimes have a Local-Global-Principle, e.g. in the

theorem of Hasse-Minkowski:

The quadratic equation ale2 + 32X22 +...+ a,,X,? = 0 with
a; € Q has a nontrivial solution in Q" if and only if it has a
non-trivial solution in R" and a non-trivial solution in all Q.
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Convergence

Let's do calculus in Q,. We define convergence of sequences and
infinite sums in Q, as the real case.
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Convergence

Let's do calculus in Q,. We define convergence of sequences and
infinite sums in Q, as the real case.

Then a popular error becomes true:
o0

> an converges for the p—adic absolute value if and only if
n=1
| an |[p— 0.
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The p—adic absolute value satisfies the strong triangle inequality.
| a+blpsmax{] alp|blp}

This follows from v,(m + n) = min{v,(m), v,(n)}.
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The p—adic absolute value satisfies the strong triangle inequality.
| a+blpsmax{] alp|blp}

This follows from v,(m + n) = min{v,(m), v,(n)}. Moreover, if
| a |p#| b |p, we find

| a+blp=max{|alp|b|p}

Hence all p—adic triangles are isosceles, i.e. at least two sides have
equal length.
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p—adic balls: a€ Qp,r > 0.

D%a,r) ={x € Qp:| x —alp< r} “open ball"
D(a,r) ={x € Qp:| x —a|p= r} “closed ball"
K(a,r) ={x € Qp:| x —a|p= r} circle.

Qp carries a natural topology defined by open balls.
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p—adic balls: a€ Qp,r > 0.

D%a,r) ={x € Qp:| x —alp< r} “open ball"
D(a,r) ={x € Qp:| x —a|p= r} “closed ball"
K(a,r) ={x € Qp:| x —a|p= r} circle.

Qp carries a natural topology defined by open balls.
For all b € D(a, r) we have

D(b,r) = D(a,r).
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p—adic balls: a€ Qp,r > 0.

D%a,r) ={x € Qp:| x —alp< r} “open ball"
D(a,r) ={x € Qp:| x —a|p= r} “closed ball"
K(a,r) ={x € Qp:| x —a|p= r} circle.

Qp carries a natural topology defined by open balls.
For all b € D(a, r) we have

D(b,r) = D(a,r).

Why? If | x — b [,< r, then
| x —a|pS max{| x —b|p,| b—a|p} = r. Hence every point in a
p— adic ball is a center.
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Balls

Therefore two p—adic balls are either disjoint

o U
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Balls

Therefore two p—adic balls are either disjoint

o (U

or nested
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p—adic analysis

Similary, for every b € K(a,r), i.e. | b—a|p,=r we find
DO(b,r) C K(a,r).

Hence the circle is open and all closed balls are open in the p—adic
topology.
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p—adic analysis

Similary, for every b € K(a,r), i.e. | b—a|p,=r we find
DO(b,r) C K(a,r).

Hence the circle is open and all closed balls are open in the p—adic
topology.

Bad topological news: Q, is totally disconnected, i.e. the
connected components are the one-point-sets.

How can we do analysis? Defining analytic functions by local
expansion in power series leads to indesirable examples:

[ 1 onD%0,1)
f) _{ 0 on K(0,1)
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p—adic analysis

In the 1960's John Tate defined rigid analytic spaces by only
admitting “admissible” open coverings.

Since 1990 Vladimir Berkovich develops his approach to p—adic
analytic spaces.

Advantage: Berkovich analytic spaces have nice topological
properties.

Trick: Fill the holes in the totally disconnected p—adic topology
with new points.
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Non-archimedean fields

Let K be any field endowed with an absolute value | |: K — R<g
satisfying

i) |a|=0ifand only a=0

i) labl=la|-|b]

i) |a+b[<max{|al,| b}

Then | | is a non-archimedean absolute value.

We assume that K is complete, i.e. that every Cauchy sequence in
K has a limit. Otherwise replace K by its completion.
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Non-archimedean fields

@ Qp for any prime number p

o finite extensions of Q,
@ C, = completion of the algebraic closure of Q.

@ k any field, 0 < r < 1.
k(X)) ={X aiX": aj € k, ip € Z} field of formal Laurent

iZip
series with | > a;X' |= rio, if a;, # 0.
iZip
@ k any field, | x |= 0 x= trivial absolute value
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Berkovich unit disc

As above, we put D(a,r) ={x € K:|x—a|<r}foraec K,r>0.

We want to define Berkovich's unit disc.

Tate algebra

o0 o0
T ={> cnz": > cpa" converges for every a € D(0,1)}.
n=0 n=0

For every element in T we have | ¢, |— 0.

oo
n (| —
|3 ez ll=max| cn .

n=0
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Berkovich unit disc

Properties:
i) The Gauss norm on T is multiplicative: || f g [|=|| f |||l & ||

ii) It satisfies the strong triangle inequality
I +g = max{] ] gl}

iii) T is complete with respect to | ||, hence a non-archimedean
Banach algebra.

iv) Let K be the algebraic closure of K. Then
| £ l1= sup,cic e | (3) |
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Berkovich disc

Definition

The Berkovich spectrum M(T) is defined as the set of all
non-trivial multiplicative seminorms on T bounded by the Gauss
norm.
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Berkovich disc

Definition

The Berkovich spectrum M(T) is defined as the set of all
non-trivial multiplicative seminorms on T bounded by the Gauss
norm.

Hence M(T) consists of all maps v : T — R>q such that

i) y#0

i) v(fg) = v(F(g)
i) y(f 4 &) < max{~(f),v(g)}
iv) y(F) <[ f | forall f € T.

It follows that y(a) =| a | for all a € K.
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Berkovich disc

For all a € D(0,1) the map

Ca:T — RZO
f —

| f(a) |

is in M(T).
The map D(0,1) — M(T),a > (, is injective. Hence we regard
the unit disc in K as a part of M(T). Every such point is called a

point of type 1.

Strasbourg, June 2014
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Berkovich disc

For all a € D(0,1) the map

Ca:T — RZO
f —

| f(a) |

is in M(T).

The map D(0,1) — M(T),a > (, is injective. Hence we regard
the unit disc in K as a part of M(T). Every such point is called a
point of type 1.

M(T) carries a natural topology, namely the weakest topology
such that all evaluation maps

R

M(T) —
v = A(f)

for f € T are continuous.
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Berkovich disc

The restriction of this topology to D(0, 1) is the one given by the
absolute value on K, hence it is disconnected on D(0, 1).

The whole topological space M(T) however has nice
nonnectedness properties. It contains additional points “filling up
the holes” in D(0,1).
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Berkovich disc

The restriction of this topology to D(0, 1) is the one given by the
absolute value on K, hence it is disconnected on D(0, 1).

The whole topological space M(T) however has nice
nonnectedness properties. It contains additional points “filling up
the holes” in D(0,1).

Assume that | | is not the trivial absolute value and (for simplicity)
that K is algebraically closed.
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Berkovich disc

Lemma

Let a € D(0,1) and r a real number with 0 < r < 1.
Then the supremum norm over D(a, r)

Caor: T — Ry

f —  sup |f(x)]
x€D(a,r)

is a point in M(T).

Example: The Gauss norm (o 1.
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Berkovich disc

Hence the seminorms (, for a € D(0, 1) and the norms (, , for
ae D(0,1) lie in M(T).

For some fields, we have to add limits of ¢, , along a decreasing
sequence of nested discs in order to get all points in M(T).
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Berkovich disc

Hence the seminorms (, for a € D(0, 1) and the norms (, , for
ae D(0,1) lie in M(T).

For some fields, we have to add limits of ¢, , along a decreasing
sequence of nested discs in order to get all points in M(T).

M(T) is a compact Hausdorff space and uniquely path-connected.
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Paths in the Berkovich disc

Take a € D(0,1) and let (, be the associated point of type 1. We
put (5 = C5,0. Then the map

[0,1] — M(T)
ro— Ca,r

is continuous. Its image is a path [(5, Co,1] from (5 to (51 = (o1
(since D(a,1) = D(0,1)).
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Paths in the Berkovich disc

Take a € D(0,1) and let (, be the associated point of type 1. We
put (5 = C5,0. Then the map

[0,1] — M(T)
ro— Ca,r

is continuous. Its image is a path [(5, Co,1] from (5 to (51 = (o1

(since D(a,1) = D(0,1)).

Let b € D(0,1) be a second point. Then (, , = (p,, if and only if
D(a,r) = D(b, r), hence if and only if | a— b |= r.

Hence the paths [C5,Co,1] and [Cp, Co,1] meet in Cy ja_p| = Cpja—p|
and travel together to the Gauss point from there on.
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Paths in the Berkovich disc

Ca,la—bI: Cb,la—bl

C0,1
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Berkovich disc

We can visualize M(T) as a tree which has infinitely many
branches growing out of every point contained in a dense subset of

any line segment. Branching occurs only at the points ¢, , for
re|Kx|.

Co.1

Ca Cb
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Berkovich spaces

General theory: Put z = (z1,...,z,) and define the Tate algebra as
T, = az' ;| a; | — O}
n {ZI: 1z | a \“HOO }
A quotient ¢ : T,, - A together with the residue norm
fla= inf | g
IRAl nf gl

is called a (strict) K-affinoid algebra.
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Berkovich spaces

General theory: Put z = (z1,...,z,) and define the Tate algebra as
T, = az' ;| a; | — O}
n {ZI: 1z | a \“HOO }
A quotient ¢ : T,, - A together with the residue norm
fla= inf | g
IRAl nf gl

is called a (strict) K-affinoid algebra.

The Berkovich spectrum M(A) is the set of bounded
multiplicative seminorms on A.
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Berkovich spaces

An analytic space is a topological space with a covering by
M(A)’s together with a suitable sheaf of analytic functions.

o A rigorous definition needs quite a bit of work.
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Berkovich spaces

An analytic space is a topological space with a covering by
M(A)’s together with a suitable sheaf of analytic functions.

o A rigorous definition needs quite a bit of work.

Every scheme Z of finite type over K (i.e. every set of solutions of
a number of polynomial equations in several variables over K)
induces a Berkovich analytic space Z2".

i) Z is connected if and only if Z2" is pathconnected.
ii) Z is separated if and only if Z2" is Hausdorff.
iii) Z is proper if and only if Z?" is (Hausdorff and) compact.
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Berkovich spaces

Berkovich spaces have found a variety of applications, e.g. (we
apologize for any contributions which we have overlooked)

@ to prove a conjecture of Deligne on vanishing cycles
(Berkovich)
@ in local Langlands theory (Harris-Taylor)

@ to develop a p—adic avatar of Grothendieck’s “dessins
d'enfants” (André)

@ to develop a p—adic integration theory over genuine paths
(Berkovich)

@ in potential theory and Arakelov Theory (Baker/Rumely,
Burgos/Philippon/Sombra, Chambert-Loir, Favre/Jonsson,
Thuillier,...)
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Berkovich spaces

and also
@ in inverse Galois theory (Poineau)
@ in the study of Bruhat-Tits buildings (Rémy/Thuillier/W.)

@ in the new field of tropical geometry (Baker, Gubler, Payne,
Rabinoff, W, ...)

@ in settling some cases of the Bogomolov conjecture (Gubler,
Yamaki)

@ in Mirror Symmetry via non-archimedean degenerations
(Kontsevich /Soibelman, Mustata/Nicaise)
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Berkovich spaces

and also
@ in inverse Galois theory (Poineau)
@ in the study of Bruhat-Tits buildings (Rémy/Thuillier/W.)

@ in the new field of tropical geometry (Baker, Gubler, Payne,
Rabinoff, W, ...)

@ in settling some cases of the Bogomolov conjecture (Gubler,
Yamaki)

@ in Mirror Symmetry via non-archimedean degenerations
(Kontsevich /Soibelman, Mustata/Nicaise)

Let's look forward to other interesting results in the future!
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