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SPECTRAL DECOMPOSITION AND SIEGEL-VEECH

TRANSFORMS FOR STRATA: THE CASE OF MARKED TORI

JAYADEV S. ATHREYA, JEAN LAGACÉ, MARTIN MÖLLER, AND MARTIN RAUM

Abstract. Generalizing the well-known construction of Eisenstein series on
the modular curves, Siegel-Veech transforms provide a natural construction of
square-integrable functions on strata of differentials on Riemannian surfaces.
This space carries actions of the foliated Laplacian derived from the SL2(R)-
action as well as various differential operators related to relative period trans-
lations.

In the paper we give spectral decompositions for the stratum of tori with
two marked points. This is a homogeneous space for a special affine group,
which is not reductive and thus does not fall into well-studied cases of the
Langlands program, but still allows to employ techniques from representation
theory and global analysis. Even for this simple stratum exhibiting all Siegel-
Veech transforms requires novel configurations of saddle connections. We also
show that the contiunuous spectrum of the foliated Laplacian is much larger
than the space of Siegel-Veech transforms, as opposed to the case of the modu-
lar curve. This defect can be remedied by using instead a compound Laplacian
involving relative period translations.
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1. Introduction

For the modular surface or more generally for quotients of the upper half plane by
a cofinite Fuchsian group Γ the space L2(Γ\H) is well-known to decompose into the
cuspidal part, the space of Eisenstein transforms and the residual spectrum. The
Laplace operator acts with discrete spectrum on the cuspidal part, while Eisenstein
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series provide the continuous spectrum. The fine structure of the cuspidal part, the
size of the spectral gap and the description of the residual spectrum is the context
of various open conjectures. There is a similar decomposition of L2(Γ\SL2(R)),
after first decomposing the space into K-types, where K = SO(2) is the standard
maximal compact subgroup of SL2(R).

There are two natural generalizations of this decomposition problem. First, we
may replace SL2(R) by any Lie group G of higher rank or even p-adic and study
the decomposition of L2(Γ\G). Second, we may replace Γ\SL2(R) by a stratum
H(α) of area one flat surfaces with zeros of order α = (m1, . . . ,mn) with the
Masur–Veech measure νMV. For instance the stratum H(0) of area one tori with
one marked points can be identified with the unit tangent bundle SL2(Z)\SL2(R)
to the modular surface SL2(Z)\H. The first generalization has been studied inten-
sively for semi-simple Lie groups, in particular in connection with the Langlands
program, for example [Lan70; Lan89; Art13]. For the second generalization, the
spaces L2(H(α)) := L2(H(α); νMV) and even more generally for linear submani-
folds of H(α), notably the existence of a spectral gap for the foliated Laplacian
corresponding to the SL2(R)-action has been established in work of Avila–Gouëzel
[AG13]. However their work explicitly avoids a decomposition of the spectrum as
above (“since the geometry at infinity is very complicated”). Given recent progress
towards understanding the boundary of strata [BCGGM] we aim to shed light on
how the boundary relates with the continuous spectrum for strata.

In this paper we focus on the first non-classical case namely the stratum H(0, 0)
of area one tori with two marked points. At the same time this is an instance of a
space L2(Γ\G) for a non-reductive groupG, namely the quotient of the special affine
group SAff2(R) = SL2(R)⋉R2 by its integral lattice SAff2(Z) = SL2(Z)⋉Z2 minus
the zero section, which is identified with SL2(Z)\SL2(R). Since the Masur–Veech
measure νMV extends over this locus, we may and will use the identification

L2(SAff2(Z)\SAff2(R)) = L2(H(0, 0))

throughout. We will rely on tools from representation theory, explain why simple-
minded generalizations from the modular surface case might fail, and how these
failures can be bridged.

The perspective of Siegel–Veech transforms. The Siegel–Veech transform is
a method to construct functions in L2(H(α); νMV) based on the analogy between
lattice vectors for homogeneous spaces and saddle connections on strata. It takes
as input a function f on R2, often supposed smooth and compactly supported,
and a ‘configuration’ and returns the function SV(f) associating with the flat sur-
face (X,ω) the sum over f(v) for all saddle connections vectors v that stem from the
given configuration (see Section 6 for the precise definition). For the special case of
the modular surface, i.e., the case of H(0), there is a unique configuration, which
yields all primitive lattice vectors and the Siegel–Veech transform of the spherical
function f(v) = |v|2s is just the usual (non-holomorphic) Eisenstein series. In gen-
eral the range of Siegel–Veech transforms on the modular surface yields the spectral
projection on the continuous spectrum of the Laplace operator. For general strata,
examples of configurations are given by all saddle connections joining a simple zero
to a triple zero or by all core curves of cylinders. The modular surface model case
triggers the following questions.
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(Q1) What is a complete set of configurations in the sense that their Siegel–Veech
transforms account for all possible Siegel–Veech transforms?

(Q2) Are Siegel–Veech transforms responsible for all of the continuous spectrum
of the foliated Laplacian −∆fol (as defined below)?

(Q3) Is there a notion of cusp forms so that Siegel–Veech transforms are pre-
cisely the orthogonal complement of cusp forms? Is this notion of cusp
forms related to boundary divisors in the multi-scale compactification from
[BCGGM], as they do in the case of the modular surface?

We will answer these questions for H(0, 0) at the end of the introduction. For
each of the questions the answer is not quite the one we expected initially. For
general H(α) all three of them seem completely open.

The perspective of differential operators. The action of SL2(R) on strataH(α)
gives rise to a Casimir element acting as a operator Dfol on L2(H(α)). It is this
operator or the corresponding Laplace operator −∆fol

k acting on weight-k modular
forms on the projectivized stratum H(α)/SO2(R) that we are mainly interested in.
See Section 2 for details.

Since we work in a homogeneous space for the group SAff2(R) we have more
differential operators at our disposal, which will also be the case for strata H(0k)
of tori with more than just one zero. Even though SAff2(R) is not reductive, we
show in Proposition 2.1 that the center of the universal enveloping algebra is a
polynomial ring generated by a degree three ‘Casimir’ element, which acts as an
operator that we call the total Casimir Dtot. Again we define the corresponding
Laplace operators −∆tot

k on the projectivized strata.
Another option is to incorporate the translation along torus fibers, i.e. the rel-

ative period foliation, into a degree two differential operator is to use an operator

∆vert. The compound operator ∆
cmp(ε)
k := ∆fol

k + ε∆vert operator is elliptic if and
only if ε > 0, invariant under SAff2(R)-translations but, contrary to ∆tot

k , does
not commute with most other covariant differential operators. We return to this
operator at the end of the introduction in connection with (Q2).

The perspective of representation theory. Pullback via the map H(0, 0) →
H(0) forgetting the last point gives an inclusion L2(H(0)) −֒→ L2(H(0, 0)). We call
its orthogonal complement the genuine part

L2(H(0, 0))gen = L2(H(0))⊥.

From now on we focus on this genuine part and discard the pullbacks of SL2(R)-
representations. The irreducible representations of SAff2(R) are classified by Mackey
theory. As we recall in Theorem 3.7 they are pullbacks of SL2(R)-representations,
which we discarded, and representations πSAff

n,m induced from characters of a fixed

Heisenberg subgroup of SAff2(R), with πSAff
n1,m1

and πSAff
n2,m2

isomorphic if and only

if n1m
2
1 = n2m

2
2. As a first step towards answering our main questions, we exhibit

the decomposition of L2(H(0, 0)).

Theorem 1.1. The genuine part of the L2-space of the stratum H(0, 0) admits a
decomposition

(1.1) L2
(
H(0, 0)

)gen
= L2

(
SAff2(Z)\SAff2(R)

)gen ∼=
∞⊕

m=1

⊕

n∈Z

πSAff
n,m
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Explicitly, the representation πSAff
n,m is the SAff2(R)-invariant subspace generated by

the lifts of Eisenstein series Ek;m,β for n = 0 and Poincaré series Pk;n,m,β for
n 6= 0 for any integrable function β : R+ → C, as defined in (4.13) and (4.12).

A main tool in the proof of Theorem 1.1 are Fourier expansions. The Fourier
expansions along the translation subgroup R2 of SAff2(R) plays only a minor role.
More important is the Fourier expansion along a subgroup isomorphic to R2 inside
a Heisenberg subgroup but with non-trivial intersection with SL2(R). We name
these the Fourier–Heisenberg coefficients cH( · , n, r; v, v/y), since we decompose the
coefficient r = 0 even further, along a Heisenberg group, see Section 4. Here
(τ, z) = (x+ iy, u+ iv) are the standard coordinates on the Jacobi half-space H×C.

Next we aim for the decomposition of L2(H(0, 0)) into irreducible SL2(R)-repre-
sentations. In general the problem of decomposing the restriction of representations
into irreducible ones is known as the branching problem and discussed in many
instances (e.g. [KKP16; GGP20] and the references therein). Our case might be
known, but since we were not able to locate a proof in the literature we give the
details of the following result, see Proposition 3.9 for the full statement including
the case n = 0.

Proposition 1.2. For any m ∈ Z× and n ∈ Z \ {0}, the restrictions of the
SAff2(R)-representations decompose as a direct integral

(1.2) Res
SAff2(R)
SL2(R)

πSAff
n,m

∼=
∞⊕

k=2

DSL
sgn(n)k ⊕

∫ ⊕

R+

(
ISL+,it ⊕ ISL−,it

)
dt,

where the discrete series DSL
sgn(n)k and the principal series representation ISL±,it are

defined along with Theorem 3.4.
In particular the complementary series does not occur in the decompostion of

L2
(
H(0, 0)

)gen
.

The decomposition into irreducible SAff2(R)-representations in Theorem 1.1 is
fully discrete. This corresponds to the fact that there are square-integrable Eisen-
stein and Poincaré series that contribute to individual constituents πSAff

n,m . It con-
trasts the classical situation for SL2(R) in which Eisenstein series contribute to the
continuous spectrum and cannot be square-integrable and eigenfunctions for the
Laplacian simultaneously. Proposition 1.2 recovers the classical situation in parts:
There are some square-integrable Eisenstein series for SAff2(R) that are eigenfunc-
tions of the foliated Laplacian, but there are also others that behave like Eisenstein
series for SL2(R).

In the next result we clarify which Eisenstein and Poincaré series are generating
the discrete and continuous pieces in which the representation breaks up according
to Proposition 1.2. In the sequel we thus consider πSAff

n,m as a subrepresentation

of L2
(
SAff2(Z)\SAff2(R)

)gen
via the isomorphism of Theorem 1.1. The Γ-factor

in the next result and the Whittaker function Wκ,µ(y) are defined along with the
complete statement of this result in Theorem 5.6. It also includes the corresponding
statement for the representations πSAff

0,m .

Theorem 1.3. For k ∈ Z \ {0,±1} and n ∈ Z with nk > 0 the representation
DSL

sgn(n)k in (1.2) is generated by the Poincaré series for β = e−2π|n|y if k > 1 and

β = y−ke−2π|n|y if k < −1.
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Associating to n ∈ Z \ {0} and ψ ∈ L2(R+, dt) the lifts of the Poincaré series
Pk;n,m,βW

k,n,ψ
of the ‘Whittaker transform’

βW
k,n,ψ(y) :=

1

4π |n| 32

∫

t∈R+

ψ(t)

(ΓW(t)ΓW(−t)) 1
2

y−
k
2 W sgn(n)k

2 ,it

(
4π|n| y

)
dt

gives rise to isometric embeddings

PW
+ :

⊕

k∈2Z

L2
(
R+, dt

)
→ πSAff

n,m , PW
− :

⊕

k∈1+2Z

L2
(
R+, dt

)
→ πSAff

n,m

whose images are
∫ ⊕
R+ I

SL
+,it dt and

∫ ⊕
R+ I

SL
−,it dt respectively, in the decomposition (1.2).

The proof has of course similarities with the way the Eisenstein transform iden-
tifies the continuous spectrum of the modular surface, see e.g. [Ber16, Section 4.2.5]
for a textbook version. Note however that the principal series appear with infinite
multiplicity which we accomodate by first restricting to individual πSAff

n,m . Further,
as opposed to the classical case, Poincaré series associated with Whittaker functions
contribute to the continuous spectrum, which requires a more delicate estimate.

The main results. In view of the next theorem we define the space of cusp forms
to be the subspace of modular-invariant functions on projectivized strata where
the Fourier coefficient cH( · , 0, 0; v, v/y) vanishes. We use the same terminology for

the lifts of these functions to L2
(
SAff2(Z)\SAff2(R))

)gen
. Similarly, we focus on

this genuine subspace by considering only Siegel–Veech transforms of mean-zero
functions from now on.

Theorem 1.4. Siegel–Veech transforms of compactly supported mean-zero func-
tions are contained in the subspace of L2

(
SAff2(Z)\SAff2(R))

)gen
which is anni-

hilated by Dtot, which is the subspace ⊕∞
m=1π

SAff
0,m . This space is the orthogonal

complement of the space of cusp forms.

In the case H(0, 0) there are two obvious configurations, using the ‘absolute
periods’, i.e. lattice vectors, and using ‘relative periods’ joining one zero to the
other. We denote the corresponding Siegel–Veech transforms by SVabs( · ) and
SVrel( · ) respectively. The absolute Siegel–Veech transforms only contribute to the
well-studied non-genuine part of the L2-space and will be disregarded in the sequel.

However the above is not a complete list of configurations! In fact, for a point
(Λ, z) ∈ H(0, 0) and any M ∈ N the set z + 1

MΛ of translates of the relative
period by a 1/M -th lattice vector also satisfies all properties of a ‘configuration’,
and Theorem 1.4 also includes these. We denote the corresponding Siegel-Veech
transform by SVrel,M and let

(1.3) SVrel,M = span
{
SVrel,M (f) : f ∈ C∞

c,0(R
2)
}

Together with Theorem 1.4 the following result shows that we have found all con-
figurations, thus answering (Q1).

Theorem 1.5. There is an orthogonal decomposition

L2
(
H(0, 0)

)gen
= L2

(
H(0, 0)

)gen
cusp

⊕ span
( ∞⋃

M=1

SVrel,M

)
.
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It also implies together with Proposition 1.2 and Theorem 1.1 that Siegel-Veech
transforms do not account for the full continuous spectrum of Dfol on H(0, 0), since
every πSAff

n,m regardless of whether n = 0 or not contributes to its continuous spec-
trum. This answers (Q2) negatively for this stratum. Finally we observe that
Theorem 1.5 is a positive answer to the first part of (Q3). Note, however, that van-
ishing of a single Fourier coefficient of an R2-action is a codimension two condition
rather than a divisorial condition.

While (Q2) was answered negatively it makes sense to modify it to

(Q2’) Is there an operator for which the Siegel–Veech transforms are responsible
for all its continuous spectrum, and if so what is it?

The answer to (Q2’) is that there is such an operator, and it is the compound
Laplacian introduced earlier. With the given definition of cusp forms, the behaviour
of this operator parallels the usual Laplacian on the modular surface, and as εց 0
its discrete spectrum converges to the part of the continuous spectrum of the foliated
Laplacian missed by the Siegel–Veech transforms.

Theorem 1.6. The compound Laplacian −∆
cmp(ε)
k has discrete spectrum on the

space of genuine cusp forms of K-type k. As ε ց 0, the spectrum of −∆fol
k is

comprised of limit points from the spectra of −∆
cmp(ε)
k . This remains true of the

restriction of these operators to cusp forms or their orthogonal complement.

All the differential operators considered here, ∆fol, ∆tot, and ∆cmp(ε), also exist
for strata and linear manifolds therein provided they have a non-trivial relative
period foliation. Among those, linear manifolds of rank one are the natural scope
to extend the main results of this paper. We plan to explore this in a follow-up
paper.

Notes and references. For a given hyperbolic surface Γ\SL2(R)/K the interpreta-
tion of the Siegel-Veech transform as Eisenstein series has been used in a number of
papers, starting with [Vee89]. See in particular [BNRW20] and the references there,
for example for applications to counting problems of lattice vectors in star-shaped
regions.

The compound differential operator and its spectral decomposition for the special
case of Maass forms of weight zero appear in an unpublished manuscript of Bal-
slev [Bal11] in the equivalent guise of Jacobi forms of weight and index 0. After ad-

justing to his set of coordinates one checks that his Laplacian equals our −∆
cmp(4)
0 .

The Fourier expansions (Section 4) are also discussed in [Bal11] aiming to de-
compose the L2-space into eigenspaces of his Laplacian. The first statement of
Thereom 1.6 is also claimed without proof in [Bal11]. Balslev moreover computes
explicitly a Weyl’s law for the spectrum of his Laplacian (in weight 0) and briefly
addresses the same question for the covering space given by replacing SAff2(Z) with
a subgroup of small finite index.

The reader might also view this paper as a complement to the book of Berndt–
Schmidt [BS98], where representations of the Jacobi group are discussed from a
perspective inspired by automorphic representation theory. They, however, restrict
very early in their treatment to central character zero, which rules out precisely
the case that we consider in the present work. The prominent role played by the
Schrödinger–Weil representation in their setting reduces them to representations of
the metaplectic group, which were intensively studied for instance by Waldspurger
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in prior work. Plenty of representation theoretic subtleties in the present work can
only occur because of the lack of such a tight connection to any (covering of) a
classical group.

The Siegel(–Veech) transform for affine lattices has been used for effective equidis-
tribution results in [GKY22], see also [SV20].

There is a long history using Ratner’s theory on the spaceH(0, 0) to study saddle
connection, notably their gap distributions, see e.g. [EM04; MS10; San22].

The analog of Selberg’s conjecture (the size of the spectral gap or the non-
existence of complementary series) for strata or its congruence covers is a question
of Yoccoz. See [Mag19] and [MR19] for progress in this direction.

Organization of the paper. Section 2 sets the table by defining the various
Casimir and Laplace differential operators relevant to our analysis from all perspec-
tives. Section 3 is dedicated to the representation theory, building a decomposition
of L2(G′(Z)\G′(R)) via Mackey theory. In order to study the spectral decompo-
sition of L2(H(0, 0)) or the role of the Siegel–Veech transforms, we introduce the
Fourier and Fourier–Heisenberg expansions in Section 4. We provide the spectral
decomposition in Section 5. There, we note that Theorems 5.1 and 5.6 are refine-
ments rather than restatements of Theorems 1.1 and 1.3 respectively. This is also
where cusp forms are introduced. While they do not correspond to the discrete part
of the spectrum for the foliated Laplacian, we show that they do for the compound
Laplacian. Finally, in Section 6 we introduce the Siegel–Veech transform and show
that they cover the complement of the cusp forms, giving a final decomposition and
interpretation of L2(H(0, 0)).

Acknowledgements. Much of this work was conducted while J.S.A. held the
Chaire Jean Morlet at the Centre International de Recherches Mathematique-
Luminy in Autumn 2023. We thank CIRM for the hospitality and the inspir-
ing working conditions. This project originated during a meeting at the Institut
d’Études Scientifiques in Cargese, in Summer 2022. Moreover, we thank Raphael
Beuzart-Plessis, Jan Bruinier, Anish Ghosh, and Lior Silberman for helpful conver-
sations.

2. Differential operators for the special affine group

Each stratum H(α) admits an action by G(R) = SL2(R). For an introduction
to strata and the dynamics of the SL2(R)-action, see, for example [AM24]. Up to
measure zero, the stratum H(0, 0) agrees with SAff2(Z)\SAff2(R) and is, contrary
to other strata in higher genus, a homogeneous space. There are several interesting
differential operators acting on this space. First, the Casimir element C of SL2(R)
induces a second order ‘foliated’ differential operator Dfol that involves only the
derivatives along the leaves of the foliation by SL2(R)-orbits. Second, we show in
Proposition 2.1 that the group G′(R) = SAff2(R), despite not being reductive, has
a universal enveloping algebra, whose center is a polynomial ring in one variable.
We call a generator of this polynomial ring a Casimir element C′. It induces an
order three differential operator Dtot.

Just as in the classical case of the modular curve, we may pass between func-
tions on H(0, 0) of a given K-type and modular-invariant functions on the quotient
H(0, 0)/K, which is the quotient of the Jacobi half plane H′ by SAff2(Z). We state
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this correspondence in Section 2.3. Under this correspondence, the ’total’ and ’fo-
liated’ differential operators Dtot and Dfol correspond to Laplace operators −∆tot

and −∆fol.
To complete the picture, we observe that besides these two operators there is

a vertical Laplace operator −∆vert which is G′(R)-invariant. We call any linear
combination −∆cmp(ε) = −∆fol − ε∆vert with ε > 0 a compound Laplace operator,
whose basic properties we discuss in Section 2.4.

We will write elements in G′(R) = SL2(R) ⋉ R2 as (g, w) where w = (w1, w2)
is a row vector with composition law (g, w) · (g̃, w̃) = (gg̃, wg̃ + w̃). We need the
compact subgroup K := SO2(R) ⊂ G(R) ⊂ G′(R). The Poincaré upper half plane
and its affine extension, called the Jacobi upper half space in [EZ85], are

H =
{
τ ∈ C : Im(τ) > 0

} ∼= G(R)/K,

H′ = H× C =
{
(τ, z) ∈ C2 : Im(τ) > 0

} ∼= G′(R)/K.

Following the conventions for Jacobi forms, we use the coordinates

(2.1) τ = x+ iy and z = u+ iv = pτ + q.

Let g and g′ be the complexified Lie algebras of G(R) and G′(R) respectively. Given
the elements of g

F = ( 0 1
0 0 ) , H =

(
1 0
0 −1

)
, and G = ( 0 0

1 0 ) ,

we use as a basis of g

Z = −i(F −G), and X± = 1
2

(
H ± i(F +G)

)
.(2.2)

Considering additionally the elements of g′

P =
(
( 0 0
0 0 ) , (1, 0)

)
and Q =

(
( 0 0
0 0 ) , (0, 1)

)

we use as a basis for g′ the set

(Z, 0, 0), (X±, 0, 0), and Y± = 1
2 (P ± iQ).(2.3)

In the sequel, we abuse notation and denote Z = (Z, 0, 0) and X± = (X±, 0, 0)
when it is clear that we are considering them as elements of g′.

2.1. A Casimir element for the special linear group. By the general theory of
reductive groups, a Casimir element C for g = sl2 is any generator of the center z of
the universal enveloping algebra U(g). Such an element is given by C =

∑
X XX

∨,
where X runs through a basis of the Lie algebra and X∨ is the dual of X with
respect to the Killing form. Explicitly

C = 1
4X+X− + 1

8Z
2 + 1

4X−X+ = 1
2X+X− + 1

8Z
2 − 1

4Z,(2.4)

and we define a foliated differential operator as the left action

(2.5) Dfol f := 2C f

of the Casimir element, matching normalization used e.g. in the theory of elliptic
modular forms.
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2.2. A Casimir element for the special affine group. Since G′(R) = SAff2(R)
is not reductive, we determine the center of U(g′) in an ad hoc way. We nevertheless
refer to C′ below as a Casimir element. Similar computations of Casimir elements
(that are also degree three) have appeared for the Jacobi group in [BCR12] and
[CWR16]. The following proposition complements these computations (and also
those in [BS98]) which were always restricted to representations of the Jacobi group
with non-trivial central character.

Proposition 2.1. The center z′ of the the universal enveloping algebra U(g′) is a
polynomial ring

z′ = C[C′] with generator C′ = ZY+Y− −X+Y
2
− +X−Y

2
+.(2.6)

Before proving the proposition, we observe that it gives rise to a differential
operator via the left action

(2.7) Dtot f := 2C′ f.

Proof. Let A = grU(g′) be the associated graded algebra and

σ : A −→ U(g′), m1 · · ·mn 7−−→
∑

π∈Sn

mπ(1) · · ·mπ(n), mi ∈ g′ for 1 ≤ i ≤ n,

be the linear symmetrization map (which is not an algebra homomorphism).
The leading term of any element of z′ yields a central element of A. Conversely,

since commutators in the associative algebra U(g′) strictly lower the degree filtration
and by induction on the degree (cf. [Hel59, Theorem 10] and the lemmas used in
its proof), we see that the symmetrization map yields a bijection

ker
(
g′ � A

)
−→ z′.

In particular, A is commutative, but carries a non-trivial, degree preserving repre-
sentation of g′. To determine the kernel of the g′-action on A, we record that

[
Y+, Z

mX
n+

+ X
n−

−
]
= −mZm−1X

n+

+ X
n−

− + n−Z
mX

n+

+ X
n−−1
− ,

[
Y−, Z

mX
n+

+ X
n−

−
]
= mZm−1X

n+

+ X
n−

− − n+Z
mX

n+−1
+ X

n−

− .

We conclude that any homogeneous element of A that vanishes under [Y+, · ] is of
the form ∑

m

(
ZY− +X−Y+

)m
p+m(X+, Y+, Y−),

and any homogeneous element of A that vanishes under [Y−, · ] is of the form
∑

m

(
ZY+ −X+Y−

)m
p−m(X−, Y+, Y−),

for suitable polynomials p±m. By induction on the degree in Z, we conclude that an
element that is annihilated by both [Y+, · ] and [Y−, · ] is of the form

∑

m

(
ZY+Y− −X+Y

2
− +X−Y

2
+

)m
qm(Y+, Y−)

for suitable polynomials qm.
We next argue that every qm is constant. To this end, note that qm must vanish

under the Lie action of g′, since ZY+Y− −X+Y
2
− +X−Y 2

+ does. We have
[
X+, Y

n+

+ Y
n−

−
]
= −n−Y

n++1
+ Y

n−−1
− and

[
X−, Y

n+

+ Y
n−

−
]
= −n+Y

n+−1
+ Y

n−+1
− .
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By induction on the degree in Y+, we find that

ker
(
g′ � A

)
= C

[
ZY+Y− −X+Y

2
− +X−Y

2
+

]
.

The image of the generator on the right hand side under the symmetrization map
equals

(
ZY+Y− + ZY−Y+ + Y+ZY− + Y−ZY+ + Y+Y−Z + Y−Y+Z

)

− 2
(
X+Y

2
− + Y−X+Y− + Y 2

−X+

)
+ 2
(
X−Y

2
+ + Y+X−Y+ + Y 2

+X−
)
.

Using the commutator of Z and Y±, we calculate that the expression in the first
pair of parentheses simplifies to 6ZY+Y−. For the two other expressions, we obtain

2
(
X+Y

2
− + Y−X+Y− + Y 2

−X+

)
= 2

(
X+Y

2
− + 2Y−X+Y− + Y−Y+

)

= 2
(
3X+Y

2
− + 2Y+Y− + Y−Y+

)
= 2

(
3X+Y

2
− + 3Y+Y−

)
,

and similarly

2
(
X−Y

2
+ + Y+X−Y+ + Y 2

+X−
)

= 2
(
X−Y

2
+ + 2Y+X−Y+ + Y+X−Y−

)

= 2
(
3X−Y

2
+ + 2Y−Y+ + Y+Y−

)
= 2

(
3X−Y

2
+ + 3Y+Y−

)
.

Since the contributions of Y+Y− for these terms cancel each other, we recover 6C′

and finish the proof. �

2.3. Affine modular-invariant functions. It will be convenient to pass back and
forth between functions on G′(R) and functions on the Jacobi upper half plane H′ =
G′(R)/SO2(R). For this we define the slash action on functions on H′ parametrized
by k ∈ Z by

(
φ
∣∣′
k

( (
a b
c d

)
, w1, w2

))
(τ, z) = (cτ + d)−k φ

(aτ + b

cτ + d
,
z + w1τ +w2

cτ + d

)
,(2.8)

extending the usual slash action on the upper half plane H. We say that φ : H′ → C

is an affine modular-invariant function of weight k if

(2.9) φ
∣∣′
k
(γ, w) = φ for all (γ, w) ∈ G′(Z) = SAff2(Z).

The first half of the correspondence is the lift of affine modular-invariant functions
to functions on G′(R) by

φ̃(g) :=
(
φ
∣∣′
k
g
)
(i, 0) = eikθy

k
2 φ(τ, z)(2.10)

for forms of weight k, where for the second expression τ = x+ iy, z = u + iv, and
g = (x, y, u, v, θ) as in the Iwasawa decomposition in (3.8) below. Note that the

notation φ̃ suppresses the weight k. We generalise the standard raising as lowering
operators and define the operators Lk, Rk, L

H
k , and RH

k on affine modular invariant
functions via the lifts

L̃k φ := X−φ̃, R̃k φ := X+φ̃, L̃H
k φ := Y−φ̃, R̃H

k φ := Y+φ̃.(2.11)

From

X± φ̃ = ± i
2e
i(k±2)θy

k
2

(
2y(∂xφ) + 2v(∂uφ)∓ 2iy(∂yφ)∓ 2iv(∂vφ) ∓ ikφ− ikφ

)
,

Y± φ̃ = ± i
2e
i(k±1)θy

k+1
2

(
(∂uφ)∓ i(∂vφ)

)
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we read off that the weight of the functions Lk φ, Rk φ, L
H
k φ, and RH

k φ in (2.11)
is k − 2, k + 2, k − 1, and k + 1 respectively. Explicit calculations show

Lk = −2iy2
(
∂τ + vy−1∂z

)
, Rk = 2i

(
∂τ + vy−1∂z

)
+ ky−1,

LH
k = −iy ∂z, RH

k = i∂z.
(2.12)

and yield the following lemma:

Lemma 2.2. There are differential operators, −∆fol
k and −∆tot

k which we call the
foliated Laplacian and total Laplacian of weight k, respectively, with the property
that

∆̃fol
k φ := Dfol φ̃ and ∆̃tot

k φ := Dtot φ̃(2.13)

for any affine modular-invariant function φ of weight k. In (x, y, u, v) coordinates
(2.14)

∆tot
k = kRH

k−1L
H
k − Rk−2L

H
k−1L

H
k + Lk+2R

H
k+1R

H
k

= y
(
k ∂z + 2iv ∂z∂z

)
(∂z + ∂z) + 2iy2 (∂τ∂

2
z + ∂τ∂

2
z )

= k
2y ∂u(∂u + i∂v) +

i
2y

2 ∂x(∂
2
u − ∂2v) + iy2 ∂y∂u∂v +

i
2yv ∂u(∂

2
u + ∂2v),

and

(2.15)

∆fol
k = Rk−2 Lk

= 4y2∂τ∂τ + 4yv
(
∂τ∂z + ∂τ∂z

)
+ 4v2∂z∂z − 2ik

(
y∂τ + v∂z

)
1
)

= y2(∂2x + ∂2y) + 2yv(∂x∂u + ∂y∂v) + v2(∂2u + ∂2v)

− iky(∂x + i∂y)− ikv(∂u + i∂v)
)

Furthermore, in (x, y, p, q) coordinates,

(2.16) ∆fol
k = y2(∂2x + ∂2y)− iky(∂x + i∂y).

Note that there is no dependence on p, q in the definition of ∆fol
k .

The converse of the correspondence (2.10) is stated for fixed K-type. Here a
vector v in a representation ρ of K is said to be of K-type k ∈ Z, if

ρ
( (

cos θ sin θ
− sin θ cos θ

) )
v = eikθ v.(2.17)

In particular, a function on G′(R) transforming in this way under right shifts by K
is said to be of K-type k.

Lemma 2.3. Given an affine modular-invariant function φ, the function φ̃ defined
in (2.10) is a G′(Z)-left-invariant function.

Conversely, if f is G′(Z)-left-invariant and of K-type k, then

φ(x+ iy, u+ iv) = f
(( y1/2 xy−1/2

0 y−1/2

)
, uy−1/2, vy−1/2

)

is an affine modular-invariant function of weight k with φ̃ = f .

Proof. The modular invariance of φ implies that for γ ∈ G′(Z) and g ∈ G′(R)

φ̃(γg) =
(
φ
∣∣′
k
γg
)
(i, 0) =

(
φ
∣∣′
k
g
)
(i, 0) = φ̃(g).

That is, we can view φ̃ as a function on G′(Z)\G′(R).
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To determine the action of K by right-shifts on φ̃ in (2.10) we consider
(
d −c
c d

)
∈ K

with d = cos θ, c = − sin θ and g ∈ G′(R) and compute:

φ̃
(
g
(
d −c
c d

) )
=
(
φ
∣∣′
k
g
(
d −c
c d

) )
(i, 0)

= (ci + d)−k
(
φ
∣∣′
k
g
)
(i, 0) = (ci+ d)−k φ̃(g) = eikθ φ̃(g).

In particular, φ̃ is K-finite. The converse is a direct computation, see also the
Iwasawa decomposition in (3.8). �

Under this correspondence the usual L2-scalar product on G′(Z)\G′(R) corre-
sponds to the scalar product

〈
ψ1, ψ2

〉
:=

∫

Γ′\H′

ψ1(τ, z)ψ2(τ, z)
dxdydudv

y3−k

=

∫

Γ′\H′

ψ1(τ, z)ψ2(τ, z)
dxdydpdq

y2−k
.

(2.18)

We write the corresponding norm as ‖·‖H′,k or ‖·‖H′ , suppressing the k-dependence.
It follows from the definition that the measure on G′(Z)\G′(R)/K induced by this
scalar produce is the (push-forward to the K-quotient of the) Masur-Veech mea-
sure νMV.

2.4. Invariant differential operators. We define the vertical Laplace operator
in analogy with the formula ∆fol

k = Rk−2Lk in (2.15) for the foliated one as

∆vert := RHLH = y∂z∂z̄.(2.19)

Note that it does not depend on the weight. The vertical Laplace operator does not
play a distinguished role by itself, but it is the foundation to define a one parameter
family of compound Laplace operators perturbing the foliated one. For ε > 0, we
set

−∆
cmp(ε)
k := −∆fol

k − ε∆vert.(2.20)

Lemma 2.4. The foliated Laplace operator, the vertical Laplace operator and con-
sequently the family of compound Laplace operators are equivariant with respect to
the action of the special affine group, i.e.,

(2.21)

(
∆fol
k φ
)∣∣′
k
g = ∆fol

k

(
φ
∣∣′
k
g
)
,
(
∆vertφ

)∣∣′
k
g = ∆vert

(
φ
∣∣′
k
g
)

(
∆

cmp(ε)
k φ

)∣∣′
k
g = ∆

cmp(ε)
k

(
φ
∣∣′
k
g
)
.

for all g ∈ G′(R).

Proof. One directly computes the covariance properties
(
Lkφ

)∣∣′
k−2

g = Lk
(
φ
∣∣′
k
g
)
,

(
Rkφ

)∣∣′
k+2

g = Rk
(
φ
∣∣′
k
g
)
,

(
LH
k φ
)∣∣′
k−1

g = LH
k

(
φ
∣∣′
k
g
)
,

(
RH
k φ
)∣∣′
k+1

g = RH
k

(
φ
∣∣′
k
g
)(2.22)

for any φ : H′ −→ C, any k ∈ Z, and any g ∈ G′(R), see also [Bum97, Section 2.1]
for the first two equalities. (This goes back to the general setup considered by
Helgason [Hel59], or also [CWR16].) The claimed equivariance follows directly
from this. �

The following proposition tells us that it is the compound Laplacian that has
better chances to have a good spectral decomposition for L2(H′).
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Proposition 2.5. For every k ∈ N and ε > 0, the compound Laplace operator

−∆
cmp(ε)
k is a self-adjoint elliptic operator on L2(H′), and the foliated Laplacian

−∆fol
k is hypoelliptic. Furthermore, the symmetric bilinear form on L2(H(0, 0), νMV)

associated with the compound Laplacian −∆
cmp(ε)
k is

(2.23)

Q
(ε)
k (φ, ψ) =

∫

Γ′\H′

yk∇x,yφ · ∇x,yψ dxdy dp dq

+

∫

Γ′\H′

ikyk−1∂xφψ dxdy dp dq

+ ε

∫

Γ′\H′

yk−2∇u,vφ · ∇u,vψ dxdy du dv.

Remark 2.6. Note that the terms in the bilinear form are not all given in terms of
the same coordinates. While unconventional, this greatly simplifies the proof that
∆cmp(ε) has compact resolvent when restricted to cusp forms.

Proof. We first observe that iky∂x is self-adjoint as the product of commuting
self-adjoint operators, and that the second term in the bilinear form is simply
〈iky∂xφ, ψ〉. We turn our attention to the rest of the foliated Laplacian, and use
indices in differential operator to represent the variables they are acting on:

〈(−y2∆x,y − ky∂y)φ, ψ〉 =

∫

Γ′\H′

y2((−∆x,y − ky−1∂y)φ)ψ
dxdy dp dq

y2−k

=

∫

Γ′\H′

((−∆x,y − ky−1∂y)φ)ψy
k dxdy dp dq

=

∫

Γ′\H′

∇x,yφ · ∇x,y(y
kψ) dxdy dp dq

− k

∫

Γ′\H′

∂yφ · ψ yk−1 dxdy dp dq

=

∫

Γ′\H′

yk∇x,yφ · ∇x,yψ dxdy dp dq ,

which we recognise as the first term in the bilinear form. Finally, for the vertical
Laplacian we compute in (x, y, u, v) coordinates:

〈−ε∆vertφ, ψ〉 = ε

∫

Γ′\H′

(−∆u,vφ)ψy
k−2 dxdy du dv

= ε

∫

Γ′\H′

yk−2∇u,vφ · ∇u,vψ dxdy du dv.

Self-adjointness is now a consequence of the fact that the Laplacian is represented
by a symmetric bilinear form.

For ellipticity, we express the vertical Laplacian also in (x, y, p, q) coordinates as

(2.24) −ε∆vert = −ε
4
y
(
∂2q + y−2(∂p − x∂q)

2
)

Viewing derivatives as tangent vectors, consider the following local coordinates

T ∗H′ =
{
(x, ξ, y, η, p, ζ, q, ω) : y > 0, 〈ξ, ∂x〉 = 〈η, ∂y〉 = 〈ζ, ∂p〉 = 〈ω, ∂q〉 = 1

}
.

for the cotangent bundle, where we use 〈·, ·〉 to denote the pairing between the
tangent and cotangent bundle. We can now read off the expression of the foliated
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and compound Laplacian in coordinates that their principal symbols are given by

symb
(
−∆fol

k

)
= y2(ξ2 + η2)

and

symb
(
−∆vert

)
=

y

4

(
ω2 + y−2(ζ − xω)2

)
.

Note that these principal symbols do not depend on k, and that an operator P is
hypoelliptic if symb(P ) does not change sign and elliptic if symb(P ) = 0 implies
that ξ = η = ζ = ω = 0. Hypoellipticity of the foliated Laplacian is directly

observed. Since symb(−∆
cmp(ε)
k ) = symb(−∆fol

k ) + symb(−ε∆vert) and y > 0, it is

easy to see that symb(−∆
cmp(ε)
k ) > 0 whenever (ξ, η, ω) 6= (0, 0, 0). On the other

hand, if ω = 0, then any ζ 6= 0 ensures the same thing, so that the operator is
elliptic. �

3. The special affine group and its representation theory

The first goal of this section, Theorem 3.7 is to recall an application of Mackey
theory and to classify the genuine representations of G′(R) = SAff2(R) up to iso-
morphism. These are the representations πSAff

nm2 defined in (3.18). The second goal of
this section is to compute the restrictions of these representations as representations
of G(R) = SL2(R).

3.1. The goal: decomposing the L2-space. The Haar measure on G′(R) gives
rise to a right-invariant measure on G′(Z)\G′(R). We are interested in the space
of square-integrable functions on this quotient, L2

(
G′(Z)\G′(R)

)
on this quotient.

This is the same as understanding the space L2(H(0, 0), νMV) of square-integrable
functions on the space of tori with two marked points, equipped with the Masur–
Veech measure, as H(0, 0) and G′(Z)\G′(R) differ by a set of measure zero.

By [Dix57, Théorème 1] the group G′(R) is of type I. In particular by [BH20,
Theorem 6.D.7] we have a direct integral decomposition

L2
(
G′(Z)\G′(R)

) ∼=
∫ ⊕

Ĝ′

π dµG′(π),(3.1)

where Ĝ′ is the unitary dual of G′(R). Restricting to G(R)-representations gives
us another direct integral decomposition

Res
G′(R)
G(R) L2

(
G′(Z)\G′(R)

) ∼=
∫ ⊕

Ĝ

π dµG(π).(3.2)

There is an embedding

L2
(
G(Z)\G(R)

)
−֒→ L2

(
G′(Z)\G′(R)

)
.

Its range is consists in functions invariant under the action of the translation sub-
group R2 of G′(R).

Definition 3.1. We call

(3.3) L2
(
G′(Z)\G′(R)

)gen
:= L2

(
G(Z)\G(R)

)⊥

the genuine part of L2
(
G′(Z)\G′(R)

)
, so that

(3.4) L2
(
G′(Z)\G′(R)

)
= L2

(
G(Z)\G(R)

)
⊕ L2

(
G′(Z)\G′(R)

)gen
.
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Since our goal is an explicit determination of the right-hand side of the decompo-
sitions (3.1) and (3.2), we may of course restrict attention to the genuine subspace.
Integration along the torus fibers of the projection H(0, 0) → H(0) defines an aver-
aging map av : L2(H(0, 0)) → L2(H(0)). Disintegrating the Haar measure of G′(R)
along the torus fibers shows

(3.5) L2
(
G′(Z)\G′(R)

)gen
= Ker(av) .

Standard subgroups of G′(R) and coordinates. We fix notation for the stan-
dard subgroups of SL2(R) (left) and the special affine group (right), noting that we
abuse notation and write again g = (g, 0, 0) for the image of an element of G in G′.

A(R) := A′(R) :=
{ (

a 0
0 a−1

)
: a ∈ R×},

N(R) :=
{
( 1 b0 1 ) : b ∈ R

}
, N′(R) :=

{(
( 1 b0 1 ) , w1, w2

)
: b, w1, w2 ∈ R

}
,

H′(R) :=
{(

( 1 0
0 1 ) , w1, w2

)
: w1, w2 ∈ R

}
.

which gives rise to the Iwasawa decomposition

(3.6) G′(R) = N′(R)A′(R)K,

as well as two further decompositions

G′(R) = G(R)H′(R) = H′(R )G(R).

We denote the parabolic subgroups in the Iwasawa decomposition by

P(R) = N(R)A(R) = A(R)N(R),

P′(R) = N′(R)A′(R) = A′(R)N′(R).
(3.7)

Given (τ, z) ∈ H′ as in (2.1), we let a =
√
y, b = x, w1 = v/y, and w2 = u. Then

for all θ ∈ R the Iwasawa decomposition corresponds to the identity

(3.8)
(τ, z) =

(
( 1 b0 1 ) , w1, w2

) (
a 0
0 a−1

) (
cos θ sin θ
− sin θ cos θ

)
(i, 0)

=
((

a ba−1

0 a−1

)
, w1a, w2a

−1
)
(i, 0) .

Alternatively, if we let a =
√
y, b = x, w1 = p and w2 = q, then emphasizing the

coordinates z = pτ + q for all θ ∈ R we have

(
( 1 0
0 1 ) , w1, w2

)
( 1 b0 1 )

(
a 0
0 a−1

) (
cos θ sin θ
− sin θ cos θ

)
(i, 0) = (τ, z).(3.9)

The relation between these sets of coordinates is given by p = v/y and q = u−vx/y.
In the coordinates of (3.8), the Haar measures on the groups N′(R), A′(R), K,

and N′(R)A′(R)K are given respectively by

db dw1 dw2,
da

a
,

dθ

2π
, and

dθ db dw1 dw2 da

2π a3
.(3.10)
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Notation for L2-induction of representations. We only consider the case of a
locally compact group G = HL for two subgroups H and L such that G/H is isomor-
phic to L as a measure space. Our notation is consistent with [Wal88, Sections 1.5
and 5.2] and [BS98, Section 2.1], which in turn follows [Kir76].

Given a representation σ of H on a Hilbert space V (σ), its L2-induction to G is
given by right shifts on

V
(
IndG

H σ
)

:=
{
f : G −→ V (σ) : f measurable, f square integrable on L,

f(hg) =

√
δH(h)

δG(h)
σ(h)f(g) for all h ∈ H, g ∈ G

}
, ,

where ∆G and ∆H are the modular functions on G and H.

3.2. Representation theory of the upper triangular subgroup P(R). Con-
sider the representations of P(R) that factor through the quotient by N(R)

χP
+,s :

(
a b
0 a−1

)
7−→ |a|s and χP

−,s :
(
a b
0 a−1

)
7−→ sgn(a)|a|s, s ∈ C,(3.11)

and abbreviate

sgnP := χP
−,0.(3.12)

Further, through the paper, we set

e(x) := e2πi x.

Proposition 3.2. The irreducible representations that are trivial on N(R) are given
by χP

−,s and χP
+s,. They are unitary if and only if s ∈ iR.

The irreducible unitary representations which are not trivial on N(R) are given,
up to unitary equivalence, by

πP
± := Ind

P(R)
N(R)

(
( 1 b0 1 ) 7−→ e(±b)

)
and sgnP πP

±.(3.13)

Proof. For the first statement we observe that those representations factor through
the quotient A(R) ∼= R× and are thus characters. For the second statement, con-
sider the map

(
a b
0 a−1

)
7−→
(
a2 b
0 1

)
,

which is surjective with central kernel ±1 onto the connected component of the
identity SAff1(R)

0 of the one-dimensional affine group SAff1(R), see [BH20, Re-
mark 3.C.6]. We can thus apply the classification given there and append the
central character sgnP to obtain the desired statement. �

Proposition 3.3. The regular representation of P(R) decomposes as

L2
(
P(R)

) ∼= ℵ0

(
πP
+ ⊕ πP

− ⊕ sgnPπP
+ ⊕ sgnPπP

−
)
,(3.14)

where the right hand side denotes a countably infinite direct sum of the representa-
tion in the brackets.

Proof. Let P(R)0 ⊂ P(R) be the connected component of the identity. We use
induction by steps and first decompose the regular representation of N(R):

L2
(
P(R)

)
= Ind

P(R)
1 1 ∼= Ind

P(R)
P(R)0 Ind

P(R)0

N(R) Ind
N(R)
1 1.
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Now by Fourier analysis, we have

L2
(
N(R)

)
= Ind

N(R)
1 1 ∼=

∫ ⊕

R

(
( 1 b0 1 ) 7−→ e(nb)

)
dn.

Using Fubini and the definition of induced representations, we see that

Ind
P(R)0

N(R)

∫ ⊕

R

(
( 1 b0 1 ) 7−→ e(nb)

)
dn ∼=

∫ ⊕

R

Ind
P(R)0

N(R)

(
( 1 b0 1 ) 7−→ e(nb)

)
dn.

Proceeding as in the proof of Proposition 3.2, we recognize the inductions on the
right hand side. They are isomorphic to the restriction of πP

sgn(n) to P(R)0 if n 6= 0,

while if n = 0 it is the regular representation of P(R)0/N(R). Since {0} ⊂ R has
measure zero, we can discard its contribution to the direct integral. We conclude
that ∫ ⊕

R

Ind
P(R)0

N(R)

(
( 1 b0 1 ) 7−→ e(nb)

)
dn

∼=
∫ ⊕

R+

Res
P(R)
P(R)0 π

P
+ dn ⊕

∫ ⊕

R−

Res
P(R)
P(R)0 π

P
− dn.

The direct integrals on the right hand side have constant integrand. The direct
integral over R± yields countably infinite multiplicity by the isomorphism of Hilbert
spaces L2(R) ∼= L2(Z>0), so that we arrive at

∫ ⊕

R

Ind
P(R)0

N(R)

(
( 1 b0 1 ) 7−→ e(nb)

)
dn ∼= ℵ0

(
Res

P(R)
P(R)0 π

P
+ ⊕ Res

P(R)
P(R)0 π

P
−
)
.

Finally, induction to P(R) introduces the sign character sgnP confirming the propo-
sition. �

3.3. Representation theory of SL2(R): a brief summary. The following re-
sults are standard and appear in many text books, e.g. [Kna01; Wal88]. We set

ISL+,s := Ind
G(R)
P(R) |a|s+1, ISL−,s := Ind

G(R)
P(R) sgn(a)|a|s+1.

Note that the shift s + 1 in the exponents is chosen in such a way that purely
imaginary s correspond to unitary representation. We have a duality between ISLε,s
and ISLε,−s via intertwining operators explained in [Wal88, Section 5.3]. If k ∈ Z>0,

then ISL−,k−1 is reducible with two infinite-dimensional constituents DSL
±k, which are

discrete series if k > 1 and limits of discrete series if k = 1.

Theorem 3.4 (Bargmann). The irreducible unitary representations of SL2(R) are
given up to unitary equivalence by

(a) the principal series ISLε,s
∼= ISLε,−s for ε = + and s ∈ iR or ε = − and s ∈

iR \ {0},
(b) the complementary series ISL+,s for s ∈ R, 0 < |s| < 1,

(c) the (limits of) discrete series representations DSL
k for k ∈ Z \ {0}, and

(d) the trivial representation

Section 5.6.4 of [Wal88] also provides a list of which of these representations are
square-integrable or tempered, which allows us to deduce the Plancherel measure
of regular representations of SL2(R).

Theorem 3.5. Among the representations in Theorem 3.4, the ones contained in
the regular representation L2(SL2(R)) are
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(a) the discrete series representations DSL
k for k ∈ Z \ {0,±1} .

Beyond those, the ones that are weakly contained in L2(SL2(R)) are

(b) the principal series ISLε,s
∼= ISLε,−s for ε = + and s ∈ iR or ε = − and s ∈

iR \ {0},
(c) the limits of discrete series representations DSL

k for k ∈ {±1}.

3.4. Representation theory of SAff2(R): Mackey theory. We summarize the
general Mackey theory for representations of semidirect products in our special case
of G′(R) = SAff2(R). As a prerequisite we need to understand representations of
N′(R).

Proposition 3.6. The irreducible unitary representations with nontrivial central
character of N′(R) are given up to unitary equivalence by

πN
r := Ind

N′(R)
H′(R)

(
(w1, w2) 7−→ e(rw2)

)
, r ∈ R×.(3.15)

The unitary irreducible representations of N′(R) with trivial central character are
the characters

χN
n,m :

(
( 1 b0 1 ) , w1, w2

)
7−→ e(nb+mw1), n,m ∈ R.(3.16)

Proof. This is an instance the Stone–von Neumann theorem, see for example [Bum13,
Exercise 32.5] or [Zim84, Example 7.3.3]. �

We can now state the result for the special affine group.

Theorem 3.7. The unitary dual of G′(R) is exhausted by the pullback of SL2(R)-rep-
resentations and by, for any fixed m ∈ R×, the representations

πSAff
n,m := Ind

G′(R)
N′(R) χ

N
n,m, n ∈ R.(3.17)

The two unitary representations πSAff
n1,m1

and πSAff
n2,m2

are isomorphic if and only

if n1m
2
1 = n2m

2
2.

We fix representatives of the isomorphism classes as the representations

πSAff
s := πSAff

s,1(3.18)

with a single index. The proof of Theorem 3.7 requires the next statement, which
we will also need independently.

Proposition 3.8. The total Casimir operator acts on the representation πSAff
n,m with

eigenvalue −4π3 nm2.

Proof. We observe that the correspondence in (2.10) allows us to view K-isotypical
elements of V (πSAff

n,m ) as functions on H′, and then calculate with the total Laplace

operator via (2.13). The K-spherical element of V (πSAff
n,m ) that is constant on A′(R)

corresponds to e(nx+mv/y). We have

−∆tot
k e

(
nx+m

v

y

)
= 4π3nm2 e

(
nx+m

v

y

)
,(3.19)

by a straightforward calculation using the formula for the total Laplace operator
in Lemma 2.2, once we observe that the given expression is independent of u. �



SPECTRAL DECOMPOSITION AND SIEGEL-VEECH TRANSFORMS FOR STRATA 19

Proof of Theorem 3.7. The first statement is a reformulation of Theorem 2.4.2
of [BS98]. More precisely, the representations in part i) of loc. cit. theorem are
pullbacks from SL2(R). The representations in part ii) are the representations
in our theorem. The character ψ in the notion of [BS98] is non-trivial and thus
corresponds to x 7−→ e(mx) for an arbitrary but fixed m ∈ R×. The character

(
( 1 b0 1 ) , w1, w2

)
7−→ ψ(bn/m+ w1) = e(nb+mw1)

is genuine for any n ∈ R. Conversely every genuine character of N′(R) is of this
form by Proposition 3.6. See also e.g. [Zim84, Example 7.3.4].

By the first statement, if m1 6= m2 for each n1 there is exactly one n2 such
that the two inductions are isomorphic. To determine this value we employ the
eigenvalue under the total Casimir operator as given in Proposition 3.8. �

3.5. Restrictions of SAff2(R)-representations. Our goal is to prove the follow-
ing branching of πSAff

n,m to SL2(R).

Proposition 3.9. For any m ∈ R× and n ∈ R, the restrictions of the SAff2(R)-
representations to SL2(R) decompose as direct integrals

Res
G′(R)
G(R) πSAff

0,m =

∫ ⊕

R+

2
(
ISL+,it ⊕ ISL−,it

)
dt,

Res
G′(R)
G(R) πSAff

n,m =

∞⊕

k=2

DSL
sgn(n)k ⊕

∫ ⊕

R+

(
ISL+,it ⊕ ISL−,it

)
dt, if n 6= 0.

We prove this proposition at the end of the section. The proof features various
intermediate inductions and restrctions, which we exhibit separately. It will depend
on Lemmas 3.10, 3.11, 3.12, and 3.13, that we state and prove first.

Lemma 3.10. Given any m ∈ R×, we have the decomposition into characters

Ind
P(R)
N(R) Res

N′(R)
N(R) χN

0,m
∼=
∫ ⊕

R

(
χP
+,it ⊕ χP

−,it
)
dt =

∫ ⊕

R

(
1⊕ sgnP

)
χP
+,it dt.

(3.20)

Proof. We write A(R)0 and P(R)0 for the connected components of the identity
of A(R) and P(R) respectively, that is, the subgroups whose elements have positive
diagonal entries. Transitivity of induction yields

Ind
P(R)
N(R) Res

N′(R)
N(R) χN

0,m
∼= Ind

P(R)
P(R)0 Ind

P(R)0

N(R) Res
N′(R)
N(R) χN

0,m.

Functions in the representation space of the inner induction are left invariant un-
der N(R). Since N(R) ⊂ P(R)0 is normal, we can identify them with square-
integrable functions on

N(R)
∖
P(R)0 ∼= A(R)0 ∼= R+.

That is, we have to determine the decomposition of L2(R+) as a representation
of R+. We use the map R+ −→ R, a 7−→ log(a) and classical Fourier analysis to find

Ind
P(R)
P(R)0 Ind

P(R)0

N(R) Res
N′(R)
N(R) χN

0,m
∼= Ind

P(R)
P(R)0

∫ ⊕

R

χP
+,it dt

∼=
∫ ⊕

R

Ind
P(R)
P(R)0 χ

P
+,it dt,

where for simplicity we identify χP
+,it with its restrction to P(R)0. The remaining

induction is central, contributing one copy of χP
+,it and one of χP

−,it = sgnPχP
+,it as

desired. �
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We now turn to the case n 6= 0.

Lemma 3.11. Given any m ∈ R× and n 6= 0, we have the decomposition into
irreducible representations

Ind
P(R)
N(R) Res

N′(R)
N(R) χN

n,m
∼= πP

sgn(n) ⊕ sgnPπP
sgn(n).

Proof. Inducing in steps to P(R)0 as in the proof of Lemma 3.10 we can apply
Mackey’s Irreducibility Criterion (Corollary 1.F.5 of [BH20]; compare also Re-
mark 3.C.6 of op. cit.) to obtain the restriction of πP

sgn(n) to P(R)0. The central

induction from P(R)0 to P(R) then yields two copies of it, one of which is twisted
by the sign character. �

The proof of Lemma 3.13, the last auxiliar statement for the proof of Proposi-
tion 3.9, requires us to determine the restrictions of principal and discrete series
of SL2(R) to N(R). The statements of the next lemma are given, for instance, in
Proposition 3.3.2 and 3.3.3 of Kobayashi’s notes [Kob05].

Lemma 3.12. For all t ∈ R, we have the decomposition

Res
G(R)
N(R) I

SL
±,it ∼=

∫ ⊕

R

(
( 1 b0 1 ) 7−→ e(nb)

)
dn.

For all k ∈ Z \ {0}, we have the decomposition

Res
G(R)
N(R) D

SL
k

∼=
∫ ⊕

Rsgn(k)

(
( 1 b0 1 ) 7−→ e(nb)

)
dn.

Lemma 3.13. The inductions from the upper triangular subgroup P(R) to G(R)
decompose as follows:

(3.21)

Ind
G(R)
P(R) π

P
± ∼=

∞⊕

k=2
k even

DSL
±k ⊕

∫ ⊕

R+

ISL+,it dt,

Ind
G(R)
P(R) sgnPπP

± ∼=
∞⊕

k=3
k odd

DSL
±k ⊕

∫ ⊕

R+

ISL−,it dt.

Proof. The strategy is to spell out Mackey’s version of Frobenius reciprocity [Mac53]
for the inclusion of groups P(R) and G(R) and then apply the same technique as in
Section 7(b) of loc. cit. Namely, we determine the isomorphism class of all restric-
tions on the right hand side of equality (3.22) below, and consider this equation
as representation of P(R) × 1 ⊆ P(R) × G(R). Since only finitely many, four in
fact, isomorphism classes of P(R)× 1-representations contribute, we thus derive an
isomorphism of isotypical components for P(R)× 1 on the left and right hand side
as representations of the commutator of P(R) × 1, thus of representations of the
group 1×G(R), as desired.

The Frobenius reciprocity formula involves all the representations weakly con-
tained in the regular representations, which have been listed in Proposition 3.3 and
Theorem 3.5 for the two groups under consideration. We deduce from Mackey’s
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theorem that (
πP
+ ⊗ IndP(R) π

P
+

)
⊕

(
πP
− ⊗ IndP(R) π

P
−
)

⊕
(
sgnPπP

+ ⊗ IndP(R) sgn
PπP

+

)
⊕
(
sgnPπP

− ⊗ IndP(R) sgn
PπP

−
)

∼=
⊕

k∈Z\{0,±1}
Res

G(R)
P(R)

(
DSL
k ⊗DSL

k

)

⊕
∫

R

Res
G(R)
P(R)

(
ISL+,it ⊗ ISL+,it

)
dt ⊕

∫

R

Res
G(R)
P(R)

(
ISL−,it ⊗ ISL−,it

)
dt.

(3.22)

where the overline denotes the contragredient representation. These are easily
computed to be sgnP = sgnP and χN

n = χN
−n, hence the induction satisfies πP

± ∼= πP
∓.

By a similar argument, we find that for t ∈ R

ISL±,it ∼= ISL±,it = ISL±,−it ∼= ISL±,it and DSL
k = DSL

k

by inspection of K-types.
We next determine the multiplicities of πP

± and sgnPπP
± in the restrictions on

the right hand side. Since central characters are preserved by restriction, there are
multiplicities mD,k;± and mI,±,it;±, which are possibly infinite, such that

Res
G(R)
P(R) D

SL
k

∼=
(
sgnP

)k (
mD,k;+π

P
+ ⊕ mD,k;−π

P
−
)
,

Res
G(R)
P(R) I

SL
+,it

∼=
(
mI,+,it;+π

P
+ ⊕ mI,+,it;−π

P
−
)
,

Res
G(R)
P(R) I

SL
−,it ∼= sgnP

(
mI,−,it;+π

P
+ ⊕ mI,−,it;−π

P
−
)
.

To find these multiplicities we restrict both sides to N(R) and note that

Res
G(R)
N(R) π

P
± ∼= Res

G(R)
N(R) sgn

PπP
± ∼=

∫ ⊕

R±

(
( 1 b0 1 ) 7−→ e(nb)

)
dn.(3.23)

Comparing this with Lemma 3.12 below implies that

mD,k,sgn(k) = 1, mD,k,sgn(−k) = 0 and mI,±,it;+ = mI,±,it;− = 1.

Coming back to (3.22), viewed as a representation of P(R) × 1, and using the
multiplicities in (3.23), we deduce our statement. �

Proof of Proposition 3.9. Comparing the decompositions

G′(R) = N′(R)A(R)K, G(R) = N(R)A(R)K, and N′(R) = H′(R)N(R)

we claim that there is an isomorphism

Res
G′(R)
G(R) πSAff

n,m = Res
G′(R)
G(R) Ind

G′(R)
N′(R) χ

N
n,m

∼= Ind
G(R)
N(R) Res

N′(R)
N(R) χN

n,m.(3.24)

In fact, the left hand side of (3.24) consists of functions that transform like

(3.25) f(ñg) = χN
n,m(ñ)f(g) for all ñ ∈ N′(R) = N(R)H′(R) and g ∈ G′(R).

In particular, such f is uniquely defined by its restriction to G(R) ∼= G′(R)/H′(R),
and this restriction satisfies again (3.25), now for all ñ ∈ N(R) and g ∈ G(R).
Moreover, by the left covariance with respect to H′(R), the function f is measurable
if and only if its restriction to G(R) is so. Square integrability on A(R)K ⊂ G(R)
is preserved by the restriction to G(R).

We can perform the induction on the right hand of (3.24) side in steps, that is,

Ind
G(R)
N(R) Res

N′(R)
N(R) χN

n,m
∼= Ind

G(R)
P(R) Ind

P(R)
N(R) Res

N′(R)
N(R) χN

n,m.
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In the case of n = 0, Lemma 3.10 implies that

Ind
G(R)
N(R) Res

N′(R)
N(R) χN

0,m
∼= Ind

G(R)
P(R)

∫ ⊕

iR

(
χP
+,s ⊕ χP

−,s
)
ds.

To obtain the result, it suffices to note that induction and direct integral decom-
position intertwine by Fubini’s theorem, and to use that ISL±,it

∼= ISL±,−it.
In the case n 6= 0 the statement now follows directly by combining Lemma 3.11

and Lemma 3.13. �

4. Fourier expansions and Poincaré series

The first goal of this section is to examine and relate to each other two Fourier
expansions of affine modular forms. One of them along the torus fiber is merely com-
patible with the action of SL2(R), but exhibits better compatibility with the action
of the foliated Laplace operator and with the corresponding notion of Eisenstein and
Poincaré series. The other one arises from the Heisenberg subgroup N′(R) ⊂ G′(R)
and is compatible with the description of G′(R)-representations that appears in
Theorem 3.7. In particular we give in Proposition 4.4 a criterion in terms of
Fourier coefficients that ensures that some representation πSAff

nm2 appears in the L2-
representation πL2(φ) generated by a modular form φ.

In Section 4.4 we construct affine group versions of Eisenstein and Poincaré
series. We compute their Fourier coefficients and show in Proposition 4.13 that
they generate the representation πSAff

n for all values n ∈ Z. As a corollary we
obtain the eigenvalues of the total Casimir acting on πSAff

n .
Parts of the Fourier expansion along the torus fiber for affine modular-invariant

functions of K-type 0 and, expressed differently, the related construction of Eisen-
stein and Poincaré series has appeared in unpublished work of Balslev [Bal11].

4.1. Fourier expansions on the torus fibers. The subgroup of translations is
an abelian subgroup isomorphic to R2 in SAff2(R), whose dual yields a Fourier
expansion of continuous affine modular-invariant function φ of weight k:

φ(τ, z) =
∑

r,m∈Z

cT
(
φ; m, r; τ

)
e(mp+ rq) , (z = pτ + q).(4.1)

The Fourier coefficients are of course given by

cT(φ;m, r; τ) =

∫

Z\R

∫

Z\R
φ(τ, pτ + q)e(−mp− rq) dp dq.(4.2)

The superscript T indicates that this is the Fourier expansion along the torus
fibers of the projection H(0, 0) → H(0).

Lemma 4.1. The Fourier coefficients have the equivariance property

cT
(
φ
∣∣′
k
γ; m, r; τ

)
= cT

(
φ; m̃, r̃; τ

) ∣∣
k
γ, (m̃, r̃) = (m, r) tγ.

for a continous affine modular-invariant function φ of weight k and γ ∈ SL2(Z).
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Proof. We apply γ to φ and eventually compare coefficients, using the uniqueness
of the Fourier series. We get

∑

r,m∈Z

cT
(
φ; m, r; τ

)
e(mp+ rq) = φ(τ, z) =

(
φ
∣∣′
k
γ
)
(τ, z)

=
∑

m̃,r̃∈Z

(cτ + d)−kcT
(
φ; m̃, r̃; γτ

)
e(m̃p̃+ r̃q̃),

where (p̃, q̃) = (p, q)γ−1 and γ =
(
a b
c d

)
, since

z

cτ + d
= p̃(γτ) + q̃ with (p̃, q̃) = (p, q)γ−1 .

Now to compare coefficients, we need to determine the (m̃, r̃) for which mp+ rq =
m̃p̃+ r̃q̃. This yields the equality

(p, q) t(m, r) = mp+ rq = m̃p̃+ r̃q̃

= (p̃, q̃) t(m̃, r̃) = (p, q)γ−1 t(m̃, r̃) = (p, q) t
(
(m̃, r̃) tγ−1

)
,

which yields desired relation between (m, r) and (m̃, r̃). �

Proposition 4.2. Let φ be an affine modular-invariant function of weight k such
that the Fourier coefficients cT(φ; m, 0; τ) vanishes for all m ∈ Z. Then φ = 0.

Proof. By modular invariance under SL2(Z) and Lemma 4.1, every cT with in-
dex (m, 0)γ for some γ and some m vanishes. This exhausts all terms in the
Fourier expansion (4.1), implying φ = 0. �

4.2. Fourier series along the Heisenberg group. We now study a Fourier ex-
pansion of affine modular function that is compatible with the induction of charac-
ters that appear in Theorem 3.7. Specifically, for given m ∈ Z \ {0}, n ∈ Z we show
that the nonvanishing of specific Fourier coefficients implies that the SAff2(R)-rep-
resentation of the representation generated by an affine modular-invariant function
contains πSAff

nm2 .
The dual of the abelian group
{(

( 1 b0 1 ) , 0, w2

)
∈ G′(R)

} ∼= R2 ⊃ Z ′(R) :=
{(

( 1 0
0 1 ) , 0, w2

)
, w2 ∈ R

}

yields the second Fourier expansion. On the constant term with respect to the
w2-action, i.e. on functions that are Z ′(R)-invariant the factor group

G′(R)
/
Z′(R) ∼=

{(
( 1 b0 1 ) , w1,R

)} ∼= R2

acts. This yields another two-variable expansion, that we call Fourier–Heisenberg
expansion.

φ(τ, z) =
∑

n,r∈Z

cH
(
φ; n, r; y,

v

y

)
e(nx+ ru),(4.3)

and we refine this further by writing for any n ∈ Z

(4.4) cH
(
φ; n, 0; y,

v

y

)
=
∑

m∈Z

cH0(φ; n,m; y) e
(
m

v

y

)
.

The Fourier–Heisenberg coefficients are again given by

cH
(
φ;n, r; y,

v

y

)
=

∫

Z\R

∫

Z\R
φ(x+ iy, u+ iv)e(−nx− ru) dxdu(4.5)
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and

cH0(φ;n,m; y) =
1

y

∫

yZ\R
cH
(
φ;n, 0; y,

v

y

)
e
(
−m

v

y

)
dv.(4.6)

Lemma 4.3. The r = 0-part of the torus Fourier expansions coincides with the
r = 0-part in the Fourier–Heisenberg expansion. That is, for any continuous affine
modular-invariant function φ

cT
(
φ; m, 0; τ

)
=
∑

n∈Z

cH0
(
φ; n,m; y

)
e(nx).

In particular if for an affine modular-invariant function φ all the Fourier–Heisenberg
coefficients cH0(φ; n,m; y) vanish for n,m ∈ Z, then φ = 0.

Proof. Comparing the coefficient expressions (4.2), (4.5) and (4.6) we see

(4.7)

cT
(
φ; m, 0; τ

)
=

∫

Z\R

∫

Z\R
φ(τ, qτ + p)e(−mp) dp dq,

∑

n∈Z

cH0
(
φ; n,m; y

)
e(nx) =

1

y

∫

yZ\R

∫

Z\R
φ(τ, u + iv)e

(
−m

v

y

)
du dv.

The claim then follows from the change of variables u + iv = pτ + q, which gives
du+ idv = τdp+ dq, that is, du = xdp+ dq and dv = ydp. �

The following proposition gives us a criterion in terms of Fourier–Heisenberg
expansions to show that the representations πSAff

nm2 occur in L2(H(0, 0)). It will be
used in the proof of Theorem 5.1. Recall that πL2(φ) denotes the smallest G′(R)-
invariant subspace of L2(H(0, 0)) that contains φ.

Proposition 4.4. Given a continuous square-integrable affine modular function φ,
assume that the Fourier coefficient cH0(φ; n,m; y) in (4.3) does not vanish for
some n,m ∈ Z, m 6= 0. Then averaging over the subgroup N′(R) defines a surjective
homomorphism

πL2(φ) −→ πSAff
nm2 , f 7−−→

(
g 7−→

∫

N′(Z)\N′(R)

f(hg)χN
n,m(h) dh

)
.

Proof. Since πL2(φ) consists of functions that are left invariant with respect to G′(Z),
hence with respect to N′(Z), and since N′(Z)\N′(R) is compact, the integral is well

defined. Given h̃ ∈ N′(R), we have
∫

N′(Z)\N′(R)

f(hh̃g)χN
n,m(h) dh = χN

n,m(h̃)

∫

N′(Z)\N′(R)

f(hh̃g)χN
n,m(hh̃) dh.

Since the integral is taken with respect to the right Haar measure, we can replace hh̃
in the integrand by h. Thus the image of the map in Proposition 4.4 is contained in
the representation space V (πSAff

n,m ). Since πSAff
n,m is irreducible by Theorem 3.7, the

statement follows once we establish that the integral does not vanish for some f ∈
V (πL2 (φ)).

Recall that the function in V (πL2(φ)) corresponding to φ is given by

f(hg) =
(
φ
∣∣
k,0
hg
)
(i, 0).

We apply the Iwasawa decomposition to g and h, that is,

g =
(
( 1 b
0 1 ) , w1, w2

)
( a a−1 )

(
cos θ sin θ
− sin θ cos θ

)
, h =

( (
1 b̃
0 1

)
, w̃1, w̃2

)
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and when inserting this into f , we obtain

f(hg) = eikθak φ
(
a2i+ b+ b̃, (w1 + w̃1)a

2i+ (w2 + w̃2 + bw̃1)
)

= eikθak
( ∑

n,m∈Z

cH0(φ; n,m; a2) e
(
n(b+ b̃) +m(w1 + w̃1)

)

+
∑

n,r∈Z
r 6=0

cH
(
φ; n, r; a2, w1 + w̃1

)
e
(
n(b+ b̃) + r(w2 + w̃2 + bw̃1)

))
.

We next insert this into the expression defining the map in the proposition. We
replace n and m in the character χN

n,m to distinguish them from the indices of the
Fourier–Heisenberg expansion. We obtain

∫

N′(Z)\N′(R)

f(hg)χN
ñ,m̃(h) dh

= eikθak
∫

(R/Z)3

(
∑

n,m∈Z

cH0(φ; n,m; a2)
e
(
n(b+ b̃) +m(w1 + w̃1)

)

e
(
ñb̃+ m̃w̃1

)

+
∑

n,r∈Z
r 6=0

cH
(
φ; n, r; a2, w1 + w̃1

) e
(
n(b+ b̃) + r(w2 + w̃2 + bw̃1)

)

e
(
ñb̃ + m̃w̃1

) dw̃2db̃dw̃1

)
.

We can interchange the summation over n,m, r and the integral over the compact
set Z′(R)/Z′(Z), which is parametrized by w̃2. This allows us to discard all con-
tributions from the second part of the Fourier–Heisenberg series. We are then left
with the integral
(4.8)

eikθak
∑

n,m∈Z

cH0(φ; n,m; a2)

∫

(R/Z)2
e
(
nb+ (n− ñ)b̃+mw1 + (m− m̃)w̃1

)
db̃dw̃1

= eikθak cH0(φ; ñ, m̃; a2) e(nb+mw1).

By the assumptions of the proposition the righthand side does not vanish for some
choice of ñ, m̃, a. �

4.3. Towards an L2-isometry. In this section we give an expression of the scalar
product of affine modular-invariant functions in terms of Fourier–Heisenberg co-
efficients. It will be used for several orthogonality statements. It generalizes the
classical ‘unfolding’ construction on the modular surface. To generalize the con-
tent of this paper to general strata one of the main challenges will be to find a
replacement of this lemma.

Lemma 4.5. The scalar product of two continuous affine modular-invariant func-
tions φi can be expressed in Fourier–Heisenberg coefficients as

(4.9) 〈φ1, φ2〉 =
∑

n,m∈Z

∫

R+

cH0
(
φ1; n,m; y

)
cH0
(
φ2; n,m; y

) dy

y2−k
.
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Proof. Starting with (2.18) and abbreviating X = G(Z)\G(R)/K we find

〈φ1, φ2〉 =

∫

G′(Z)\G′(R)/K

φ1(τ, pτ + q)φ2(τ, pτ + q)
dxdy dp dq

y2−k

=

∫

X

∑

m≥0

∑

c,d∈Z
gcd(c,d)=1

cT
(
φ1; m · (d,−c); τ

)
· cT

(
φ2; m · (d,−c); τ

) dxdy

y2−k

=

∫

X

∑

m≥0

∑

γ∈Γ+
∞\G(Z)

cT
(
φ1; (m, 0); τ

)∣∣
k
γ · cT

(
φ2; (m, 0); τ

)∣∣
k
γ

dxdy

y2−k

=
∑

m≥0

∫

Γ+
∞\G(R)/K

cT
(
φ1; m, 0; τ

)
cT
(
φ2; m, 0; τ

) dxdy

y2−k
.

Here we used the orthogonality of the exponential terms e(ℓp+ rq) on L2(Z2\R2),
and writing m = gcd(r, ℓ) we used Lemma 4.3. We then combined the X-integral
and the summation over Γ+

∞\G(Z) to the integral over the strip Γ+
∞\G(R)/K. The

identity is then obtained by rewriting the cT-coefficients in terms of cH0-coefficients
using Lemma 4.3 and performing the x-integration. Using orthogonality of expo-
nential terms, only the diagonal terms remain, which gives the claimed formula. �

The following statement will help to prove injectivity in Theorem 5.1, compare
with the disintegration of the Haar measure along the torus fibres in (3.5). It
complements the vanishing statements in Proposition 4.2 and Lemma 4.3.

Lemma 4.6. For a non-genuine affine-invariant modular function φ of weight k,
we have

cT(φ;m, r; τ) = 0 for all (m, r) 6= (0, 0).

An affine-invariant modular function φ is genuine if and only if cT(φ; 0, 0; τ) = 0.

Proof. Non-genuine modular functions are pullbacks from H to H′, i.e. they are
constant in z. In particular, the only Fourier coefficient with respect to p and q
that appears in (4.1) is the one of index (0, 0).

A genuine modular function φ of weight k by (3.4) is orthogonal with respect to
the inner product (2.18) to all non-genuine ones of the same weight. The second
statement thus follows from the first and Lemma 4.5. �

We get an immediate corollary, useful in proving discreteness of the spectrum of
the compound Laplacian on cusp forms.

Proposition 4.7. Let f be a genuine affine-invariant modular form of weight k.
For all n ∈ Z, the Fourier–Heisenberg coefficients

(4.10) cH0(f ; n, 0; y) = 0.

Proof. Genuine affine-invariant modular forms have cT(f ; 0, 0; τ) = 0. It follows
from Lemma 4.3 that

(4.11) 0 = |cT(f ; 0, 0; τ)|2 =
∑

n∈Z

|cH0(f ;n, 0; y)|2

which is only possible if every term in this sum vanishes. �
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4.4. Eisenstein and Poincaré series. We now define the series that provides
generators for the constituents of L2(SAff2(Z)\SAff2(R)). Given n,m ∈ Z \ {0}
and moreover a function β : R+ −→ C with |β(y)| ≪ y1−

k
2+ε as y −→ 0, we define

the affine Poincaré series

Pk;n,m,β(τ, z) := 2−
1
2

∑

γ∈Γ+
∞\SL2(Z)

β(y) e
(
nx+m

v

y

)∣∣′
k
γ,(4.12)

where Γ+
∞ = 〈( 1 1

0 1 )〉. The case n = 0 in this description is what we call the affine
Eisenstein series

Ek;m,β(τ, z) := 2−
1
2

∑

γ∈Γ+
∞\SL2(Z)

β(y) e
(
m

v

y

)∣∣′
k
γ.(4.13)

Lemma 4.8. The righthand sides of (4.13) and (4.12) are absolutely and locally
uniformly convergent.

Proof. The summations in (4.13) and (4.12) are well-defined thanks to the period-
icity of of e(·).

We identify a coset γ ∈ Γ+
∞\SL2(Z) with the entries c, d ∈ Z, gcd(c, d) = 1 in

the bottom row of the matrix. To show convergence, we need an estimate for the
right hand side of∣∣∣∣∣

∑

γ∈Γ+
∞\SL2(Z)

β(y) e
(
nx+m

v

y

)∣∣∣
′

k
γ

∣∣∣∣∣ ≤
∑

c,d∈Z
gcd(c,d)=1

|cτ + d|−k
∣∣β
(
Im(γτ)

)∣∣

both for n = 0 and n 6= 0. Using the bound β(y) ≪ y1−
k
2+ε as y −→ 0, we obtain

the estimate
∑

c,d∈Z
gcd(c,d)=1

|cτ + d|−k
∣∣β
(
Im(γτ)

)∣∣ = y−
k
2

∑

c,d∈Z
gcd(c,d)=1

Im(γτ)
k
2

∣∣β
(
Im(γτ)

)∣∣

≪ y−
k
2

∑

c,d∈Z
gcd(c,d)=1

Im(γτ)1+ε,

which converges absolutely and locally uniformly as required. �

We determine the Fourier–Heisenberg expansions of affine Eisenstein and Poincaré
series. This allows us to examine the SAff2(R) representations that those series gen-
erate. It is also an important ingredient in the proof of the SAff2(R) decomposition
in Theorem 5.1.

Lemma 4.9. The Fourier–Heisenberg coefficients of the affine Eisenstein and
Poincaré series at r = 0 are

cH0
(
Ek;m,β(τ, z); ñ, m̃; y

)
=

{
2−

1
2 β(y), if ñ = 0 and m̃ = ±m;

0, otherwise.

cH0
(
Pk;n,m,β(τ, z); ñ, m̃; y

)
=

{
2−

1
2 β(y), if ñ = n and m̃ = ±m;

0, otherwise.

In particular, if y
k−1
2 β(y) in (4.12) and (4.13) is square-integrable, then
∥∥Ek,β,m

∥∥2
H′ =

∥∥Pk,β,m,n
∥∥2
H′ =

∥∥y k−1
2 β

∥∥2,
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where on the right hand side the L2-norm is with respect to the Haar measure on R+.

Note that these Fourier coefficients are independent of k.

Proof. By definition the coefficients cH0 are the 0-th Fourier coefficient with respect
to u. We observe that e(nRe(τ)) will not contribute any dependency on u and
neither will (cτ +d)−k. We thus have to examine only the contribution of e(mv/y).
We have

v

y

∣∣∣
′

0

(
a b
c d

)
=
z(cτ + d)− z(cτ + d)

|cτ + d|2
|cτ + d|2

y
=

v

y
(cx+ d)− cu.(4.14)

In particular, the only contributions to the 0-th Fourier coefficient with respect to u
arise from c = 0, which is the term of the identity matrix.

The second statement follows from the first and Lemma 4.5. �

The Fourier–Heisenberg expansion also allows us to determine the L2-norm of
Eisenstein and Poincaré series. This stands in stark contrast to the case of Maaß
forms for SL2(Z), where Maaß Eisenstein series are not square-integrable in general
and Maaß Poincaré series have comparably inaccessible formulae for their Fourier
expansion.

4.5. Representations generated by Eisenstein and Poincaré series. The
main concern of this section is to determine the isomorphism class of the rep-
resentations generated by lifts of the Eisenstein and Poincaré series, which we
will achieve in Proposition 4.13. To prepare its proof, we first identify the pull-
back of Eisenstein and Poincaré series to G′(R) as the images of partially defined
maps from πSAff

nm2
∼= πSAff

n,m (allowing n = 0 to include the case of Eisenstein series)

to L2(G′(Z)\G′(R)). Second, we show that these maps are isometries on their
range and equivariant with respect to SAff2(R). In the proof of Proposition 4.13
this allows us to extend them to all of πSAff

n,m .

Recall that πSAff
n,m is an induction from N′(R) to G′(R). The Iwasawa decom-

position in (3.6) shows that f ∈ V (πSAff
n,m ) of K-type k is uniquely defined by its

values on A′(R)/(A′(R) ∩ K). To make the connection to the function β in (4.13)
and (4.12), we identify this quotient with R+ via the section

R+ −→ A′(R)
/(

A′(R) ∩K
)
, a 7−−→ ± ( a a−1 ) .

The functions α(a) in this section correspond to β(y) = α(
√
y) in (4.13) and (4.12).

Given a function α : R+ −→ C and k ∈ Z, we use the pullback construction
in (2.10), which implicitly depends on k, to define the function

α̂k(g) :=
((
α(

√
y) e
(
nx+m

v

y

))∣∣∣
′

k
g
)
(i, 0),(4.15)

where we suppress n and m from our notation.

Lemma 4.10. If α ∈ L2(R+, a2k−3da), then α̂k ∈ V (πSAff
n,m ). More precisely, given

the K-type decomposition

V
(
πSAff
n,m

)
=
⊕

k∈Z

V
(
πSAff
n,m

)
k
,

we have

V
(
πSAff
n,m

)
k

= span
{
α̂k : α ∈ L2

(
R+, a2k−3da

)}
.(4.16)
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Proof. The coordinates for the decomposition G′(R) = N′(R)A′(R)K given in (3.8)
yield

α̂k

((
( 1 b1 ) , w1, w2

)
( a a−1 )

(
cos θ sin θ
− sin θ cos θ

) )
= eikθak α(a)e

(
nb+mw1

)
.

From this we directly read off that α̂k satisfies the transformation properties re-
quired for elements of V (πSAff

n,m ), namely

α̂k(hg) = χN
n,m(h) α̂k(g) for all h ∈ N′(R).

To verify that α̂k ∈ V (πSAff
n,m ) it remains to verify that it is square integrable

on A′(R)K, which follows from
∫

A′(R)K

∣∣∣α̂k
(
( a a−1 )

(
cos θ sin θ
− sin θ cos θ

) )∣∣∣
2 dθ da

2π a3
=

∫

R+

a2k−2|α(a)|2 da

a
.

Notice that the correspondence between α and α̂k is one-to-one.
In order to confirm the given K-type decomposition, note that by the Peter–Weyl

theorem for the compact group K, any f ∈ V (πSAff
n,m ) can be decomposed as a square-

summable series
∑

k fk, where fk is square-integrable and of K-type k. By the
previous argument and for fixed k, we find fk = α̂k for some α ∈ L2(R+, a2k−3da)
as desired. �

Consider f ∈ V (πSAff
n,m ). We associate to f a SAff2(Z)-left-invariant function

on SAff2(R) via

E(f, ·) :=
(
g 7−→

∑

γ∈Γ+
∞\SL2(Z)

f(γg)
)
, g ∈ SAff2(R) ,(4.17)

provided absolute convergence of the series.

Lemma 4.11. Suppose f ∈ V (πSAff
n,m ) has a finite decomposition

∑
α̂k for func-

tions αk ∈ L2(R+, a2k−3da), k ∈ Z according to (4.16). Assume that
∣∣∣α̂k
(
( 1 b1 ) , w1, w2

)
( a a−1 )

(
cos θ sin θ
− sin θ cos θ

) )∣∣∣≪ a2−k+ε as a −→ 0.

Then E(f, ·) converges absolutely and locally uniformly and ‖f‖2 = 2‖E(f, · )‖2.
Proof. Since K is compact, every α̂k in the decomposition f =

∑
α̂k satisfies the

same growth condition as f . Therefore, it suffices to demonstrate convergence
of E(α̂k, g) with α̂k as in (4.15). Further, since we average over Γ+

∞\SL2(Z) from
the left and K-types are defined via right-shifts, the K-type of each summand in the
definition (4.17) of E(α̂k, g) is k as well. It thus suffices to consider g ∈ N′(R)A′(R).
Using (2.10), this allows us to perform the proof for functions onH′ instead of G′(R).

Recall the expression eikθakαk(a) e(nb +mw1) from the proof of Lemma 4.10.
Under the map in (2.10) using the coordinates of (3.8), we have to show the absolute
and locally uniform convergence of

∑

γ∈Γ+
∞\SL2(Z)

e−ikθy−
k
2 eikθ

√
y
k
αk(

√
y)e
(
nx+m

v

y

)∣∣′
k
γ

=
∑

γ∈Γ+
∞\SL2(Z)

αk(
√
y)e
(
nx+m

v

y

)∣∣′
k
γ.

Since by assumptions βk(y) := αk(
√
y) <

√
y2−k+ε = y1−k/2+ε/2, we can apply

Lemma 4.8 to finish the proof of convergence.
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To show the isometry property, we notice that we have the K-type decomposition

E(f, · ) =
∑

k∈Z

E(α̂k, · ),

and that the summands on the right hand side are mutually orthogonal.

‖E(f, · )‖2 =
∑

k∈Z

‖E(α̂k, · )‖2

=
∑

k∈Z

∥∥y k−1
2 βk(y)

∥∥2 =
∑

k∈Z

∥∥ak−1αk(a)
∥∥2 = ‖f‖2.

We employed the identification in (4.18) and then Lemma 4.9 to express the result-
ing norms in terms of the norms of first βk and then αk. �

Lemma 4.12. Given a function f subject to the conditions of Lemma 4.11, the
function fh(g) := f(gh) for h ∈ SAff2(R) also satisfies the conditions of Lemma 4.11,
and E(f, gh) = E(fh, g).

Proof. The first statement is clear when applying the N′(R)A′(R)K-decomposition

to g = nak and khk−1 = ñãk̃ and multiplying out the result as gh = nañã k̃k. Now
the second claim follows from the observation that E(fh, g) is defined by a sum
over left-shifts, while h acts via right-shifts. �

We can now state the first main result of this section.

Proposition 4.13. The Eisenstein series and Poincaré series for appropriate pa-
rameters generate all the genuine unitary irreducible representations of G′(R).

More precisely, for k ∈ Z, and β : R+ −→ C with |β(y)| ≪ y1−
k
2+ε as as y −→ 0

πL2

(
Ẽk;m,β

) ∼= πSAff
0 and πL2

(
˜Pk;n,m,β

) ∼= πSAff
nm2 .

Proof. In the proof of Lemma 4.11 we have shown that if we let α(a) = β(a2) then

E(α̂k, ˙) = Ẽk;m,β , if n = 0, and E(α̂k, · ) = ˜Pk;n,m,β , otherwise.(4.18)

The automorphic Eisenstein series E( · , · ) in (4.17) yields by Lemma 4.11 and
Lemma 4.12 a map from a dense subspace of V (πSAff

n,m ) to L2(SAff2(Z)\SAff2(R))
which is SAff2(R)-equivariant. As it is an isometry by Lemma 4.11, this map does
not vanish and is a homomorphism of Hilbert space representations from πSAff

n,m

to L2(SAff2(Z)\SAff2(R)). Since πSAff
n,m

∼= πSAff
nm2 is irreducible by the classification

in Theorem 3.7, the image of the map E( · , · ) in (4.18) is equal to the image of

E : πSAff
n,m −→ L2

(
SAff2(Z)\SAff2(R)

)
.

as claimed in the proposition. �

5. Decomposition of the L2-space

5.1. Decomposition as G′(R)-representations. We restate and refine Theo-
rem 1.1 from the introduction.

Theorem 5.1. The genuine part of the L2-space of the stratum H(0, 0) admits the
abstract decomposition

(5.1) L2
(
G′(Z)\G′(R)

)gen ∼=
∞⊕

m=1

⊕

n∈Z

πSAff
n,m .
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into irreducible G′(R)-representations. More precisely, it can be decomposed as

L2
(
G′(Z)\G′(R)

)gen
=

∞⊕

m=1

(
πL2

(
Ẽk;m,β

)
⊕

⊕

n∈Z\{0}
πL2

(
˜Pk;n,m,β

))
,(5.2)

and the map E from (4.17) defines an isometry of G′(R)-representations

πSAff
0,m

∼= πL2

(
Ẽk;m,β

)
and πSAff

n,m
∼= πL2

(
˜Pk;n,m,β

)

for any k ∈ Z and 0 6= β ∈ L2(R+, yk−2dy), if the left hand side is provided with
the L2-norms from (4.10). Furthermore, for βi ∈ L2(R+, yki−2dy), i = 1, 2

πL2

(
Ek1;m1,β1

) ∼= πL2

(
Ek2;m2,β2

)
for all m1 and m2, and

πL2

(
Pk1;n1,m1,β1

) ∼= πL2

(
Pk2;n2,m2,β2

)
if and only if n1m

2
1 = n2m

2
2.

Proof. The isomorphisms stated in the second part are a consequence of Theo-
rem 3.7. Note that the weights k1 and k2 do not appear in these statements and
hence do not distinguish representations.

By Proposition 4.13, Eisenstein and Poincaré series yield isomorphisms

πSAff
0,m −→ πL2

(
Ẽk;m,β

)
⊆ L2

(
G′(Z)\G′(R)

)gen
and

πSAff
n,m −→ πL2

(
˜Pk;n,m,β

)
⊆ L2

(
G′(Z)\G′(R)

)gen
for n 6= 0.

Taking the direct sum, we obtain a map

∞⊕

m=1

⊕

n∈Z

πSAff
n,m =

∞⊕

m=1

πSAff
0,m ⊕

∞⊕

m=1

⊕

n∈Z\{0}
πSAff
n,m −→ L2

(
G′(Z)\G′(R)

)gen
.(5.3)

The Fourier–Heisenberg expansions group provide us by Proposition 4.4 with a map

L2
(
G′(Z)\G′(R)

)gen ∩ C
(
G′(Z)\G′(R)

)
−→

∞⊕

m=1

⊕

n∈Z

πSAff
n,m .(5.4)

By Lemma 4.8 Eisenstein and Poincaré series associated with continuous functions β

that satsify the growth condition β(y) ≪ y1−
k
2+ε as y −→ 0 are continuous.

Let V ⊂
⊕

m≥0

⊕
n∈Z π

SAff
n,m be the dense subspace consisting in finite sums

of continuous functions that satisfy the assumptions given in Lemma 4.11. By
Lemma 4.9 the composition of the restriction of (5.3) to V and (5.4) is the multi-
plication by 2−1/2 map. Since V is a dense subspace, this shows that there is an
injection

∞⊕

m=1

⊕

n∈Z

πSAff
n,m =

∞⊕

m=1

⊕

n∈Z

πSAff
nm2 −֒→ L2

(
G′(Z)\G′(R)

)gen
.(5.5)

We next investigate the kernel of (5.4). Lemma 4.3 shows that it consists
of functions whose K-isotypical components, say φk, satisfy cT(φk; m, 0; τ) = 0
for all positive m. By Lemma 4.1 with γ equal the negative identity, this im-
plies that cT(φk; m, 0; τ) = 0 for all m 6= 0. Since φk is genuine, we also have
cT(φk; 0, 0; τ) = 0 by Lemma 4.6. This allows us to apply Proposition 4.2 to de-
duce that the kernel of (5.4) is trivial. Hence (5.5) is an isomorphism, finishing the
proof. �
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5.2. Cusp forms. Consider an affine modular-invariant function f of weight k.
We call f a cusp form if the r = n = 0 Fourier–Heisenberg coefficients vanish, i.e.
cH(f ; 0, 0; v, v/y) = 0. By definition of the Fourier–Heisenberg expansion, this is
equivalent to

(5.6) cH0(f ; 0,m; y) = 0 for all m ∈ Z.

We denote by L2(H(0, 0))gencusp the closure of the space of the lifts of genuine cusp
forms. (Recall Lemma 4.6 for a characterization of these in terms of Fourier coef-
ficients.)

Proposition 5.2. In terms of the decomposition (5.1) the space of cusp forms in
the genuine part coincides with ⊕∞

m=1π
SAff
0,m .

Proof. Proposition 3.8 implies that ⊕∞
m=1π

SAff
0,m is precisely the subspace where the

total Casimir acts with eigenvalue zero and by (3.19) this is equivalent to the
vanishing of the Fourier coefficients involved in the definition of a cusp form. �

5.3. Spectral decomposition of the foliated Laplacian. This section prepares
for the explicit description of πSAff

n,m Theorem 5.6 below. The idea is that the spectral

data of the foliated Laplacian −∆fol
k suffices to distinguish almost all unitary repre-

sentations of SL2(R), in particular, those that appear in the continuous and discrete
part of πSAff

n,m per Proposition 3.9. We thus compute here the solutions of the differ-
ential equations for functions of the form (4.15) that are generalized eigenfunctions
of −∆fol

k . Since we already know the abstract decomposition of these representa-
tions thanks to Proposition 3.9 we only solve the generalized eigenvalue equation
for the Casimir eigenvalues of the representations appearing there. Recall that the

Casimir eigenvalue of the discrete series DSL
k is equal to |k|

2 ( |k|2 − 1) and for the

complementary series ISL+,s it is equal to s2 − 1/4.
Recall e.g. from [DLMF, Section 13.14] that the Whittaker differential equation

(5.7)
d2f

dy2
+
(
−1

4
+

κ

y
+

1

4
− µ2

y2

)
f = 0

has two solutions, traditionally called the Whittaker functions Mκ,µ and Wκ,µ ex-
cept if 2µ ∈ Z<0.

We have computed in (3.19) the action of ∆tot on the summands of the Poincaré
series aiming for the computation of ∆tot-eigenvalues. Using Lemma 2.13 we simi-

larly find (with an auxiliary factor y−
k
2 that simplifies the equation):

Lemma 5.3. A smooth function β(y) : R× −→ C is mapped under the foliated
Laplace operator to

−∆fol
k

(
y−

k
2 β(y) e

(
nx+m

v

y

))

= y−
k
2

(
− y2β′′(y) + 4π2n2 y2β(y)− 2πkn yβ(y)

)
e
(
nx+m

v

y

)
.

We apply the preceding lemma to search for the eigenfunctions and generalized
eigenfunctions we expect according to Proposition 3.9.

Lemma 5.4. For fixed k ∈ Z\ {0,±1} and n 6= 0 consider the differential equation

(5.8) −∆fol
k β(y) e

(
nx+m

v

y

)
= λ · β(y) e

(
nx+m

v

y

)
.
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For λ = |k|
2 (1− |k|

2 ) it has a basis of solutions consisting of

e−2π|n|y and y−
k
2 M |k|

2 ,
|k|−1

2

(4π|n|y)(5.9)

if k, n > 0, and

y−k e−2π|n|y and y−
k
2 M |k|

2 ,
|k|−1

2

(4π|n|y),(5.10)

if k, n < 0.
For fixed k ∈ Z, n 6= 0 and λ = t2 + 1/4 the differential equation (5.8) has a

basis of solutions consisting of

y−
k
2 W sgn(n)k

2 ,it

(
4π|n| y

)
and y−

k
2 M sgn(n)k

2 ,it

(
4π|n| y

)
.(5.11)

Finally, for n = 0 and λ = t2 + 1/4, the differential equation (5.8) has a basis of
solutions

y
1−k
2 +it and y

1−k
2 −it.(5.12)

Proof. For n = 0 the function β̃(y) = y
k
2 β(y) is a solution of the differential

equation β̃′′(y) = λ y−2β̃(y), whose solutions are directly seen to yield (5.12).

For n 6= 0 the solutions in (5.11) follow from the observation that y
k
2 β(y/4π|n|)

satisfies the Whittaker differential equation with parameters sgn(n)k/2 and it.
In the special case that |k| > 1 is an integer with the same sign as n, the

exponential solutions are equal to the W-Whittaker solutions in (5.11) by [DLMF,
Equation 13.14.9]. �

We will need the following asyptotics estimates in the next section to verify
integrability. We define

(5.13) ΓW(t) :=
Γ(2it)

Γ
( 1−sgn(n)k

2 + it
) ,

Lemma 5.5. The Whittaker functions Wκ,µ(y) decay exponentially as y → ∞.
Moreover the asympoticts of y → 0 is

(4π|n| y)− k
2 W sgn(n)k

2 ,it

(
4π|n| y

)

= ΓW(t)
(
4π|n|y

) 1−k
2 −it

+ ΓW(−t)
(
4π|n|y

) 1−k
2 +it

+O
(
y

3−k
2

)
.

(5.14)

Proof. This follows from [DLMF, Equations 13.14.21 and 13.14.16]. �

5.4. Decomposition as SL2(R)-representations. We now state and prove The-
orem 1.3 in the complete version, including the case n = 0. Recall that we gave in
Lemma 4.10 an explicit L2-structure on the representations πSAff

n,m .

Theorem 5.6. For k ∈ Z \ {0,±1} and n ∈ Z with sgn(nk) = 1 the representa-
tion DSL

sgn(n)k in Proposition 3.9 is generated by the Poincaré series for β = e−2π|n|y

if k > 1 and β = y−ke−2π|n|y if k < −1.
Associating for fixed n ∈ Z \ {0} with ψ ∈ L2(R+, dt) the lifts of the Poincaré

series Pk;n,m,βW
k,n,ψ

of the Whittaker transform

βW
k,n,ψ(y) :=

1

4π |n| 32

∫

t∈R+

ψ(t)

(ΓW(t)ΓW(−t)) 1
2

y−
k
2 W sgn(n)k

2 ,it

(
4π|n| y

)
dt
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gives isometric embeddings

PW
+ :

⊕

k∈2Z

L2
(
R+, dt

)
→ πSAff

n,m , PW
− :

⊕

k∈1+2Z

L2
(
R+, dt

)
→ πSAff

n,m

whose images are
∫ ⊕
R+ I

SL
+,it dt and

∫ ⊕
R+ I

SL
−,it dt respectively, in the decomposition of

Proposition 3.9.
Associating with ψ ∈ L2(R+, dt) the lifts of the Eisenstein series Ek;m,βW

k,n,ψ
of

the ‘y-power transform’

(5.15) βc±
k,ψ(y) :=

∫

t∈R+

ψ(t)
(
y

1−k
2 +it ± y

1−k
2 −it) dt

gives isometric embeddings

Ec±
+ :

⊕

k∈2Z

L2
(
R+, dt

)
→ πSAff

0,m , Ec±
− :

⊕

k∈1+2Z

L2
(
R+, dt

)
→ πSAff

0,m

whose images are one of the two summands
∫ ⊕
R+ I

SL
+,it dt and

∫ ⊕
R+ I

SL
−,it dt respectively,

in the decomposition of Proposition 3.9. Moreover, the images of Ec+
± and Ec−

± are
orthogonal.

Proof. We start with the discrete series and observe that y
k−1
2 β(y) ∈ L2(R+, dy/y).

Therefore, the Poincaré series in the first statement is defined as an L2-limit of
the series in Lemma 4.8. Recall that the representation generated by Pk;n,m,β
is isomorphic by Theorem 5.1 to the one generated by β̂, defined as the lift of
β(y) e

(
nx + mv/y

)
. This function is smooth and square-integrable on SAff2(R).

In particular, we can compute the action Dfol pointwise. Furthermore, the defini-
tion of Dfol via ∆fol in Lemma 2.2 allows us to compute it on H′. Now the first
statement of Lemma 5.4 confirms the existence of the eigenspaces. (Note that the
M-Whittaker function given as the second solution in that lemma has exponential
growth as y → ∞ and will not give an L2-function.)

Our argument for the principal series follows the argument for the modular sur-
face (e.g. [Ber16, Section 4.2.5]) with one major difference in Lemma 5.7. Because
we cannot evaluate exactly the inner products of truncated W-Whittaker functions
that we define in the proof, we need to estimate some of their contribution via
asymptotic remainder terms.

Suppose n 6= 0. Thanks to Lemma 5.5 partial integration with respect to t in
the defining equation for βW

k,n,ψ shows that y(k−1)/2 βW
k,n,ψ(y) is square-integrable

with respect to the Haar measure on R+. Using Lemma 5.7 below and Lemma 4.11
we conclude that assigning with ψ the Poincaré series is an isometry as claimed.
To finish the proof in this case we apply Weyl’s criterion for essential spectrum
membership for any t0 ∈ R. Let D = −∆fol

k − (t20 + 1/4) and ψn(t) a sequence of
bump functions limiting to t0 with ‖ψn‖ = 1. Then G-invariance of the Laplacian,
abolute convergence and isometry of theE-operator (by Lemma 4.8 and Lemma 4.9)
and the eigenvalue property of the Whittaker function from Lemma 5.4 imply

∥∥D(Pk,n,m,βWk,n,ψn
))
∥∥ =

∥∥E
(
D(βWk,n,ψn exp(..)), ·

)∥∥ =
∥∥D(βWk,n,ψn exp(..))

∥∥

=

∣∣∣∣∣
1

4π |n| 32

∫

t∈R+

ψn(t)(t
2 − t20)

(ΓW(t)ΓW(−t)) 1
2

y−
k
2 W sgn(n)k

2 ,it

(
4π|n| y

)
dt

∣∣∣∣∣ → 0 ,
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since on the support of ψn the factor (t2 − t20) becomes small. This shows that
t20+1/4 is an approximative eigenvalue and since the discrete spectrum is associate
with positive eigenvalues, our knowledge about the total spectral decomposition
from Proposition 3.9 shows that we have covered everything.

The case n = 0 is similar. By partial integration, we see that y(k−1)/2 βc±
k,ψ(y)

is square-integrable. Now Lemma 5.8 below and Lemma 4.11 show the isometry
claim. To show the orthogonality one proceeds as in Lemma 5.8, but now the first
and last term cancel and we get zero as ε→ 0. The spectral conclusion is similar as
above using Weyl’s criterion, Lemma 5.4 and Proposition 3.9, arguing separately
for each of the two orthogonal summands. �

Lemma 5.7. The Whittaker transform ψ 7−→ βW
k,n,ψ is an isometry L2

(
R+, dt

)
→

L2(R+, yk−2dy).

Proof. We first verify the claim for smooth compactly supported functions. To this
end, we introduce for ε > 0 the truncated W-Whittaker functions

Wε
sgn(n)k

2 ,it

(
4π|n| y

)

:= W sgn(n)k
2 ,it

(
4π|n| y

)
− 1(0,ε)(y)

(
ΓW(t)

(
4π|n|y

) 1
2−it + ΓW(−t)

(
4π|n|y

) 1
2+it

)

and denote by βWε
k,n,ψ(y) the Whittaker transform with respect to the truncated

Whittaker functions. Using partial integration with respect to t we see that

∥∥y k−1
2

(
βW
k,n,ψ(y)− βWε

k,n,ψ(y)
)∥∥2 ≪

∫ ε

0

1

y log(y)2
dy ≪ log(ε)−1.

Combining this estimate with the Cauchy-Schwartz inequality, we conclude that
∥∥y k−1

2 βW
k,n,ψ(y)

∥∥2 =
∥∥y k−1

2 βWε
k,n,ψ(y)

∥∥2 +O
(
log(ε)−

1
2

)
.

We next expand the defining integral for the L2-norm and interchange the inte-
gration with respect to y, t1, and t2, which is justified because all integrands are
nonnegative:

∥∥y k−1
2 βWε

k,n,ψ(y)
∥∥2

=
(
4π|n|

)−k
∫

t1,t2∈R+

ψ(t1)ψ(t2)
(
ΓW(t1)Γ

W(−t1) ΓW(t2)Γ
W(−t2)

)− 1
2

∫

R+

Wε
sgn(n)k

2 ,it1

(
4π|n| y

)
Wε

sgn(n)k
2 ,−it2

(
4π|n| y

)
y−2dy dt1dt2.

Using the asymptotic expansion of the Whittaker function in (5.14), we can deter-
mine the leading asymptotic with respect to ε of the inner integral. For ε1 > ε2 > 0,
we have∫

R+

Wε2
sgn(n)k

2 ,it1

(
4π|n| y

)
Wε2

sgn(n)k
2 ,−it2

(
4π|n| y

)
y−2dy

−
∫

R+

Wε1
sgn(n)k

2 ,it1

(
4π|n| y

)
Wε1

sgn(n)k
2 ,−it2

(
4π|n| y

)
y−2dy

=

∫ ε1

ε2

(
ΓW(t1)

(
4π|n|y

) 1
2−it1 + ΓW(−t1)

(
4π|n|y

) 1
2+it1

)

(
ΓW(−t2)

(
4π|n|y

) 1
2+it2 + ΓW(t2)

(
4π|n|y

) 1
2−it2

)
y−2dy + O(ε1 − ε2)
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= ΓW(t1)Γ
W(−t2)

(
4π|n|

)1−it1+it2 ε−it1+it21 − ε−it1+it22

−it1 + it2

+ ΓW(−t1)ΓW(−t2)
(
4π|n|

)1+it1+it2 ε+it1+it21 − εit1+is22

it1 + it2

+ ΓW(t1)Γ
W(t2)

(
4π|n|

)1−it1−it2 ε−it1−it21 − ε−it1−it22

−it1 − it2

+ ΓW(−t1)ΓW(t2)
(
4π|n|

)1+it1−it2 ε+it1−it21 − εit1−it22

it1 − it2
+ O(ε1 − ε2).

To evaluate the integral with respect to t2, we can perform the same steps as
in [Ber16, Proposition 4.15] towards the end of his proof. Since t1, t2 ∈ R+, the
second and third term in the inner integral are regular with respect to t1 and t2
and thus yield contributions of order log(ε)−1 after partial integration with respect
to either of them. It remains to consider the first and fourth term, which yield

∥∥y k−1
2 βWε

k,n,ψ(y)
∥∥2 = 4π

(
4π|n|

)1−k
∫

t1∈iR+

ψ(t1)ψ(t1) dt1 + O
(
log(ε)−1

)
.

This establishes the claimed isometry, when letting ε tend to 0. It also guarantees
that the assigment from ψ to β extends to a map on the L2-spaces as claimed. �

With similar arguments we show:

Lemma 5.8. The y-power transform ψ 7−→ βW
k,n,ψ is an isometry L2

(
R+, dt

)
→

L2(R+, yk−2dy).

Proof. The main difference to the previous lemma is that we need to truncate both
towards 0 and ∞. We thus define

βc±ε
k,ψ (y) :=

∫

t∈R+

ψ(t)1(ε,1/ε)

(
y

1−k
2 +it ± y

1−k
2 −it) dt.

Similar calculations as above yield
∥∥y k−1

2 βc±ε
k,ψ (y)

∥∥2

=

∫

t1,t2∈R+

ψ(t1)ψ(t2)

∫ 1/ε

ε

(
y+it1 ± y−it1

)(
y−it2 ± y+it2

)
y−1dy dt1dt2.

The inner integral equals
∫ 1/ε

ε

(
y+it1 ± y−it1

)(
y−it2 ± y+it2

)
y−1dy

=

∫ 1/ε

ε

(
y+it1−it2 ± y−it1−it2 ± y+it1+it2 + y−it1+it2

)
y−1dy

=
εit2−it1 − εit1−it2

it1 − it2
± εit1+it2 − ε−it1−it2

−it1 − it2

± ε−it1−it2 − εit1+it2

it1 + it2
+
εit1−it2 − εit2−it1

−it1 + it2
.

The second and third term, which agree, contribute O(log(ε)−1) to the final ex-
pression. From the first and fourth term, which are also equal, we obtain

∥∥y k−1
2 βc±ε

k,ψ (y)
∥∥2 = 4π

∫

t1∈R+

ψ(t1)ψ(t1) dt1 + O
(
log(ε)−1

)
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and the claim follows taking the limit ε→ 0. �

5.5. The compound operator. The goal of this subsection is to understand the

spectral decomposition of −∆
cmp(ε)
k and prove Theorem 1.6. This decomposition

is closer in nature to that of the Laplacian on the modular surface. The following
theorem is claimed without proof for k = 0 and ε = 4 in [Bal11].

Theorem 5.9. For every k ∈ N and ε > 0, the K-type k cusp forms are an

invariant subspace of the compound Laplacian −∆
cmp(ε)
k on which it has discrete

spectrum.

Proof. That cusp forms are an invariant subspace can be seen by computing the
compound Laplacian term by term in the Fourier expansion. We first consider
the principal self-adjoint part of the compound Laplacian, that is the operator

L = −∆
cmp(ε)
k − iky∂x and prove that L has compact resolvent. We can read from

Proposition 2.5 that the quadratic form associated with L is

QL(φ) =

∫

Γ′\H′

yk|∇x,yφ|2 dxdy dp dq + ε

∫

Γ′\H′

yk−2|∇u,vφ|2 dxdy du dv

=
∑

n,m∈Z\{0}

(∫

R+

|cH0(y∂xφ;n,m; y)|2 + |cH0(y∂yφ;n,m; y)|2 dy

y2−k

+ ε

∫

R+

|cH0(∂uφ;n,m; y)|2 + |cH0(∂vφ;n,m; y)|2 dy

y2−k

)
,

where the second equality follows from the Parseval identity for the Fourier–Heisenberg
series, Lemma 4.5. To prove discreteness of the spectrum, we need to prove that
the set

(5.16) A =
{
φ ∈ L2(H(0, 0))gencusp : QL(φ) ≤ 1

}

is compact in the L2 topology. We adapt the proof strategy in [LP76, Lemma 8.7].
Note that for any a, b > 0, in the compact region of Γ′\H′ where a < y < b,
the quadratic form defines a norm equivalent to the standard Sobolev norm on
W1,2(Γ′\H′); since genuine affine-invariant modular form have mean zero, the
Rellich–Kondrachov theorem [AF03, Theorem 6.3] tells us that the set of genuine
cusp forms in A supported on a < y < b is compact in the L2 topology (note that
the theorem is usually stated in euclidean space, but is a purely local statement and
so holds in the bulk of Γ′\H′). Using Lemma 4.5, to prove compactness it suffices
to prove that cusp forms in A satisfy uniformly

(5.17) 0 = lim
a→0

∫ a

0

∑

m,n∈Z\{0}

∣∣∣cH0(φ;n,m; y)
∣∣∣
2 dy

y2−k

and

(5.18) 0 = lim
b→∞

∫ ∞

b

∑

m,n∈Z\{0}

∣∣∣cH0(φ;n,m; y)
∣∣∣
2 dy

y2−k
.

By definition of cusp forms, they have no n = 0 terms in their Fourier–Heisenberg
series. As such, we can study (5.18) as in the case of the modular surface, using
that

|cH0(φ;n,m; y)|2 ≤ 4πn2|cH0(φ;n,m; y)|2 = y−2|cH0(y∂xφ;n,m; y)|2
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we deduce∫ ∞

b

∑

m,n6=0

∣∣∣cH0(φ;n,m; y)
∣∣∣
2 dy

y2−k
≤ b−2

∫ ∞

b

∑

m,n6=0

∣∣∣cH0(y∂xφ;n,m; y)
∣∣∣
2 dy

y2−k

≤ QL(φ)

b2
.

For (5.17), we use this time the derivative in the v direction. It follows from
Corollary 4.7 that there are no m = 0 terms in the Fourier expansion of a genuine
cusp form we can use

y−2|cH0(φ;n,m; y)|2 ≤ 4πm2y−2|cH0(φ;n,m; y)|2 = |cH0(∂vφ;n,m; y)|2

to deduce∫ a

0

∑

m,n6=0

∣∣∣cH0(φ;n,m; y)
∣∣∣
2 dy

y2−k
≤ a2

∫ a

0

yk−2
∑

m,n6=0

∣∣∣cH0(∂vφ;n,m; y)
∣∣∣
2

dy

≤ a2

ε
QL(φ).

All in all, this implies that A is compact, so that the L restricted to cusp forms has
compact resolvent and therefore discrete spectrum with finite multiplicity.

Recall now that we defined −∆
cmp(ε)
k = L+ iky∂x, and we now aim to show that

iky∂x is relatively compact with respect to L. From [Kat95, Theorem IV.5.35] we
know that a relatively compact perturbation does not change the essential spectrum,
and the essential spectrum of L is empty. To show that iky∂x is relatively compact
with respect to L, it is sufficient to show that for some λ ∈ C, iky∂x(L − λ)−1

is compact. We just proved that if z is not an eigenvalue of L then (L − λ)−1 is
compact, so that by the functional calculus (L−λ)−1/2 also is. It also follows from

its definition that L has the same principal symbol as −∆
cmp(ε)
k and as such is also a

second order elliptic operator, therefore (L−λ)−1/2 is a pseudodifferential operator
of order −1 [See67, Theorem 2], so that iky∂x(L − λ)−1/2 is a pseudodifferential
operator of order 0, and therefore bounded by the Calderón–Vaillancourt theorem
[Hör07, Theorem 18.1.11]. Through this discussion, we obtain that

iky∂x(L− λ)−1 = (iky∂x(L− λ)−1/2)(L − λ)−1/2

is the composition of a bounded and compact operator, and as such compact.

Therefore −∆
cmp(ε)
k also has compact resolvent when restricted to cusp forms, and

as such discrete spectrum. �

Proposition 5.10. For every λ ∈ C \ R, (∆cmp(ε)
k + λ)−1 → (∆fol

k + λ)−1 in the
strong operator topology as ε→ 0.

Remark 5.11. Because cusp forms are an invariant subspace for both ∆
cmp(ε)
k and

∆fol
k it also means that the restriction of the resolvents to cusp forms or to their

orthogonal complement also converge appropriately in the strong operator topology.

Proof. Recall that the strong operator topology is induced by pointwise conver-

gence. Let f ∈ L2(H(0, 0)), we need to show (∆
cmp(ε)
k + λ)−1f → (∆fol

k + λ)−1f .
Since

‖(−∆
cmp(ε)
k + λ)−1‖ ≤ dist(λ, spec(−∆

cmp(ε)
k ))−1 ≤ |Im(λ)|−1,
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the family (−∆
cmp(ε)
k +λ)−1 is uniformly bounded; therefore it is sufficient to verify

this pointwise convergence of (−∆
cmp(ε)
k +λ)−1 → (−∆fol

k +λ)−1 on a dense subset
of L2(H(0, 0)), and in particular to verify it on functions of Schwartz class in y,
which we now assume f to be. From the second resolvent identity, we have that

(−∆
cmp(ε)
k + λ)−1f − (−∆fol

k + λ)−1f = ε(−∆
cmp(ε)
k + λ)−1∆vert(−∆fol

k + λ)−1f.

Since −∆fol
k + λ is hypoelliptic, its inverse is a pseudodifferential operator [Hör61],

in particular the Schwartz class of functions is stable under ∆vert(−∆fol
k + λ)−1.

Furthermore, the Schwartz class embeds boundedly in L2(H(0, 0)), and we have

previously indicated that the family (−∆
cmp(ε)
k + λ)−1 is uniformly bounded as

operators on L2. Consequently, for any Schwartz function f ,

‖ε(−∆
cmp(ε)
k + λ)−1∆vert(−∆fol

k + λ)−1f‖L2 = O(ε),

and we deduce the strong convergence of the resolvents. �

As a corollary, we get that the family {−∆
cmp(ε)
k } is spectrally inclusive, meaning

that the spectrum of {−∆fol
k } is comprised of limit points from the spectra of

{−∆
cmp(ε)
k }.

Corollary 5.12. For every λ ∈ spec(−∆fol
k ), there is a family {λε ∈ spec(−∆

cmp(ε)
k )}

such that λε → λ. Furthermore, for every bounded continuous function f : R → R,

f(−∆
cmp(ε)
k ) → f(−∆fol

k ) in the strong operator topology.

Proof. The second statement is a consequence of strong convergence of the resolvent
and [Wei80, Theorem 9.17]. Suppose that λ ∈ spec(−∆fol

k ) is not a limit point of

the spectra of −∆
cmp(ε)
k , and take f to be a function supported near λ and so

that supp(f) ∩ spec(−∆
cmp(ε)
k ) = ∅ for all sufficiently small ε. Then, it would be

impossible for f(−∆
cmp(ε)
k ) to converge to f(−∆fol

k ), in the strong topology, proving
the corollary. �

Remark 5.13. Let us make a few remarks about Proposition 5.10 and Corollary 5.12.

First, since cusp forms are an invariant subspace of ∆fol
k and ∆

cmp(ε)
k , the state-

ments apply mutatis mutandis to the restriction of those operators to cusp forms
or their orthogonal complement. Second, the resolvents do not converge in the op-
erator norm topology, to see this it suffices to compare their action on a sequence

f(τ)e(⌊ε−1⌋q) for a fixed f . Finally, the convergence of f(−∆
cmp(ε)
k ) → f(−∆fol

k )
in the strong operator topology is a bit weaker than convergence of the spectral
projections but for most intents and purposes can be used the same way. Note that

by monotonicity of the involved operators (−∆fol
k ≤ −∆

cmp(ε)
k for all ε > 0), the

condition on the continuity of f can be relaxed to right-continuity.

6. Siegel–Veech transforms

In this section we briefly recall basic properties of the Siegel–Veech transforms
for any configuration on any stratum. We then specialize to our case of the stratum
H(0, 0) and prove the main results, Theorem 1.4 and Theorem 1.5, in particular
showing that Siegel–Veech transforms exhaust the complement of cusp forms. The
main technical step is the computation of Fourier coefficients of Siegel–Veech trans-
forms in Proposition 6.8. We complement this in Section 6.6 by computing adjoints
and kernels of Siegel–Veech transforms.



40 JAYADEV S. ATHREYA, JEAN LAGACÉ, MARTIN MÖLLER, AND MARTIN RAUM

6.1. Basic properties. A flat surface (X,ω) ∈ H(α) determines a singular flat
metric, with cone points of angle 2π(αi + 1) where ω has a zero of order αi. A
saddle connection γ is a geodesic in the flat metric connecting two zeros, with none
in its interior. We denote the set of saddle connections by SC(ω). To each saddle
connection γ we associate the holonomy vector hol(γ) =

∫
γ ω ∈ C.

A configuration C is a choice of subset C(ω) ⊂ SC(ω) such that if we set

ΛC
ω = {hol(γ) : γ ∈ C(ω)},

the assignment
ω 7−→ ΛC

ω

is SL2(R)-equivariant. Examples of configurations include the set of saddle connec-
tions joining two specified zeros, two zeros of specified orders, saddle connections
that sit at the boundary of cylinders in a fixed homotopy class, etc. Given any
configuration C and a function f : R2 → C, we define the Siegel–Veech transform
with respect to C as

SVC(f) : H(α) −→ C, (X,ω) 7−→
∑

v∈ΛC
ω

f(v).

By definition SVC(g · f) = g · SVC(f) for any g ∈ SL2(R).
If the function f is of K-type k, then the Siegel–Veech transform is the lift (in

the sense of (2.10)) of an affine modular-invariant function of weight k on H′. We
indicate that we work with this function by writing a pair of variable SVC(f)(τ, z)
with (τ, z) ∈ H′ as the argument of the Siegel–Veech transform.

We now specialize to the stratum H(0, 0) we are mainly interested in. In this
case there are two obvious configurations. The first consists of absolute periods,
the configurations of saddle connections joining (say) the first zero to itself. If
the second zero is not a rational point with respect to the period lattice based
at the first zero, then Λabs

ω = Λprim
ω consists of the primitive lattice vectors in

the period lattice underlying (X,ω). Since we consider Siegel–Veech transforms as
L2-functions, we may ignore the measure zero complementary set. By definition
SVabs(f) factors through the projection toH(0), i.e., contributes to the non-genuine
part of L2(H(0, 0)). It in fact orthogonal to cusp forms and covers their orthogonal
complement, i.e., the space of Eisenstein transforms in any weight k, since

(6.1) Ek(τ |ψ) =
∑

(c,d)∈Z2

gcd(c,d)=1

(cτ + d)k

|cτ + d|k ψ
( Im(τ)

|cτ + d|2
)

= SVabs(f)(Λτ )

for f(λ) = λk

|λ|ψ(1/|λ|2) and Λ(τ) = 〈 τ√
y ,

1√
y 〉. Here we consider Λ ⊂ R2 ∼= C when

taking powers of elements in Λ.
The second case consists of relative periods, the configurations of saddle con-

nections Λrel
ω joining (say) the first zero to the second zero. We denote the corre-

sponding Siegel–Veech transform by SVrel(f). Having decompositions of L2-spaces
in mind we may ignore the flat surfaces where the relative period is a real multiple
of an absolute period, since this is a measure zero set. Consequently, the definition
of Λrel

ω does not involve any primitivity condition on lattice vectors. However, these
two cases do not exhaust all configurations:

Lemma 6.1. For any M ∈ N assigning with (Λ, z) ∈ H(0, 0) the set CM = z+ 1
MΛ

of translates of the relative period by a 1/M -th lattice vector is a configuration.
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Proof. Both independence of the choice of the relative period and G(R)-equivariance
are obvious. �

We let SVrel,M := SVCM be the corresponding Siegel-Veech transformation. That
is,

(6.2) SVrel,M (f)(Λ, z) =
∑

w∈CM
f(w).

Remark 6.2. In this homogeneous space setting, the relative Siegel–Veech transform
can also be stated as follows. Let S′(R) ⊂ G′(R) be the stabilizer of (1, 0) with
respect to the right action and S′(Z) = S′(R)∩G′(Z). Then S′(R)\G′(R) ∼= R2\{0}
as G′(R) spaces, and we may set for any f : R2 → R

f̂M (g, w1, w2) = f
(
( 1
M , 0) · (g, w1, w2)

)
= f

(
( 1
M , 0)g + (w1, w2)

)
.

This function is left-invariant under S′(R), which contains the lower triangular
subgoup L(R) ⊂ G(R). Since the G′(Z)-orbit of ( 1

M , 0) is obviously 1
MZ2, we

conclude that

(6.3)

SVrel,M (f)(g, w1, w2) =
∑

m,n∈Z

f
(
(w1, w2) +

1

M

(
m(a, b) + n(c, d)

))

=
∑

γ∈S′(Z)\G′(Z)

f̂M (γ · (g, w1, w2)), g =
(
a b
c d

)
,

Proposition 6.3. For any configuration C and any compactly supported function f ,
the Siegel–Veech transform SVC(f) ∈ L2(H(α)).

For any configuration C there is a constant, the Siegel–Veech constant cC, de-
pending on the stratum H(α) such that

∫

H(α)

SVC(f) dµ = cC

∫

R2

f(x, y) dxdy

for any compactly supported f . In particular SVC is a bounded linear operator.
For the stratum H(0, 0) the equivariance

(6.4) SVrel(g
′ · f) = g′ · SVrel(f)

holds for any g′ ∈ G′(R), where g′ acts on R2 affine-linearly.

Proof. The first statement is the main result of [ACM19], but can be proven for
H(0, 0) directly. The second result is the main result of Veech in [Vee98]. The third
follows from direct computation or from Remark 6.2, observing that the Siegel–
Veech transform is a sum over left cosets and that g′ ∈ G′(R) acts on function on
the left by acting on the variable on the right. �

6.2. Casimir elements acting on the Euclidean plane. The continuity and
G′(R)-equivariance (6.4) imply that for any X ∈ g′ the Lie derivative of the action
functions f on R2

(6.5) Xf := lim
t→0

1

t
(etXf − f)

has the property that X SVC(f) = SVC(Xf). We compute this action explicity
for the Casimir operators. We work on R2 with coordinates (w1, w2) and use the
differential operators Dwi = wi

∂
∂wi

.



42 JAYADEV S. ATHREYA, JEAN LAGACÉ, MARTIN MÖLLER, AND MARTIN RAUM

Lemma 6.4. The differential operators

8Dfol
eucl = D2

w1
+Dw1Dw2 +Dw2Dw1 +D2

w2
+ 2Dw1 + 2Dw2 and Dtot

eucl = 0

on R2 have the property that

(6.6) SVC(Dfol
euclf) = Dfol SVC f and SVC(Dtot

euclf) = Dtot SVC f

for any smooth compactly supported f : R2 −→ C and any configuration C.
Proof. Direct computations give the Lie derivative action of the standard generators
(see Section 2) on such functions, namely

Pf =
∂

∂w1
f, Qf =

∂

∂w2
f, Hf =

(
w1

∂

∂w1
+ w2

∂

∂w2

)
f,

(F +G)f =
(
w2

∂

∂w1
+ w1

∂

∂w2

)
f, (F −G)f =

(
−w2

∂

∂w1
+ w1

∂

∂w2

)
f .

The claim follows by combining using (2.3) the expressions (2.4) and (2.6) for C
and C′ in these generators. �

6.3. The representation generated by Siegel–Veech transforms. Theorem 1.4
is a consequence of the following proposition together with Proposition 5.2.

Proposition 6.5. For the relative period Siegel–Veech transforms of a mean-zero
compactly supported function f 6= 0, there is a multiplicity m ∈ Z≥0 ∪ {ℵ0} (de-
pending on M) such that the representation it generates is

πL2

(
SVrel,M (f)

) ∼= mπSAff
0 ∈ L2

(
H(0, 0)

)

where πSAff
0 is the representation from (3.18) with index n = 0.

Proof. By Lemma 6.4 the Casimir element of G′(R) acts trivially on the represen-
tation πL2

(
SVrel,M (f)

)
. The classification of representations of G′(R) shows that

we have a direct sum decomposition

πL2

(
SVrel,M (f)

) ∼= mπSAff
0 ⊕ πG

for a nonnegative integerm and the pullback πG of a G(R) representation. Consider
the averaging map av : L2(G′(Z)\G′(R)) → L2(G(Z)\G(R)), given by the integral
along the torus H′(Z)\H′(R). When applied to the right hand side, the averaging
yields πG. When applied to a Siegel–Veech transform we combine the summation
over the period lattice with the integral over a fundamental parallelogram to obtain
the R2-integral of f , which is zero by hypothesis. Hence πG is zero. �

6.4. Fourier–Heisenberg coefficients. We determine some Fourier–Heisenberg
coefficients of Siegel–Veech transforms as preparation for Theorem 1.5. Suppose
f = f0(r) exp(ikθ) is of K-type k. Then using Lemma 2.3 we may view the Siegel–
Veech transform as a function on H′, writing abusively SVrel,M (f)(τ, z) to indicate
this, which is affine modular-invariant of weight k and whose lift (2.10) is the honest
Siegel–Veech transform SVrel,M (f) on H(0, 0).

The first statement will be used to conclude that they are orthogonal to cusp
forms.

Proposition 6.6. Let f : R2 −→ C be a K-isotypical Schwartz function of K-type k.
Then, for any M ∈ N, the cH0-Fourier coefficients of the M -relative Siegel-Veech
transforms vanish, i.e.

cH0
(
SVrel,M (f); n,m; y

)
= 0
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for any m ∈ Z and any n ∈ Z \ {0}, where τ = x+ iy as usual.

Proof. From Lemma 4.3, we want to show that the constant term in the Fourier
expansion with respect to u (which gives the sum of the cH0-terms) is independent
of x, so that only the constant term remains. We may view the Siegel–Veech
transform of a function as an affine modular-invariant function of weight k on H′.
Explicitly

(6.7) SVrel,M (f)(τ, z) =
∑

a,b∈Z

f

(
1√
y

(
u+ iv +

a(x+ iy) + b

M

))

so that, unfolding in b,

(6.8)

∫ 1

0

SVrel,M (f)(τ, z) du =

∫

R

∑

a∈Z

M∑

b=1

f

(
1√
y

(
u+ iv +

a(x+ iy) + b

M

))
du .

Now it is clear that for any fixed v and y translating x does not change this integral.
�

The second proposition will later help us to show that enough Fourier–Heisenberg
coefficients can be controlled by Siegel–Veech transforms, and that they thus span
the space of Eisenstein series. Before stating the proposition we require a few
definitions. One of the many ways to define Bessel functions for integer index k is
via the Hansen–Bessel integral formula [GR07, Formula 8.411.1]:

(6.9) Jk(z) :=
1

2π

∫ π

−π
exp(−ikθ + iz sin θ) dθ .

Definition 6.7. The Hankel transform of order k ∈ Z is the integral operator
defined on functions f0 : R+ → C as

(6.10)
(
Hkf0

)
(s) :=

∫ ∞

0

f0(r)Jk(sr) r dr, s ≥ 0.

While we would denote Hk any realisation of the Hankel transform from one
function space to another, we make the observation that Hk is an isometric invo-
lution on L2(R+, rdr), in the sense that it is norm preserving and that H−1

k = Hk.
This can be deduced immediately from the orthogonality relation enjoyed by Bessel
functions [GR07, Formula 6.512.8]:

(6.11)

∫ ∞

0

Jk(sr)Jk(tr) r dr = s−1δ(s− t) ,

where δ is the Dirac delta distribution.
For j ∈ Z \ {0}, define the isometry Tj : L

2(R+, rdr) → L2(R+, y−3dy) and its
inverse Sj by

(6.12) Tjh(y) = yh
(2πj√

y

)
and Sjh(r) =

r2

(2πj)2
h
( (2πj)2

r2

)
.

Proposition 6.8. For every m ∈ Z \ {0}, k ∈ Z, M ∈ N and f0 ∈ L2(R+, rdr),
the function f = f0(r) exp(ikθ) of K-type k has Fourier coefficients

cH0
(
SVrel,M (f); 0,mM ; y

)
= (mM)2

(
TMHkf0

)( y
m2

)
∈ L2(R+, y−3dy) ,

and every other Fourier coefficient vanishes.
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Conversely, given h ∈ L2(R+, y−3dy), the M -relative Siegel–Veech transform of

the function f̃ = M−2 (HkSMh) exp(ikθ) of K-type k has h as its Fourier coeffi-
cients, that is

cH0
(
SVrel,M (f̃); 0,mM ; y

)
= m2h(m−2y) .

Proof. Let m̃ ∈ Z \ {0}. We compute, starting with (6.8) that the coefficient
cm̃ = cH0

(
SVrel,M (f); 0, m̃; y

)
equals

cm̃ =

∫ y

0

∫ 1

0

∫

R

∑

a∈Z

M∑

b=1

f

(
u+ iv

y1/2
+
a(x+ iy) + b

y1/2M

)
du dx e(−m̃v

y
) dv

(x-invariance) =

∫ y

0

∫

R

∑

a∈Z

M∑

b=1

f

(
i(Mv + ay)

y1/2M
+
uM + b

y1/2M

)
du exp(−2πim̃

v

y
) dv

(unfolding in a) =

M∑

a,b=1

∫

R

∫

R

f

(
y−1/2

(
u+ i(v +

ay

M
) +

b

M

))
e(−m̃v

y
) du dv

= M

M∑

a=1

e
(
− am̃

M

) ∫

R

∫

R

f
(
ũ+ iṽ

)
e
(
− m̃

ṽ√
y

)
y dũ dṽ ,

where we set ũ = u+b/M√
y and ṽ = v+ay/M√

y . At this point, we see that the integrals

are independent of a and the sum vanishes whenever m̃ 6∈MZ, otherwise the sum
is equal toM . We therefore continue, assuming that m̃ = mM ∈MZ and changing
to polar coordinates to obtain

cH0
(
SVrel,M (f); 0,mM ; y

)
= yM2

∫ ∞

0

∫ π

−π
f0(r) exp(ikθ − 2πimM

r sin θ√
y

) dθ r dr

(Hansen–Bessel formula) = yM2

∫ ∞

0

f0(r)Jk(2πmMy−1/2r)rdr

= (mM)2
(
TMHkf0

)
(m−2y) ∈ L2(R+, y−3dy).

For the converse statement, given h ∈ L2(R+, s−3ds) apply the previous reasoning
to f0 = M−2HkSMh ∈ L2(R+, rdr) and f = f0 exp(ikθ) to obtain the desired
identity in the end. �

6.5. Orthogonality to cusp forms. Recall from the introduction that we want
to prove that the closure SVrel,∞ = span(∪∞

M=1SVrel,M ) of the union of the spaces

(6.13) SVrel,M = span
{
SVrel,M (f) : f ∈ C∞

c,0(R
2)
}

fills the orthogonal complement of cusp forms.

Proof of Theorem 1.5. To show orthogonality it suffices to show orthogonality to all
Siegel–Veech transforms of fixed K-type k. We may thus decompose the cusp form
also in K-types and it suffices to show orthogonality of the component of type k.
We may thus work on Γ′\H′ by the correspondence in Lemma 2.3. There we use
the expression for the scalar product in Lemma 4.5. Each of these summands under
the integral vanishes, either by Proposition 6.6 or by definition of a cusp form.

Let now ϕ ⊥ L2(H(0, 0))gencusp ⊕ SVrel,∞, we need to show that ϕ = 0. Without
loss of generality, we assume by density that ϕ is smooth and has compact support
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in the y variable. Then again Lemma 4.5 shows by Proposition 6.6 that for everyM
and every f ∈ C∞

c,0(R
2) of K-type k

0 =

∫

R+

∑

ℓ≥1

cH0
(
SVrel,M (f); 0, ℓ; y

)
cH0
(
ϕ; 0, ℓ; y

) dy

y2−k

By Proposition 6.8 this implies that for every M ∈ N and any h : (0,∞) → C

smooth and compactly supported

(6.14) 0 =

∫

R+

∑

ℓ≥1

ℓ2h(ℓ−2y) cH0
(
ϕ; 0, ℓM ; y

) dy

y2−k
.

In particular, since ϕ and h are compactly supported in the y variable, this is a
finite sum and we do not have to worry about convergence, let L be the largest
index in the sum.

Towards a contradiction, suppose there were some M ∈ N and some h ∈
L2(R+, s−3ds) so that

0 6=
∫

R+

h(y)cH0(ϕ; 0,M ; y)
dy

y2−k
,

without loss of generality assume that it is equal to 1. But then, it follows from
(6.14) that

(6.15) −1 =

∫

R+

L∑

ℓ=2

ℓ2h(ℓ−2y) cH0
(
ϕ; 0, ℓM ; y

) dy

y2−k
.

However, using again (6.14) with 2M replacing M , and h replaced with h̃(y) =
4h(y/4) we have that

0 =

∫

R+

⌊L/2⌋∑

ℓ=1

ℓ2h̃(ℓ−2y) cH0
(
ϕ; 0, 2ℓM ; y

) dy

y2−k

=

∫

R+

∑

2≤ℓ≤L
2|ℓ

ℓ2h(ℓ−2y) cH0
(
ϕ; 0, ℓM ; y

) dy

y2−k
.

so that (6.15) can be rewritten as

−1 =

∫

R+

∑

2≤ℓ≤L
2∤ℓ

ℓ2h(ℓ−2y) cH0
(
ϕ; 0, ℓM ; y

) dy

y2−k

and the other, finitely many, arithmetic progressions can all be sieved out in the
same way so that the righthand side in (6.15) is necessarily 0, a contradiction.

By density, we therefore have that necessarily cH0(ϕ; 0,M ; y) = 0 for all M ∈ N,
making ϕ a cusp form; yet we also supposed that ϕ was orthogonal to cusp forms
so that ϕ = 0. �

6.6. Kernels, adjoints, and norms of Siegel–Veech transforms. Understand-
ing the Siegel-Veech transform as a linear operator between L2-spaces comprises
determining its range (as we did in the previous section), its adjoint and its ker-
nel. We address the last two items here. The type of answers differs even between
the cases H(0) and H(0, 0), leaving a coherent picture for general strata as an
interesting future problem.
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Adjoints. Formal adjoints to the Siegel-Veech transform can be computed using
a standard integration trick based on Fubini’s theorem. This is classical for H(0),
see e.g. [Lan85, p. 242], and can be adapted to H(0, 0) as follows.

Proposition 6.9. The formal adjoint of the relative Siegel-Veech transform is given
by assigning with h ∈ L2(G′(Z)\G′(R)) the function

(6.16) SV∗
rel(h)(g

′) =

∫

S′(Z)\S′(R)

h(sg′) dν(s) .

on S′(R)\G′(R) ∼= R2 \ {0}.
Proof. We abbreviate Γ′ = G′(Z) and disintegrate the Haar measure of G′(R)
as dµ = dν(s) dµ(g′) into the Haar measure on S′(R) and the measure µ on
S′(R)\G′(R). Now

(6.17)

〈
SVrel(f), h

〉
Γ′\G′(R)

=

∫

Γ′\G′(R)

∑

γ∈S′(Z)\Γ′

f̂(γg′)h(g′)dµ(g′)

(Γ′-invariance of h) =

∫

S′(Z)\G′(R)

f̂(g′)h(g′) dµ(g′)

(S′(R)-invariance of f̂) =

∫

S′(R)\G′(R)

f̂(g′)

∫

S′(Z)\S′(R)

h(sg′)dν(s) dµ(g′)

=
〈
f, SV∗

rel(h)
〉
L2(R2)

verifies the claim. �

Kernels and norms. On H(0) = G(Z2)\G(R2), the Siegel–Veech transform is
not an L2-isometry, since it has obviously a non-trivial kernel consisting of odd
functions. However the functional equation for Eisenstein series provides more:

Proposition 6.10. The kernel of the absolute Siegel–Veech transform on H(0)
strictly contains the odd functions.

Proof. Working formally, putting k = 0, ψ(u) = us in (6.1), we obtain the classical
Eisenstein series

E(τ, s) = SVabs(hs)(Λτ ),

where hs(x) = ‖x‖−2s. Following, for example, Bergeron [Ber16, Section 4.1], we
put

E∗(τ, s) = π−sΓ(s)ζ(2s)E(τ, s) .

Then the functional equation states

(6.18) E∗(τ, s) = E∗(τ, 1− s) .

Formally, then, putting h∗s(x) = π−sΓ(s)ζ(2s) ‖x‖−2s, this implies

SVabs

(
h∗s − h∗1−s

)
= 0 .

To resolve the obvious integrability and convergence issues, we perform a standard
trick. We define −2s = −1 + it, so that s = 1

2 − i t2 and 1 − s = 1
2 + i t2 . For a

smooth function η of compact support on R+, we write x in polar coordinates as
(r, θ) and obtain the desired kernel elements as

fη(x) =

∫

R+

η(t)(hs(x)− h1−s(x)) dt =

∫

R+

η(t)(r−1+it − r−1−it) dt .
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(This construction can be generalized to functions of other K-types by defining

fk,η(r, θ) = eikθ
∫

R+

η(t)(r−1+it − r−1−it) dt

for nonzero integers k.) �

This is in contrast to the stratum H(0, 0):

Proposition 6.11. TheM -relative Siegel–Veech transform is M times an isometry
on the space of mean zero functions, i.e.

∥∥SVrel,M (f)
∥∥
2
= M‖f‖2

for f ∈ Cc(R
2) of mean zero. More precisely, for f ∈ Cc(R

2), we have
∫

H(0,0)

SVrel,M (f) dµ = M2

∫

R2

f(x) dx

and
∫

H(0,0)

SVrel,M (f)2 dµ = M4

(∫

R2

f(x) dx

)2

+M2

∫

R2

f(x)2 dx.

Proof. By the equivariance (6.4), the map

f 7−→
∫

H(0,0)

SVrel,M (f) dµ

is a G′(R2)-invariant functional on Cc(R
2), and so we must have

∫

H(0,0)

SVrel,M (f) dµ = cM

∫

R2

f(x) dx,

since the only G′(R2)-invariant measure on R2 is Lebesgue measure. To find the
constant cM , note that if we take f = χB(0,R) to be the indicator function of the
ball of radius R, with R sufficiently large, the Siegel–Veech transform SVrel,M (f)
will be approximately constant, with value M2πR2, so cM = M2. For the L2

computation, we consider the configuration C2
M ⊂ R2×R2, and for h ∈ Cc(R

2×R2),
we define (by abuse of notation) SVrel,M (h) as the sum over C2

M . By the same
proof as for M = 1 (see [Ath15] for further details), the Siegel–Veech transform
SVrel,M (h) ∈ L1(H(0, 0)). Consequently, by the equivariance (6.4) the map

h 7−→
∫

H(0,0)

SVrel,M (h) dµ

is a G′(R2)-invariant functional on Cc(R
2 × R2), and so we must have

∫

H(0,0)

SVrel,M (h) dµ = aM

∫

R2×R2

h(x, y) dxdy + bM

∫

R2

h(x, x) dx,

since the only G′(R2)-invariant measures on R2×R2 are Lebesgue measure and the
measure supported on the diagonal ∆. A similar argument to above shows that
with h(x, y) = χB(0,R)(x)χB(0,R)(y), for R≫ 1, that aM =M4, and bM =M2. �
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