Faithful Tropicalization of the Grassmannian of planes

Annette Werner (joint with Maria Angelica Cueto and Mathias Häbich)

Goethe-Universität Frankfurt am Main

2013

Goal:

The Grassmannian of planes is faithfully tropicalized by the Plücker embedding, i.e. the tropical Grassmannian of planes is homeomorphic to a closed subject of the Berkovich analytic Grassmannian.

Motivation:

Faithful tropicalization results for curves by Baker, Payne and Rabinoff.

Setting

K non-Archimedean complete field with respect to $||_{K}$.

Example:

 \mathbb{Q}_p , finite extensions of \mathbb{Q}_p , \mathbb{C}_p , Laurent series or Puiseux series, any field with the trivial valuation.

X/K variety *X^{an}* Berkovich analytic space. If X = Spec A affine, then $X^{an} = \{ \text{ multiplicative seminorms } A \to \mathbb{R}_{\geq_0} \text{ extending } | |_{\mathcal{K}} \}$ equipped with the topology of pointwise convergence.

Note: Every *K*-rational point $a \in X(K)$ induces a point in X^{an} by $A \to \mathbb{R}_{\geq_0}, f \mapsto |f(a)|_K$.

(日) (圖) (E) (E) (E)

Let $X = \mathbb{A}_{K}^{1} = \operatorname{Spec} K[x]$ and assume K algebraically closed. Put $D(a, r) = \{x \in K : | x - a | \leq r\} \subset K = \mathbb{A}_{K}^{1}(K)$. Then X^{an} consists of the following points (seminorms): Let $f \in K[x]$.

Points of type 1:
$$|f|_{a} = |f(a)|$$
 for $a \in K = \mathbb{A}^{1}_{K}(K)$.
Points of type 2: $|f|_{a,r} = \sup_{x \in D(a,r)} |f(x)|$ for a disc $D(a,r)$
with $r \in |K^{X}|$
Points of type 3: $|f|_{a,r} = \sup_{x \in D(a,r)} |f(x)|$ for a disc $D(a,r)$
with $r \notin |K^{X}|$
Points of type 4: $|f|_{a,r} = \lim_{n \to \infty} |f|_{a_{n},r_{n}}$ for a nested sequence
 $D(a_{1},r_{1}) \supset D(a_{2},r_{2}) \dots$ of discs.

・ロト ・聞 ト ・ ヨト ・ ヨトー

The topological space $(\mathbb{A}^1_K)^{an}$ can be identified with an \mathbb{R} -tree which has infinitely many branches growing out of every point contained in a dense subset of any line segment.

Branching occurs at points of type 2. The leaves of the tree are type 1 or type 4 points.

In order to get the (compact) Berkovich projective line $(\mathbb{P}^1_K)^{an}$ it suffices to add one leaf ∞ of type 1.

Berkovich curves (by Till Wagner)

Tate curve

Genus two curve

(日) (圖) (E) (E) (E)

The description of Berkovich curves as \mathbb{R} -trees relies on the fact that K[x] is a factorial ring.

In dimension \geq 2, there is no explicit description of the points in Berkovich spaces.

Trop:
$$(\mathbb{G}_m^r)^{an} \longrightarrow \mathbb{R}^r$$

 $\gamma \longmapsto (\log \gamma(x_1), \dots, \log \gamma(x_r))$

 $X_0 \subset X$ very affine, i.e. closed embedding $\varphi : X_0 \hookrightarrow \mathbb{G}_m^r$. Associated tropicalization:

trop:
$$X_0^{an} \stackrel{\varphi^{an}}{\hookrightarrow} (\mathbb{G}_m^r)^{an} \stackrel{\operatorname{Trop}}{\to} \mathbb{R}^r$$
.

More generally: $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\}, \underline{1} = (1, \dots, 1)$

Trop:
$$(\mathbb{P}_{K}^{r})^{an} \longrightarrow (\overline{\mathbb{R}}^{r+1} \setminus \{-\infty \cdot \underline{1}\}) / \mathbb{R}\underline{1} = \mathbb{T}\mathbb{P}^{r}$$

 $\gamma \longmapsto (\log \gamma(x_{o}), \dots, \log \gamma(x_{r})) + \mathbb{R}\underline{1}$

 $\varphi: X \hookrightarrow \mathbb{P}^{r}_{K}$ gives rise to tropicalization:

trop
$$: X^{an} \hookrightarrow (\mathbb{P}^r_K)^{an} \to \mathbb{TP}^r$$

(日) (圖) (E) (E) (E)

Assume that dim X = 1 and $| |_{\mathcal{K}}$ non-trivial.

Theorem ([BPR])

For every finite subgraph Γ of $X^{an} \setminus \{\text{leaves}\}$ there exists a tropicalization mapping Γ isometrically to its image.

Theorem ([BPR])

If $\Gamma' \subset \operatorname{Trop}(X_0)$ for some very affine $X_0 \subset X$ is a finite subgraph with tropical multiplicity one everywhere, there exists a subgraph $\Gamma \subset X^{an}$ mapping isometrically to Γ' under trop.

イロン イ理と イヨン ・

Higher-dimensional varieties?

- In higher dimensions, there is no polyhedral description of Berkovich spaces generalizing the ℝ-tree structure of analytic curves.
- in general there are no semistable models (which play an important role in [BPR]).
- metrics have to be replaced with piecewise linear structures.

Example:

Grassmannian

· < /⊒ > < ∃ > <

Gr(d, n) Grassmannian of *d*-dimensional subspaces of an *n*-dimensional vector space.

Plücker embedding

$$arphi: Gr(d,n) \hookrightarrow \mathbb{P}_{K}^{\binom{n}{d}-1} \ \omega \mapsto \wedge^{d} \omega$$

Tropical Grassmannian:

trop :
$$Gr(d, n)^{an} \stackrel{\varphi^{an}}{\hookrightarrow} (\mathbb{P}_{K}^{\binom{n}{d}-1})^{an} \stackrel{\text{Trop}}{\to} \mathbb{TP}^{r}$$

 $\mathcal{T}Gr(d, n) = \text{Image (trop).}$

 $Gr_0(d,n) = \varphi^{-1}(\mathbb{G}_m^{\binom{n}{d}}/\mathbb{G}_m)$

$$\mathcal{T}Gr_0(d,n) = \mathsf{Image}\left(\operatorname{trop} \mid_{Gr_0(d,n)} \right)$$

 $\mathcal{T}Gr_0(d, n)$ is the tropical Grassmannian $\mathcal{G}'_{d,n}$ investigated by Speyer and Sturmfels 2004.

Theorem (Speyer-Sturmfels)

 $\mathcal{T}Gr_0(d, n)$ is a fan of dimension d(n - d). It contains a lineality space of dimension n - 1.

Theorem (Speyer-Sturmfels)

 $\mathcal{T}Gr_0(2, n)$ is the space of phylogenetic trees.

<ロト < 団ト < 団ト < 団ト

From now on: d = 2

Plücker coordinates on $\mathbb{P}_{K}^{\binom{n}{2}-1}$: p_{ij} for all $\{i, j\} \subset \{1, \ldots, n\}$; $i \neq j$. Plücker relations

$$p_{ij}p_{kl} = p_{ik}p_{jl} - p_{il}p_{jk}$$

for i, j, k, l pairwise distinct.

A phylogenetic tree on n leaves is a tree T whose leaves are labelled $1, 2, \ldots, n$, which is endowed with a weight function

 ω : edges $(T) \rightarrow \mathbb{R}$.

For every phylogenetic tree (T, ω) and all $i, j \in \{1, \ldots, n\}$ let

 $x_{ii} = \text{sum of weights along the path from } i \text{ to } j$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Then x_{ii} satisfy the tropical Plücker relation: For all pairwise distinct $i, j, k, l \in \{1, ..., n\}$ the maximum among

$$x_{ij} + x_{kl}, x_{ik} + x_{jl}, x_{il} + x_{jk}$$

is attained at least twice.

Hence $(x_{ij})_{ij}$ is a point in the tropical Grassmannian $\mathcal{T}Gr_0(2, n)$.

Theorem (Cueto, Häbich, Werner 2013)

There exists a continuous section $\sigma : \mathcal{T}Gr(2, n) \to Gr(2, n)^{an}$ of the tropicalization map.

Hence the tropical Grassmannian of planes is homeomorphic to a closed subset of the Berkovich analytic Grassmannian.

Motivation:

 $\mathcal{T}Gr_0(2, n)$ has tropical multiplicity one everywhere by Speyer/Sturmfels. On compact subsets of tropical curves this implies existence of a section by [BPR].

First idea

Fix $i \neq j$. $U = \varphi^{-1} \{ p_{ij} \neq 0 \}$ big cell.

Write $u_{kl} = \frac{p_{kl}}{p_{ij}}$ for the affine cordinates on $\{p_{ij} \neq 0\}$. Then $U \simeq \mathbb{A}_{K}^{2(n-2)}$ with respect to $(u_{ik}, u_{jk})_{k \neq i,j}$.

Skeleton map

$$\begin{array}{rcl} & \overline{\mathbb{R}}^{2(n-2)} & \hookrightarrow & (\mathbb{A}_{K}^{2(n-2)})^{an} \\ r = (r_{1}, \dots, r_{2(n-2)}) & \mapsto & \gamma_{r}, \\ & \gamma_{r}(\sum_{I} a_{I}u^{I}) & = & \max_{I}\{|a_{I}|\exp(\langle r, I\rangle)\} \end{array}$$

 $(\gamma_r \text{ is a norm on the polynomial ring, } u = (u_{ik}u_{jk})_{k \neq i,j}).$ In particular, writing $r = (r_{ik}, r_{jk})_{k \neq i,j}$,

$$\gamma_r(u_{kl}) = \max\{\exp(r_{ik} + r_{jl}), \exp(r_{jk} + r_{il})\}$$

=
$$\exp(\max\{r_{ik} + r_{jl}, r_{jk} + r_{il}\}).$$

イロン イ理と イヨン ・

The proof

This provides a section of trop: $Gr(2, n)^{an} \rightarrow \mathcal{T}Gr(2, n)$ on all $x \in \mathcal{T}Gr(2, n)$ satisfying

$$x_{kl} + x_{ij} = \max\{x_{ik} + x_{jl}, x_{jk} + x_{il}\}.$$

Ok, if x comes from a phylogenetic caterpillar tree

Hence this proves our claim for n = 4.

Not ok, if x comes from a tree of the form

The proof

In general, the definition of our section depends

- I on the combinatorial type of the phylogenetic tree
- **2** on the position in the coordinate hyperplane arrangement in $\mathbb{A}_{K}^{2(n-2)}$.

Strategy:

T combinatorial n-labelled tree.

 $C_T \subset \mathcal{T}Gr_0(2, n)$ set of points corresponding to (T, ω) for some weight function ω . $\overline{C_T} \subset \mathcal{T}Gr(2, n)$ closure.

Note:

 $\mathcal{T}Gr(n,n) = \overline{\mathcal{T}Gr_0(2,n)}.$

 Σ Stratum in coordinate hyperplane arrangement in $U \simeq \mathbb{A}_{K}^{2(n-2)}$.

Theorem

Depending on Σ , U, T there exists a set $I \subset \{u_{kl} : k \neq l\}$ of cardinality 2(n-2) which generates the function field K(U), such that

$$\overline{\mathbb{R}}^{2(n-2)} \underset{\text{Skeleton map}}{\hookrightarrow} \operatorname{Spec} \mathcal{K}[I]^{an} \underset{\text{rational}}{\dashrightarrow} U^{ar}$$

is a section of trop over $\Sigma^{an} \cap \overline{C}_T$.

The proof: example

Example:

 $\Sigma =$ complement of all coordinate hyperplanes in U.

Arrange T as

with subtrees T_1, \ldots, T_r .

Order the leaves of each T_j such that the cherry property holds: For leaves $k \prec l \prec m$ either $\{kl\}$ or $\{lm\}$ is a cherry in $\{i, k, l, m\}$ (and similary for $\{k, l, m, j\}$).

Write $s_1 \prec s_2 \prec \ldots \prec s_p$ for the leaves in T_1 .

Take variables

$$u_{is_1}, u_{is_2}, \dots, u_{is_p}, u_{js_1}, u_{s_1s_2}, \dots, u_{s_{p-1}s_p}$$

on T_1 .

I = union of these sets of variables over all subtrees T_1, \ldots, T_r .

・ロト ・聞 ト ・ ヨト ・ ヨト …

These local sections are independent of all choices and glue. Hence we get the desired section

$$\sigma: \mathcal{T}Gr(2, n) \longrightarrow Gr^{an}(2, n)$$

of the tropicalization map.

Technical lemma: show that σ is continuous.

Proposition

The section $\sigma : \mathcal{T}Gr(2, n) \to Gr(2, n)^{an}$ associates to x the unique Shilov boundary point of the affinoid domain $\operatorname{trop}^{-1}(\{x\}) \subset Gr(2, n)^{an}$.

What does this mean? Assume $\sigma(x)$ is contained in the analytification of the big cell $U_{ij} = \operatorname{Spec}(R_{ij})$ in the Grassmannian. Then $\sigma(x)$ is a multiplicative seminorm on R_{ij} extending the absolute value on K. For all other such multiplicative seminorms γ satisfying

$$\operatorname{trop}(\gamma) = x$$

we have

$$\gamma(f) \leq \sigma(x)(f)$$

for all $f \in R_{ij}$.

イロト イヨト イヨト イヨト

Proposition

For all $x \in \mathcal{T}Gr(2, n)$ the tropical multiplicity of x (in the ambient torus) is one.

(For $x \in \mathcal{T}Gr_0(2, n)$ this is due to Speyer/Sturmfels.)

Proof: Use the local coordinate system *I* to calculate the initial degeneration.

Corollary

Let J be a subset of the Plücker coordinates not containing p_{ij} . Then $Gr_J(2, n) = \varphi^{-1} \{ p_{kl} = 0 \Leftrightarrow p_{kl} \in J \}$ is an affine variety with coordinate ring

$$K[u_{kl}^{\pm 1}: u_{kl} \in I \setminus J]_S,$$

where S is the multiplicative subset generated by all $u_{kl} \notin J$.

・ロト ・聞 ト ・ ヨト ・ ヨト …

Sturmfels: The spherical complex associated to the tropical Grassmannian $TGr_0(2,5)$ is the Petersen graph.

Corollary

Our section induces an embedding of the Petersen graph into the quotient $(Gr_0(2,5)/\mathbb{G}_m^5)^{an}$ of the analytic very affine Grassmannian $Gr_0(2,5)^{an}$.

イロト イ部ト イヨト イヨト 三日