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This talk reports on joint work with Amaury Thuillier and Bertrand
Rémy (Lyon). Our results generalize results of Vladimir Berkovich
who investigated the case of split groups.
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Non-archimedean fields

K non-Archimedean field, i.e. K is complete with respect to a
non-trivial absolute value | |k satisfying

la + bl =< max{|a|k, |b|k}-

K is called discrete if the value group |K*| C R* is discrete.
Non-archimedean analysis has special charms:

o0
Z a, converges if and only if a, — 0.

n=1
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Non-archimedean fields

Examples:

@ K =k((T)) formal Laurent series over any ground field k
with [~ anT" = e ™ if ap, # 0

K=C{{T}} Puiseux series

K = Qp, the completion of Q with respect to |x| = p~ve(x)

algebraic extensions of Q,

K = C,, the completion of the algebraic closure of Q,
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Semisimple groups

G semisimple group over K, i.e.
G — GL, i closed algebraic subgroup such that

rad(G)(= biggest connected solvable normal subgroup) = 1

Examples: SL,,, PGL,,, Sp>,, SO, over K
SL,(D) D central division algebra over K
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Main result

Goal: Embed the Bruhat-Tits building B(G, K)
associated to G in the Berkovich analytic space

G9" associated to G.

Hope:| Investigate the building with the help of

the ambiant Berkovich space G2".
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Bruhat-Tits buildings: Example

Archimedean Example:
G = SL(2,R)
H = SO(2,R) maximal compact subgroup
G/H=H={zeC:Im(z) >0}
upper half-plane

Non-Archimedean analog:

p prime number

G = SL(27 QP)

H = SL(2,Zp) maximal compact subgroup.
G/H is a totally disconnected topological space.
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Bruhat-Tits buildings: Example

Note: H = {norms on R?}/scaling.

Goldman-lwahori:

B(SL2,Qp) = {Non-archimedean norms on @,23}/ scaling
@ Topology of pointwise convergence
e SL(2,Qp)—action

o Stabilizer of the norm () — max{|al,|b|}
is the maximal compact subgroup SL(2,Zp)
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Bruhat-Tits buildings: Example

e B(SLr,Qp) is an infinite (p + 1)—valent tree:
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Bruhat-Tits buildings

In general: The building B(G, K) is obtained by glueing real
vector spaces (apartments).

Every maximal split torus T C G, i.e. T ~ G]_ ., induces an
apartment A(T), which is defined as the real cocharacter space
A(T) = Homk(Gp, T) @z R.

The glueing process is defined with deep (and quite technical)
results by Bruhat and Tits.

B(G, K) is a complete metric space with a continuous
G(K)—action.

If K is discrete, ®B(G, K) carries a (poly-)simplicial structure.
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Apartment for Spy

b

Buildings and Berkovich Spaces hrestagung Miinchen 2010



Degssaly fooNofe Delosod s Nt of = Nflio Ny




Some part of B(PGL3, Q,)




Why are Bruhat-Tits buildings useful?

@ B(G, K) is a nice space on which G(K) acts

e Cohomology of arithmetic groups (Borel-Serre)

e B(G, K) encodes information about the compact subgroups
of G(K)

@ Representation theory of G(K) (Schneider-Stuhler)

@ Bruhat-Tits buildings are non-Archimedean analogs of
Riemann symmetric spaces of non-compact type

@ Buildings can be used to prove results for symmetric spaces
(e.g. Kleiner-Leeb)
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Berkovich Spaces

A Berkovich space is a non-Archimedean analytic space with good
topological properties.

Archimedean case:
X smooth projective variety over C. Then X(C) is a complex
projective manifold.

Non-archimedean case:

X smooth projective variety over K. Then X(K) inherits a
non-Archimedean topology from K with bad topological properties,
e.g. it is totally disconnected.
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Berkovich Spaces

Tate, Raynaud... Define non-Archimedean analytic
functions by a suitable Grothendieck
topology

Berkovich Enlarge X(K) to a topological space

X" with good properties.
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Berkovich unit disc

Example: The Berkovich unit disc
Assume for simplicity that K is algebraically closed.
A = K{z} = { formal series f(z) = >, anz" with a, — 0}

| f||= max|as|x Gauss norm on A
n
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Berkovich unit disc

M(A) = { bounded multiplicative seminorms on A extending | |« }
is the Berkovich unit disc.
Hence every v € M(A) is a function v : A — R> satisfying

° vk =1 |k

° y(fg) =~(f) 1(g)

o Y(f+g)=(f)+(g)

o y<cl

Every a € K with |a|x = 1 induces a point |f|, = |f(a)|x in M(A)

The Gauss norm is multiplicative, i.e. a point in M(A).
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Non-archimedean balls

The other seminorms in M(A) can be described with closed
non-Archimedean discs D(a,r) = {x € K: |x —a| < r}

Note: Two non-Archimedean closed discs are either disjoint

o (U

or nested
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Berkovich unit disc

Basic fact: The Gauss norm is the supremum norm on D(0,1).
The Berkovich unit disc consists of the following points:

Points of type 1:  |f|, = |f(a)|k for a € D(0,1).

Points of type 2:  |f|,, = sup |f(x)|k for D(a,r) C D(0,1)
xeD(a,r)
and r € |K¥|

Points of type 3: |f|., = sup |f(x)| for D(a,r) C D(0,1)
x€D(a,r)
and r ¢ |K¥|

Points of type 4:  |f|,, = lim |f],, ,, for a nested sequence
- n—oo
D(a1,r) D D(az2,r)... of closed discs in D(0,1)
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Berkovich unit disc

b

Type-1V poi H =+ 8 \ : / : , \

a,r o

Type-I point | — 5

Ea0 £0,0 b0

(from J.H. Silverman: The arithmetic of dynamical systems)
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Berkovich unit disc

Endow the Berkovich unit disc M(A) with the topology of
pointwise convergence of seminorms evaluated on A.

Then M(A) is a compact, uniquely path-connected Hausdorff
space containing {x € K : |x|x < 1} as a dense subspace.
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Berkovich spaces

Similary one can define Berkovich discs of any radius r > 0.

Berkovich affine line:
(A%)?" = union of all Berkovich discs of positive radius
= {multiplicative seminorms on K|z]}.

Berkovich projective line:
(P)?" can be constructed by glueing two Berkovich unit discs.

Buildings and Berkovich Spaces DMV-Jahrestagung Miinchen 2010



Analytification of algebraic varieties

In general:

X = Spec A for A= K[x1,...,xn]/a
Berkovich space X?" corresponding to X :
X?2" = {multiplicative seminorms on A extending | |k}

An analogous definition over the complex numbers yields X(C) by
a theorem of Gelfand-Mazur.
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Berkovich spaces

Berkovich spaces have found a variety of applications, e.g.

@ to prove a conjecture of Deligne on vanishing cycles
(Berkovich)

@ in local Langlands theory (Harris-Taylor)

@ to develop a p—adic avatar of Grothendieck’s “dessins
d’enfants” (André)

@ to develop a p—adic integration theory over genuine paths
(Berkovich)

e for p—adic harmonic analysis and p—adic dynamics with
applications in Arakelov Theory (Baker, Chambert-Loir,
Rumely, Thuillier,...)
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Embedding Theorem

G semisimple algebraic group over K

G?" Berkovich space associated to G

We define a continuous, G(K)— equivariant embedding
v:B(G,K)— G

using the following theorem:
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Embedding Theorem

Theorem

i) For all x € B(G, K) there exists an (affinoid) subgroup
Gy = M(Ax) C G?" such that

Gx(L) = Stabg1)(x)

for all non-Archimedean fields L D K.

ii) Gx has a unique maximal point in G (Shilov boundary
point), i.e. there exists a unique v(x) € G such that all
f € Ay achieve their maximum on v(x).
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Embedding Theorem

Tools: Bruhat-Tits theory, Berkovich's characterization of Shilov
boundary points, descent theory for affinoids

New idea: Any point x becomes special

after base extension with a suitable L/K.
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Embedding Theorem: Example

Example G = SL,
T C G torus of diagonal matrices

A(T) =Hom(Gpm, T) ®z R =Ry for pu: a — (8 a(—)l >

{3 )wenf w{(5 1) ven]

Q=U_TU; C SL, big cell

Note that Q = Spec K[a,a™ !, u,v].
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Embedding Theorem: Example

The embedding v is constructed apartment-wise. It maps A(T) to
the analytified big cell Q" C SL3".

Explicit description: Let xu € A(T).

Then v(xu) € Q" is the following multiplicative seminorm on
Kla,a™ L, u, v]:

| Z Ckmn akumv”\l,(x“) = max |Cmn|k|€M.
Kkez k,m,n
m,nENy

In particular, for 0 € A(T) we get

] Z Chkmna* u™v"| (o) = Max|Cimn]-
Py k,m.n
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Compactifications

Application: Compactifications of Bruhat-Tits buildings

G semisimple algebraic group over K
P C G parabolic subgroup
G /P proper K— variety

Example: G = SL, over K
F= (W C...C V) flag of linear subspaces of K"
P = Stab(F) c SL,,
G /P flag variety.
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Compactifications
Definition vp : B(G,K) % G2 — (G/P)?"

The closure of the image of B(G, K) under vp is a
compactification Bp(G, K) of B(G, K)
(or of some almost simple factors).

Theorem Bp(G,K)= U B(Qss, K)
Q "good" parabolic

Theorem  Any two points x,y in Bp(G, K) are contained in one
compactified apartment.

Theorem  (Mixed Bruhat decomposition)
Let x,y € Bp(G, K) with stabilizers Py, P, C G(K).

Then G(K) = PN(K)P,.
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Compactifications

Example:
G = SL, over K.
% * *
p— : o the stabilizer of a hyperplane
0 0

B(G, K) = {non-Archimedean norms on K"} /scaling
N

Bp(G, K) = {non-Archimedean seminorms on K"} /scaling
N

(G/P)on = (P"—1)o
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