Buildings and Berkovich Spaces

Annette Werner

Goethe-Universität, Frankfurt am Main

DMV-Jahrestagung München 2010 Emmy Noether Lecture

1/33

This talk reports on joint work with Amaury Thuillier and Bertrand Rémy (Lyon). Our results generalize results of Vladimir Berkovich who investigated the case of split groups.

K non-Archimedean field, i.e. K is complete with respect to a non-trivial absolute value | K satisfying

$$|a+b|_{\mathcal{K}} \leq \max\{|a|_{\mathcal{K}}, |b|_{\mathcal{K}}\}.$$

K is called discrete if the value group $|K^*| \subset \mathbb{R}^*$ is discrete.

Non-archimedean analysis has special charms:

$$\sum_{n=1}^{\infty} a_n \text{ converges if and only if } a_n \to 0.$$

Examples:

- K = k((T)) formal Laurent series over any ground field k with $|\sum_{n \ge n_0} a_n T^n| = e^{-n_0}$ if $a_{n_0} \ne 0$
- $K = \mathbb{C}\{\{T\}\}$ Puiseux series
- $\mathcal{K} = \mathbb{Q}_p$, the completion of \mathbb{Q} with respect to $|x| = p^{-v_p(x)}$
- algebraic extensions of \mathbb{Q}_p
- $K = \mathbb{C}_p$, the completion of the algebraic closure of \mathbb{Q}_p

G semisimple group over K, i.e.

 $G \hookrightarrow {\it GL}_{n, {\it K}}$ closed algebraic subgroup such that

rad(G)(= biggest connected solvable normal subgroup) = 1

Examples: $SL_n, PGL_n, Sp_{2n}, SO_n$ over K $SL_n(D)$ D central division algebra over K

Goal: Embed the Bruhat-Tits building $\mathfrak{B}(G, K)$ associated to G in the Berkovich analytic space G^{an} associated to G.

Hope: Investigate the building with the help of

the ambiant Berkovich space G^{an} .

◎ ▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

Archimedean Example:

$$G = SL(2, \mathbb{R})$$

 $H = SO(2, \mathbb{R})$ maximal compact subgroup
 $G/H = \mathbb{H} = \{z \in \mathbb{C} : Im(z) > 0\}$
upper half-plane

Non-Archimedean analog:

p prime number $G = SL(2, \mathbb{Q}_p)$ $H = SL(2, \mathbb{Z}_p)$ maximal compact subgroup. G/H is a totally disconnected topological space.

크

Note: $\mathbb{H} = \{ \text{norms on } \mathbb{R}^2 \} / \text{scaling.}$

Goldman-Iwahori:

 $\mathfrak{B}(SL_2, \mathbb{Q}_p) = \{ \mathsf{Non-archimedean norms on } \mathbb{Q}_p^2 \} / \mathsf{scaling}$

- Topology of pointwise convergence
- $SL(2, \mathbb{Q}_p)$ -action
- Stabilizer of the norm (^a_b) → max{|a|, |b|} is the maximal compact subgroup SL(2, Z_p)

(本部) (本語) (本語) (二語

• $\mathfrak{B}(SL_2, \mathbb{Q}_p)$ is an infinite (p+1)-valent tree:

In general: The building $\mathfrak{B}(G, K)$ is obtained by glueing real vector spaces (apartments). Every maximal split torus $T \subset G$, i.e. $T \simeq \mathbb{G}_{mK}^r$, induces an

Every maximal split torus $T \subset G$, i.e. $T \simeq \mathbb{G}'_{m,K}$, induces an apartment A(T), which is defined as the real cocharacter space $A(T) = \operatorname{Hom}_{K}(\mathbb{G}_{m}, T) \otimes_{\mathbb{Z}} \mathbb{R}$.

The glueing process is defined with deep (and quite technical) results by Bruhat and Tits.

 $\mathfrak{B}(G, K)$ is a complete metric space with a continuous G(K)-action.

If K is discrete, $\mathfrak{B}(G, K)$ carries a (poly-)simplicial structure.

(日) (圖) (E) (E) (E)

Apartment for Sp₄

◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣

Apartment for *PGL*₃

◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣

Some part of $\mathcal{B}(PGL_3, \mathbb{Q}_p)$

P. Garrett: Buildings and classical groups

□ > < E > < E > _ E

Why are Bruhat-Tits buildings useful?

- $\mathfrak{B}(G, K)$ is a nice space on which G(K) acts
- Cohomology of arithmetic groups (Borel-Serre)
- B(G, K) encodes information about the compact subgroups of G(K)
- Representation theory of G(K) (Schneider-Stuhler)
- Bruhat-Tits buildings are non-Archimedean analogs of Riemann symmetric spaces of non-compact type
- Buildings can be used to prove results for symmetric spaces (e.g. Kleiner-Leeb)

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ……

A Berkovich space is a non-Archimedean analytic space with good topological properties.

Archimedean case:

X smooth projective variety over \mathbb{C} . Then $X(\mathbb{C})$ is a complex projective manifold.

Non-archimedean case:

X smooth projective variety over K. Then X(K) inherits a non-Archimedean topology from K with bad topological properties, e.g. it is totally disconnected.

Tate, Raynaud...

Define non-Archimedean analytic functions by a suitable Grothendieck topology

Enlarge X(K) to a topological space X^{an} with good properties.

過 と く ヨ と く ヨ と

3

16/33

Example: The Berkovich unit disc

Assume for simplicity that K is algebraically closed.

$$A = K\{z\} = \{ \text{ formal series } f(z) = \sum_{n \ge 0} a_n z^n \text{ with } a_n \to 0 \}$$
$$\parallel f \parallel = \max_n |a_n|_K \quad \text{Gauss norm on } A$$

(本間) (本語) (本語) (二語

 $\mathcal{M}(A) = \{ \text{ bounded multiplicative seminorms on } A \text{ extending } | |_{\mathcal{K}} \}$ is the Berkovich unit disc.

Hence every $\gamma \in \mathcal{M}(A)$ is a function $\gamma : A \to \mathbb{R}_{\geq 0}$ satisfying

•
$$\gamma|_{\mathcal{K}} = | |_{\mathcal{K}}$$

• $\gamma(fg) = \gamma(f) \gamma(g)$
• $\gamma(f+g) \leq \gamma(f) + \gamma(g)$
• $\gamma \leq c || ||$

Every $a \in K$ with $|a|_K \leq 1$ induces a point $|f|_a = |f(a)|_K$ in $\mathcal{M}(A)$

The Gauss norm is multiplicative, i.e. a point in $\mathcal{M}(A)$.

Non-archimedean balls

The other seminorms in $\mathcal{M}(A)$ can be described with closed non-Archimedean discs $D(a, r) = \{x \in K : |x - a| \leq r\}$

Note: Two non-Archimedean closed discs are either disjoint

or nested

Berkovich unit disc

Basic fact: The Gauss norm is the supremum norm on D(0,1). The Berkovich unit disc consists of the following points:

Points of type 1:
$$|f|_a = |f(a)|_K$$
 for $a \in D(0, 1)$.

Points of type 2:
$$|f|_{a,r} = \sup_{x \in D(a,r)} |f(x)|_{\mathcal{K}}$$
 for $D(a,r) \subset D(0,1)$ and $r \in |\mathcal{K}^*|$

Points of type 3: $|f|_{a,r} = \sup_{x \in D(a,r)} |f(x)|$ for $D(a,r) \subset D(0,1)$ and $r \notin |K^*|$

Points of type 4: $|f|_{\underline{a},\underline{r}} = \lim_{n \to \infty} |f|_{a_n,r_n}$ for a nested sequence $D(a_1, r_1) \supset D(a_2, r_2) \dots$ of closed discs in D(0, 1)

- * 課 * * 注 * * 注 * ……注

Berkovich unit disc

(from J.H. Silverman: The arithmetic of dynamical systems)

Endow the Berkovich unit disc $\mathcal{M}(A)$ with the topology of pointwise convergence of seminorms evaluated on A.

Then $\mathcal{M}(A)$ is a compact, uniquely path-connected Hausdorff space containing $\{x \in K : |x|_K \leq 1\}$ as a dense subspace.

Similary one can define Berkovich discs of any radius r > 0.

Berkovich affine line:

 $(\mathbb{A}^{1}_{K})^{an}$ = union of all Berkovich discs of positive radius = {multiplicative seminorms on K[z]}.

Berkovich projective line:

 $(\mathbb{P}^1_K)^{an}$ can be constructed by glueing two Berkovich unit discs.

In general:

$$X = \operatorname{Spec} A$$
 for $A = K[x_1, \ldots, x_n]/\mathfrak{a}$

Berkovich space X^{an} corresponding to X:

 $X^{an} = \{$ multiplicative seminorms on A extending $| |_{K} \}$

An analogous definition over the complex numbers yields $X(\mathbb{C})$ by a theorem of Gelfand-Mazur.

■ ▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

Berkovich spaces have found a variety of applications, e.g.

- to prove a conjecture of Deligne on vanishing cycles (Berkovich)
- in local Langlands theory (Harris-Taylor)
- to develop a *p*-adic avatar of Grothendieck's "dessins d'enfants" (André)
- to develop a *p*-adic integration theory over genuine paths (Berkovich)
- for *p*-adic harmonic analysis and *p*-adic dynamics with applications in Arakelov Theory (Baker, Chambert-Loir, Rumely, Thuillier,...)

- * 聞 > * ほ > * ほ > … ほ

G semisimple algebraic group over K G^{an} Berkovich space associated to G

We define a continuous, G(K) – equivariant embedding

$$\nu:\mathfrak{B}(G,K)\longrightarrow G^{an}$$

using the following theorem:

Theorem

i) For all $x \in \mathfrak{B}(G, K)$ there exists an (affinoid) subgroup $G_x = \mathcal{M}(A_x) \subset G^{an}$ such that

$$G_x(L) = \operatorname{Stab}_{G(L)}(x)$$

for all non-Archimedean fields $L \supset K$.

ii) G_x has a unique maximal point in G^{an} (Shilov boundary point), i.e. there exists a unique $\nu(x) \in G^{an}$ such that all $f \in A_x$ achieve their maximum on $\nu(x)$.

個 と く ヨ と く ヨ と …

Tools: Bruhat-Tits theory, Berkovich's characterization of Shilov boundary points, descent theory for affinoids

New idea: Any point x becomes special

after base extension with a suitable L/K.

Embedding Theorem: Example

Example
$$G = SL_2$$
 $T \subset G$ torus of diagonal matrices

$$A(T) = \operatorname{Hom}(\mathbb{G}_m, T) \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{R}\mu \text{ for } \mu : a \mapsto \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}.$$

$$U_{-} = \left\{ \left(\begin{array}{cc} 1 & 0 \\ u & 1 \end{array} \right) : u \in K \right\} \qquad U_{+} = \left\{ \left(\begin{array}{cc} 1 & v \\ 0 & 1 \end{array} \right) : v \in K \right\}$$

 $\Omega = U_{-}TU_{+} \subset SL_{2}$ big cell

Note that $\Omega = \text{Spec } K[a, a^{-1}, u, v].$

・四ト ・ヨト ・ヨト

Embedding Theorem: Example

The embedding ν is constructed apartment-wise. It maps A(T) to the analytified big cell $\Omega^{an} \subset SL_2^{an}$.

Explicit description: Let $x\mu \in A(T)$.

Then $\nu(x\mu) \in \Omega^{an}$ is the following multiplicative seminorm on $K[a, a^{-1}, u, v]$:

$$|\sum_{\substack{k\in\mathbb{Z}\\m,n\in\mathbb{N}_0}}c_{kmn} a^k u^m v^n|_{\nu(\times\mu)} = \max_{k,m,n} |c_{kmn}|_{\mathcal{K}} |e^{x(m-n)}|_{\mathcal{K}}$$

In particular, for $0 \in A(T)$ we get

$$|\sum_{k,m,n}c_{kmn}a^{k}u^{m}v^{n}|_{\nu(0)}=\max_{k,m,n}|c_{kmn}|.$$

|→ @ ▶ ★ 差 ▶ → 差 → の < ⊙

Application: Compactifications of Bruhat-Tits buildings

- G semisimple algebraic group over K
- $P \subset G$ parabolic subgroup
- G/P proper K- variety

Example: $G = SL_n$ over K $F = (V_0 \subset ... \subset V_k)$ flag of linear subspaces of K^n $P = \operatorname{Stab}(F) \subset SL_n$ G/P flag variety.

(本部) (本語) (本語) (二語

Compactifications

$$\begin{array}{c} \overline{\mathsf{Definition}} \ \nu_{P}: \mathfrak{B}(G, \mathcal{K}) \xrightarrow{\nu} G^{\mathsf{an}} \to (G/P)^{\mathsf{an}} \end{array}$$

The closure of the image of $\mathfrak{B}(G, K)$ under ν_P is a compactification $\overline{\mathfrak{B}_P(G, K)}$ of $\mathfrak{B}(G, K)$ (or of some almost simple factors).

Theorem
$$\overline{\mathfrak{B}}_P(G, K) = \bigcup_{\substack{Q \text{ "good" parabolic}}} \mathfrak{B}(Q_{ss}, K)$$

Theorem Any two points x, y in $\overline{\mathfrak{B}}_P(G, K)$ are contained in one compactified apartment.

Theorem

(Mixed Bruhat decomposition) Let $x, y \in \overline{\mathfrak{B}}_{P}(G, K)$ with stabilizers $P_{x}, P_{y} \subset G(K)$.

3

Then $G(K) = P_x N(K) P_y$.

Compactifications

Example:

$$G = SL_n \text{ over } K.$$

$$P = \left\{ \begin{pmatrix} * & \cdots & * & * \\ \vdots & \vdots & \vdots \\ * & \cdots & * & * \\ 0 & \cdots & 0 & * \end{pmatrix} \right\} \text{ the stabilizer of a hyperplane}$$

 $\mathfrak{B}(G, K) = \{\text{non-Archimedean norms on } K^n\}/\text{scaling}$ \cap $\mathfrak{B}_P(G, K) = \{\text{non-Archimedean seminorms on } K^n\}/\text{scaling}$ \cap $(G/P)^{an} = (\mathbb{P}^{n-1})^{an}$

□→ ★ □ → ★ □ → □ □