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Real and complex analysis

The fields R and C together with their absolute values are
ubiquitous in mathematics.
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Archimedean Axiom

Archimedean Axiom:

For positive numbers x and y there exists a natural number n such
that nx > y .

Archimedes of Syracuse (287 - 212 b.c.) as
seen by Domenico Fetti (1620).
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Archimedean axiom

The Archimedean Axiom appears in the treatise On the Sphere and
Cylinder

where it is shown that the volume (surface) of a sphere is two
thirds of the volume (surface) of a circumscribed cylinder.
The terminology “Archimedean Axiom” was introduced in the 19th
century.

4 / 29 Geometry in the non-archimedean world Strasbourg, June 2014



Archimedean absolute values

The usual absolute values on the real and complex numbers satisfy
the Archimedean axiom, i.e.

For all x , y in R or in C with x 6= 0 there exists a natural number n
such that |nx | > |y |.
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p−adic absolute value

The field Q of rational numbers does not only carry the real
absolute value but also for every prime number p the absolute value∣∣∣ n

m

∣∣∣
p

= p−vp(n)+vp(m),

where vp(n) = exponent of p in the prime factorization of n.

| n |p5 1 for all natural numbers n, so that |nx |p 5 |x |p. Hence the
p−adic absolute value violates the Archimedean axiom. We say
that it is a non-Archimedean absolute value.
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Rational numbers

From the point of view of number theory, the real and the p−adic
absolute values on Q are equally important.

Product formula:
∏
p
| a |p · | a |R= 1 for all a ∈ Q.

R is the completion of Q with respect to | |R. Let Qp be the
completion of Q with respect to | |p.
Then we sometimes have a Local-Global-Principle, e.g. in the
theorem of Hasse-Minkowski:

The quadratic equation a1X
2
1 + a2X

2
2 + . . .+ anX

2
n = 0 with

ai ∈ Q has a nontrivial solution in Qn if and only if it has a
non-trivial solution in Rn and a non-trivial solution in all Qn

p.

7 / 29 Geometry in the non-archimedean world Strasbourg, June 2014



Rational numbers

From the point of view of number theory, the real and the p−adic
absolute values on Q are equally important.

Product formula:
∏
p
| a |p · | a |R= 1 for all a ∈ Q.

R is the completion of Q with respect to | |R. Let Qp be the
completion of Q with respect to | |p.

Then we sometimes have a Local-Global-Principle, e.g. in the
theorem of Hasse-Minkowski:

The quadratic equation a1X
2
1 + a2X

2
2 + . . .+ anX

2
n = 0 with

ai ∈ Q has a nontrivial solution in Qn if and only if it has a
non-trivial solution in Rn and a non-trivial solution in all Qn

p.

7 / 29 Geometry in the non-archimedean world Strasbourg, June 2014



Rational numbers

From the point of view of number theory, the real and the p−adic
absolute values on Q are equally important.

Product formula:
∏
p
| a |p · | a |R= 1 for all a ∈ Q.

R is the completion of Q with respect to | |R. Let Qp be the
completion of Q with respect to | |p.
Then we sometimes have a Local-Global-Principle, e.g. in the
theorem of Hasse-Minkowski:

The quadratic equation a1X
2
1 + a2X

2
2 + . . .+ anX

2
n = 0 with

ai ∈ Q has a nontrivial solution in Qn if and only if it has a
non-trivial solution in Rn and a non-trivial solution in all Qn

p.

7 / 29 Geometry in the non-archimedean world Strasbourg, June 2014



Convergence

Let’s do calculus in Qp. We define convergence of sequences and
infinite sums in Qp as the real case.

Then a popular error becomes true:
∞∑
n=1

an converges for the p−adic absolute value if and only if

| an |p→ 0.
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Triangles

The p−adic absolute value satisfies the strong triangle inequality.

| a + b |p5 max{| a |p, | b |p}.

This follows from vp(m + n) = min{vp(m), vp(n)}.

Moreover, if
| a |p 6=| b |p, we find

| a + b |p= max{| a |p, | b |p}.

Hence all p−adic triangles are isosceles, i.e. at least two sides have
equal length.
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Balls

p−adic balls: a ∈ Qp, r > 0.

D0(a, r) = {x ∈ Qp :| x − a |p< r} “open ball”

D(a, r) = {x ∈ Qp :| x − a |p5 r} “closed ball”

K (a, r) = {x ∈ Qp :| x − a |p= r} circle.

Qp carries a natural topology defined by open balls.

For all b ∈ D(a, r) we have

D(b, r) = D(a, r).

Why? If | x − b |p5 r , then
| x − a |p5 max{| x − b |p, | b − a |p} 5 r . Hence every point in a
p− adic ball is a center.

10 / 29 Geometry in the non-archimedean world Strasbourg, June 2014



Balls

p−adic balls: a ∈ Qp, r > 0.

D0(a, r) = {x ∈ Qp :| x − a |p< r} “open ball”

D(a, r) = {x ∈ Qp :| x − a |p5 r} “closed ball”

K (a, r) = {x ∈ Qp :| x − a |p= r} circle.

Qp carries a natural topology defined by open balls.
For all b ∈ D(a, r) we have

D(b, r) = D(a, r).

Why? If | x − b |p5 r , then
| x − a |p5 max{| x − b |p, | b − a |p} 5 r . Hence every point in a
p− adic ball is a center.

10 / 29 Geometry in the non-archimedean world Strasbourg, June 2014



Balls

p−adic balls: a ∈ Qp, r > 0.

D0(a, r) = {x ∈ Qp :| x − a |p< r} “open ball”

D(a, r) = {x ∈ Qp :| x − a |p5 r} “closed ball”

K (a, r) = {x ∈ Qp :| x − a |p= r} circle.

Qp carries a natural topology defined by open balls.
For all b ∈ D(a, r) we have

D(b, r) = D(a, r).

Why? If | x − b |p5 r , then
| x − a |p5 max{| x − b |p, | b − a |p} 5 r . Hence every point in a
p− adic ball is a center.

10 / 29 Geometry in the non-archimedean world Strasbourg, June 2014



Balls

Therefore two p−adic balls are either disjoint

or nested
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p−adic analysis

Similary, for every b ∈ K (a, r), i.e. | b − a |p= r we find
D0(b, r) ⊂ K (a, r).

Hence the circle is open and all closed balls are open in the p−adic
topology.

Bad topological news: Qp is totally disconnected, i.e. the
connected components are the one-point-sets.

How can we do analysis? Defining analytic functions by local
expansion in power series leads to indesirable examples:

f (x) =

{
1 on D0(0, 1)
0 on K (0, 1)

.
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p−adic analysis

In the 1960’s John Tate defined rigid analytic spaces by only
admitting “admissible” open coverings.

Since 1990 Vladimir Berkovich develops his approach to p−adic
analytic spaces.

Advantage: Berkovich analytic spaces have nice topological
properties.

Trick: Fill the holes in the totally disconnected p−adic topology
with new points.
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Non-archimedean fields

Let K be any field endowed with an absolute value | |: K → R>0

satisfying

i) | a |= 0 if and only a = 0

ii) | ab |=| a | · | b |
iii) | a + b |5 max{| a |, | b |}.

Then | | is a non-archimedean absolute value.

We assume that K is complete, i.e. that every Cauchy sequence in
K has a limit. Otherwise replace K by its completion.
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Non-archimedean fields

Examples:

Qp for any prime number p

finite extensions of Qp

Cp = completion of the algebraic closure of Qp.

k any field, 0 < r < 1.
k
(
(X )
)

= {
∑
i=i0

aiX
i : ai ∈ k, i0 ∈ Z} field of formal Laurent

series with |
∑
i=i0

aiX
i |= r i0 , if ai0 6= 0.

k any field, | x |=
{

0 x = 0
1 x 6= 0

trivial absolute value.
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Berkovich unit disc

As above, we put D(a, r) = {x ∈ K :| x − a |≤ r} for a ∈ K , r > 0.

We want to define Berkovich’s unit disc.

Tate algebra

T = {
∞∑
n=0

cnz
n :

∞∑
n=0

cna
n converges for every a ∈ D(0, 1)}.

For every element in T we have | cn |−→ 0.

Gauss norm

‖
∞∑
n=0

cnz
n ‖= max

n=0
| cn | .
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Berkovich unit disc

Properties:

i) The Gauss norm on T is multiplicative: ‖ f g ‖=‖ f ‖ ‖ g ‖
ii) It satisfies the strong triangle inequality
‖ f + g ‖5 max{‖ f ‖, ‖ g ‖}.

iii) T is complete with respect to ‖ ‖, hence a non-archimedean
Banach algebra.

iv) Let K be the algebraic closure of K . Then
‖ f ‖= supa∈K ,|a|51 | f (a) |
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Berkovich disc

Definition

The Berkovich spectrum M(T ) is defined as the set of all
non-trivial multiplicative seminorms on T bounded by the Gauss
norm.

Hence M(T ) consists of all maps γ : T −→ R=0 such that

i) γ 6= 0

ii) γ(fg) = γ(f )γ(g)

iii) γ(f + g) 5 max{γ(f ), γ(g)}
iv) γ(f ) 5‖ f ‖ for all f ∈ T .

It follows that γ(a) =| a | for all a ∈ K .
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Berkovich disc

For all a ∈ D(0, 1) the map

ζa : T −→ R≥0
f 7−→ | f (a) |

is in M(T ).
The map D(0, 1)→M(T ), a 7→ ζa is injective. Hence we regard
the unit disc in K as a part of M(T ). Every such point is called a
point of type 1.

M(T ) carries a natural topology, namely the weakest topology
such that all evaluation maps

M(T ) −→ R
γ 7−→ γ(f )

for f ∈ T are continuous.
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Berkovich disc

The restriction of this topology to D(0, 1) is the one given by the
absolute value on K , hence it is disconnected on D(0, 1).

The whole topological space M(T ) however has nice
nonnectedness properties. It contains additional points “filling up
the holes” in D(0, 1).

Assume that | | is not the trivial absolute value and (for simplicity)
that K is algebraically closed.
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Berkovich disc

Lemma

Let a ∈ D(0, 1) and r a real number with 0 < r 5 1.
Then the supremum norm over D(a, r)

ζa,r : T −→ R=0
f 7−→ sup

x∈D(a,r)
| f (x) |

is a point in M(T ).

Example: The Gauss norm ζ0,1.
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Berkovich disc

Hence the seminorms ζa for a ∈ D(0, 1) and the norms ζa,r for
a ∈ D(0, 1) lie in M(T ).
For some fields, we have to add limits of ζa,r along a decreasing
sequence of nested discs in order to get all points in M(T ).

Theorem

M(T ) is a compact Hausdorff space and uniquely path-connected.
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Paths in the Berkovich disc

Take a ∈ D(0, 1) and let ζa be the associated point of type 1. We
put ζa = ζa,0. Then the map

[0, 1] −→ M(T )
r 7−→ ζa,r

is continuous. Its image is a path [ζa, ζ0,1] from ζa to ζa,1 = ζ0,1(
since D(a, 1) = D(0, 1)

)
.

Let b ∈ D(0, 1) be a second point. Then ζa,r = ζb,r if and only if
D(a, r) = D(b, r), hence if and only if | a− b |5 r .
Hence the paths [ζa, ζ0,1] and [ζb, ζ0,1] meet in ζa,|a−b| = ζb,|a−b|
and travel together to the Gauss point from there on.
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Paths in the Berkovich disc
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Berkovich disc

We can visualize M(T ) as a tree which has infinitely many
branches growing out of every point contained in a dense subset of
any line segment. Branching occurs only at the points ζa,r for
r ∈ |K×|.

ba

0,1

ζζ

ζ
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Berkovich spaces

General theory: Put z = (z1, . . . , zn) and define the Tate algebra as

Tn = {
∑
I

aI z
I :| aI | −→

|I |→∞
0}.

A quotient ϕ : Tn � A together with the residue norm

‖ f ‖A= inf
ϕ(g)=f

‖ g ‖

is called a (strict) K -affinoid algebra.

The Berkovich spectrum M(A) is the set of bounded
multiplicative seminorms on A.
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Berkovich spaces

An analytic space is a topological space with a covering by
M(A)′s together with a suitable sheaf of analytic functions.

A rigorous definition needs quite a bit of work.

Every scheme Z of finite type over K (i.e. every set of solutions of
a number of polynomial equations in several variables over K )
induces a Berkovich analytic space Z an.

Theorem

i) Z is connected if and only if Z an is pathconnected.
ii) Z is separated if and only if Z an is Hausdorff.
iii) Z is proper if and only if Z an is (Hausdorff and) compact.
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Berkovich spaces

Berkovich spaces have found a variety of applications, e.g. (we
apologize for any contributions which we have overlooked)

to prove a conjecture of Deligne on vanishing cycles
(Berkovich)

in local Langlands theory (Harris-Taylor)

to develop a p−adic avatar of Grothendieck’s “dessins
d’enfants” (André)

to develop a p−adic integration theory over genuine paths
(Berkovich)

in potential theory and Arakelov Theory (Baker/Rumely,
Burgos/Philippon/Sombra, Chambert-Loir, Favre/Jonsson,
Thuillier,...)
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Berkovich spaces

and also

in inverse Galois theory (Poineau)

in the study of Bruhat-Tits buildings (Rémy/Thuillier/W.)

in the new field of tropical geometry (Baker, Gubler, Payne,
Rabinoff, W., . . .)

in settling some cases of the Bogomolov conjecture (Gubler,
Yamaki)

in Mirror Symmetry via non-archimedean degenerations
(Kontsevich/Soibelman, Mustata/Nicaise)

...

Let’s look forward to other interesting results in the future!
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