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Abstract. We provide a complete classification of Teichmüller curves occur-
ring in hyperelliptic components of the meromorphic strata of differentials.

Using a non-existence criterion based on how Teichmüller curves intersect the

boundary of the moduli space we derive a contradiction to the algebraicity of
any candidate outside of Hurwitz covers of strata with projective dimension

one, and Hurwitz covers of zero residue loci in strata with projective dimension

two.
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1. Introduction

Teichmüller curves are usually defined as immersed curves C →Mg in the mod-
uli spaces of curves that are totally geodesic for the Teichmüller metric. They are
generated by an abelian or quadratic differential on any of the Riemann surfaces X
parameterized by the curve C. Passing to a double cover of X we may (and we will)
restrict to the case of curves generated by an abelian differential ω. A Teichmüller
curve thus defines the type µ = (m1, . . . ,mn) of the abelian differential ω, a tuple
of integers with sum equal to 2g − 2, the order of zeros of ω. The classical case,
originating from a discovery of Veech [Vee89] thus deals with a differential of holo-
morphic type where all mi ≥ 0 and has beautiful connections to billiards. There
are several infinite series of Teichmüller curves ([War98; McM03; Cal04; McM06a;
BM10; MMW17]), a complete classification in low genus ([McM06b]) and finiteness
results ([MW15; BHM16]) thanks to input to this geometric problem from Hodge
theory and number theory. See also [McM21] for the most recent survey and a lot
of open questions on Teichmüller curves.
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Research of S.M is supported by the Alexander von Humboldt Foundation, and the ERC
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In this paper we shed some light into the case of meromorphic differentials,
i.e. the case where at least one of the mi is negative. There are several equivalent
definitions of Teichmüller curves that we briefly recall in Section 2.1. Relevant for us
is the following characterization, that we take as the definition in the meromorphic
case: A Teichmüller curve is an immersed algebraic curve C → Mg which is the
the image under the forgetful map of a 2-dimensional variety M → ΩMg(µ) in the
moduli space of flat surfaces of type µ, which is locally cut out by R-linear equations
in the period coordinates. The Appendix provides an example why algebraicity is
a non-trivial additional condition in the meromorphic case.

Removing the dimension hypothesis in this definition we arrive at the notion
of linear manifold (also known as affine invariant submanifold). In the holomor-
phic case these are the closures of GL2(R)-orbits by the fundamental results of
Eskin-Mirzakhani and Mohammadi ([EM18; EMM15]). The classification of lin-
ear manifolds has recently attracted a lot of attention, both by exhibiting excep-
tional examples ([MMW17; EMMW20]) and by deriving constraints to the existence
(e.g. [MW18; AW21]). These constraints are often derived by degeneration argu-
ments, either to the boundary of Mirzakhani-Wright ([MW17]) or, retaining even
more information, to the multi-scale compactification ([BCGGM]). Recent work
of Benirschke-Dozier-Grushevsky [BDG22] states that the boundary intersection of
linear manifolds is (roughly) a product of linear manifolds, now also in meromor-
phic strata. Exploring the possibilities for such boundary intersections is a main
motivation for our classification attempts.

Throughout this paper we restrict our attention to the hyperelliptic strata. (We
recall Boissy’s classification of connected components of the meromorphic strata
in Section 2.2.) Just as in McMullen’s genus two classification [McM05], the first
classification result in the holomorphic case, we consider hyperelliptic strata to
simply reduce the combinatorial complexity.

Certain obvious sources of Teichmüller curves exist in meromorphic strata. They
arise as Hurwitz spaces of covers of strata whose projectivized dimension is one,
or whose projectivized dimension is one after imposing conditions on the residues.
We compile in Proposition 2.2 the rather short list of those obvious Teichmüller
curves that lie in hyperelliptic strata. This list is analagous to square-tiled surfaces
in the holomorphic case: They form an infinite series, the degree of the cover being
one obvious invariant, and the precise classification of irreducible components is
probably a tedious task. Our main result is:

Theorem 1.1. The only Teichmüller curves in a hyperelliptic stratum of mero-
morphic differentials are obvious Teichmüller curves.

To prove this theorem we need to show that the linear manifold M containing
the GL2(R)-orbit of a given flat surface is not closed and algebraic unless we are in
one of the obvious cases. Providing a neighborhood of a point in the stratum or in
an algebraic compactification that intersects M in infinitely many irreducible com-
ponents would suffice to rule out a flat surface, just as it is done in the appendix.
In practice we found this difficult to achieve. Instead we design a criterion (Propo-
sition 3.3) based on the structure of boundary intersections of linear manifolds in
[BDG22]: It suffices to exhibit a surface in M with a cylinder (in say, the vertical
direction) and a non-vertical saddle connection outside all vertical cylinders. To
apply this criterion, we use several paths in M , nicknamed ’complex conjugation’,
’coordinate dancing’ and ’pulling through cylinders’, see Section 3.4. Interestingly,
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the paths most useful to derive constraints on flat surfaces (X,ω) generating Teich-
müller curves stay in M but leave the closure of the GL2(R)-orbit of (X,ω)!

Finally, we note that non-obvious Teichmüller curves do exist in other strata.
Examples are given by closure of the Gothic locus [MMW17] in the multi-scale
compactification [BCGGM], more precisely the lower level components of some
boundary strata, as explained in detail in [Sch23]. Moving forward, it would be
interesting to obtain a more conceptual understanding of Teichmüller curves in
meromorphic strata, similar to what is known in the holomorphic case.

2. Obvious Teichmüller curves

This section collects the background material on Teichmüller curves, on compo-
nents of strata of meromorphic differentials and provides a classification of ’obvi-
ous’ Teichmüller curves in hyperelliptic components of strata. We assume that the
reader is familiar with basic notions about strata of differentials and flat surfaces,
such as period coordinates, the GL2(R)-action and Veech groups. Reference for
this includes the surveys [Zor06; Fil22].

2.1. Characterizations of Teichmüller curves. A Teichmüller curve in a holo-
morphic stratum ΩMg(µ) of the moduli space of flat surfaces generated by a flat
surface (X,ω) admits several equivalent characterizations.

Proposition 2.1. A map C → Mg from a complex curve to the moduli space of
curves is a Teichmüller curve generated by a holomorphic abelian differential if one
of the following equivalent conditions hold

i) The map is an immersion of a totally geodesic curve whose Teichmüller
maps are generated by a quadratic differential q = ω2 which is a square of
an abelian differential.

ii) The curve C is the quotient by SO2(R) of the orbit SL2(R) · (X,ω) of a flat
surface which is closed in ΩMg(µ).

iii) The curve C is the image of the SL2(R)-orbit of a flat surface whose Veech
group is a lattice in SL2(R).

iv) The curve C is the image of a 2-dimensional subvariety M defined by R-
linear equations in the period coordinates of ΩMg(µ) under the forgetful
map ΩMg(µ)→Mg.

v) The variation of Hodge structures over C has a rank two local subsystem
which is maximal Higgs in the sense of [Möl06].

Note that this proposition does not suppose C to be algebraic. Algebraicity
for C is a general property of quotients of the upper half plane by cofinite Fuchsian
groups. Algebraicity of the embedding can be seen as a consequence of Chow’s
theorem or, including the case of higher dimensional linear manifolds, of Filip’s
theorem [Fil16].

Proof. The equivalence of (i) and (ii) is a consequence of Teichmüller’s theorem and
the fact that the Teichmüller metric is the Kobayashi metric, see [McM03]. The
equivalence of (ii) and (iii) is shown by Smillie-Weiss [SW04]. The equivalence of (ii)
and (iv) is nearly a tautology, passing from the SL2(R)-orbit to the GL+

2 (R)-orbit.
The equivalence of (v) and (iii) is the main content of [Möl06]. �

In meromorphic strata we recall that (ii) and (iii) do not give interesting classes
of objects in meromorphic strata.
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First, as noticed by Valdez in [Val12], the Veech group of a meromorphic flat
surface is (up to conjugation and ±Id) either a finite subgroup of the rotation group,
a cyclic parabolic group, or a 2-dimensional Lie group, the stabilizer of (1, 0)T in
GL+

2 (R). Hence an analog of condition (iii) never occurs.
Recall that the core C(X) of a flat surface (X,ω) is the convex hull of the saddle

connections of (X,ω). It is a polygon in X bounded by saddle connections and
possibly with empty interior.

Second, as noticed by Tahar in [Tah20], the GL+
2 (R)-orbit of a meromorphic

flat surface is closed if and only if all of its saddle connections are parallel. Such
surfaces are easy to construct, abundant but nowhere dense in a stratum, and the
GL+

2 (R)-orbits are just C∗-orbits, linear of dimension 1 in period coordinates.
Tahar also remarks that surfaces with closed SL2(R)-orbit are abundant, namely

where the boundary of the core contains two linearly independent saddle connec-
tions (and the Veech group is trivial), or where the core consists of a collection of
cylinders with commensurable moduli (and the Veech group is cyclic parabolic).
Again, these are abundant and easy to construct. We thus do not consider condi-
tion (ii).

We thus define a Teichmüller curve in a meromorphic stratum in analogy to
condition (iv), as in the introduction, including the algebraicity hypothesis. (See
the appendix for an examples where this algebraicity condition is violated.) We also
call (slightly abusing dimension notation) a Teichmüller curve the two-dimensional
linear manifoldM → ΩMg(µ) in a stratum of meromorphic differentials. Let (X,ω)

be a flat surface in M . Contrary to the holomorphic case, this GL+
2 (R)-orbit is never

equal to M , as it sweeps out only one of the chambers of the Teichmüller curve
bounded by loci of parallel saddle connections.

We call a meromorphic flat surface (X,ω) a (meromorphic) Veech surface, if its
GL+

2 (R)-orbit is contained in a Teichmüller curve M and equal to M on an open
subset of M . We say that (X,ω) is generated by (X,ω) in this case.

It would be interesting to have a characterization of Teichmüller curves in metric
terms or Hodge theory, as in (i) or (v).

2.2. Components of strata. Boissy classified in [Boi15] the connected compo-
nent of meromorphic strata. A hyperelliptic component in a stratum ΩMg(µ) is
a component that consists exclusively of hyperelliptic curves. Recall from [Boi15]
that a signature µ is called of hyperelliptic type, if the polar part is of the form
{−p,−p} or {−2p} for some p ∈ N and if the zero part is of the form {m,m} or
{2m} for some m ∈ N. Then Boissy shows that hyperelliptic components exist in
meromorphic strata ΩMg,n(µ) precisely if the signature is of hyperelliptic type.
(The full classification of components distinguishes moreover the spin parity and in
genus one the divisibility of the rotation numbers, see [Boi15] for details.)

2.3. The obvious examples. In this section we classify the obvious examples of
Teichmüller curves in hyperelliptic strata: We call a Teichmüller curve obvious, if it
is the intersection of a Hurwitz space with a locus prescribed by residue conditions
as follows.

Recall that meromorphic strata admit a residue map res : ΩMg(µ)→ Cp defined
by integrating cycles around the poles. Here p is the number of negative entries
in µ. By the residue theorem the image is contained in the hypersurface Cpres where
the coordinates sum to zero. Since the residue map is an algebraic morphism, the
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preimage of (R-)linear subvarieties of Cpres are algebraic (R-)linear subvarieties of
ΩMg(µ), including Teichmüller curves, if the number of poles permits cutting down
the dimension sufficiently.

In general meromorphic strata there is a zoo of obvious Teichmüller curves taking
a genus zero signature µ with n entries, including k higher order poles and imposing
n − 4 linear conditions on the residues of these poles. (This requires k ≥ n − 3 of
course.) In hyperelliptic components, the possibilities are rather limited:

Proposition 2.2. The obvious Teichmüller curves in hyperelliptic components of
meromorphic strata are Hurwitz spaces Hur(d, µ) parameterizing degree d covers

(i a) of flat surfaces in the stratum ΩM0(µ) with µ = (m− 1,m− 1,−m,−m),
fully ramified over both zeros and both poles and unramified elsewhere, or

(i b) of flat surfaces in the stratum ΩM0(µ) with µ = (0, 0,−1,−1), fully rami-
fied over both poles and the zeros having a unique ramification point of the
same order in their fibers, or

(ii a) of flat surfaces in the stratum ΩM0(µ) with µ = (m,−m) and with d odd,
fully ramified over the zero and the pole and unramified elsewhere.

(ii b) of flat surfaces in the stratum ΩM0(µ) with µ = (m,−m) with d even, split-
ting into two subcases depending on whether over the zero and the pole there
is full ramification or two points of ramification order d/2 and unramified
elsewhere.

(iii a) of flat surfaces in the residue-zero locus of the stratum ΩM1(µ) with µ =
(m,−m/2,−m/2) and with d odd, fully ramified over the zero and the poles
and unramified elsewhere, or

(iii b) of flat surfaces in the residue-zero locus of the stratum ΩM1(µ) with µ =
(m,−m/2,−m/2) fully ramified the poles and ramified to order d/2 over
the zero and unramified elsewhere.

Proof. The projectively one-dimensional strata without residue conditions are µ =
(m1,m2,m3,m4) with

∑
mi = −2 in g = 0 and µ = (m,−m) in g = 1. Each

preimage of a zero (i.e., mi > 0) gives a zero and each preimage of a pole (i.e., mi <
0) gives a pole, each of which there are at most two. Consequently the possibilities
for the zeros among µ are one zero fully ramified, one zero with two preimages
ramified to order d/2, or two zeros fully ramified. The analogous statement holds
for the poles. Moreover, the final possibility is some mi = 0, but in this case
there needs to be ramification over it (otherwise the Hurwitz space is a point).
However, the ramification profile might now be one or two ramified preimages with
an arbitrary number of additional unramified sheets. For g = 0, excluding simple
poles, this leaves only the possibility µ = (m − 1,m − 1,−m,−m) as in case (ia),
since there are four special points to be taken care of. If there is a simple pole,
it will be preserved under coverings and so there cannot be any higher order pole,
leaving only the possibility in case (ib). For g = 1 we derived all the restrictions
listed in cases (iia) and (iib). The cases of different ramification orders of the zero
and the pole are excluded by Riemann-Hurwitz.

Next consider strata with residue conditions. Since they are associated with
poles that don’t disappear under coverings, there are at most two poles involved
and thus at most one residue condition. For g = 0 the tuple now has five entries,
leading to at least three zeros or three poles, impossible for hyperelliptic strata.
For g = 1 the only case is µ = (m1,m2,m3) with m1 > 0 > m2 and m3 < 0. The
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presence of two poles implies full ramification over them and thus m2 = m3 by
hyperellipticity. This leaves the cases in (iiia) and (iiib) only. �

The geometry of the strata ΩMg(m,−m) has been studied in detail in [Tah18]
in terms of the wall-and-chamber decomposition determined by the geometry of the
core (the convex hull of the saddle connections) of the meromorphic differential.

3. A non-existence criterion

In this section we provide a criterion to rule out Teichmüller curves based on a
degeneration statement in [BDG22], which in turn is based on the existence of a
good compactification from [BCGGM]. To apply this criterion, we start with a sum-
mary of how to present meromorphic flat surfaces. The proof of the classification
Theorem 1.1 is completed at the end of this section.

3.1. Boissy’s infinite zippered rectangle construction and a variant with
cylinders. We briefly recall the presentation of meromorphic flat surfaces from
[Boi15, Section 3.3]. Boissy starts with a meromorphic flat surface (X,ω) oriented
such that the vertical direction does not admit any saddle connection. The result
of his construction is a decomposition of the surface into half-planes bounded by
broken lines, in fact saddle connections and two infinite horizontal separatricies, and
infinite cylinders with non-vertical core curves bounded by broken lines composed of
saddle connections. There is one such cylinder for each simple pole. This datum can
be encoded by the gluing combinatorics of the saddle connections and separatricies,
as well as the periods of the saddle connections. These half planes and infinite
cylinders are called basic domains. We refer to the saddle connections on the
boundary of these basic domains as boundary saddle connections and denote them
by vi or v±i if we need to specify the two segments after the surface has been cut
open. We write Per(vi) :=

∫
vi
ω for the period of any saddle connection. Since

these periods give local coordinates of the stratum we also refers to boundary
saddle connections briefly as coordinates. Conversely, given a collection of basic
domains with side pairings and periods of the boundary saddle connections allows
to construct the surface uniquely.

Boissy’s algorithm decompose the surface starts with Strebel’s classification of
the vertical trajectories. It provides a decomposition of the surface into half-planes
and half-infinite vertical strips. Each left half plane has a single singularity at its
right boundary. It is cut open along the horizontal separatrix starting there. The
two pieces are the start of an upper and lower half plane assembled by attaching
vertical strips until the process terminates with a right half plane cut along the
horizontal separatrix starting at the singularity at its left boundary. The remaining
vertical strips are assembled similarly to infinite cylinders with non-vertical core
curves.

Our variant allows meromorphic flat surfaces (X,ω) with saddle connections in
vertical direction, but only if these bound cylinders with core curves in the vertical
direction. After removing these cylinders the rest of the surface can be decomposed
by following Boissy’s algorithm above verbatim. It merely requires to consistently
choose how to treat vertical saddle connections when assembling the basic domains:
We orient the saddle connections on the boundary of the basic domain working from
left to right as above, and then require that the period of vertical saddle connections
has positive imaginary part. This yields:
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Proposition 3.1. A meromorphic flat surface can be decomposed uniquely into a
finite number of finite area cylinders with vertical core curves and a finite collections
of Boissy’s basic domains.

We refer to this as the generalized Boissy presentation. Note that the periods
of boundary saddle connections will no longer give local coordinates: some distinct
boundary saddle connections (at the ends of some cylinders) may be exchanged by
the hyperelliptic involution h and periods of h-orbits give coordinates. Nevertheless
we abbreviate ’boundary saddle connection’ as ’coordinate’.

3.2. Equations of linear manifolds at the boundary. Suppose that M ⊂
ΩMg(µ) is an algebraic linear manifold and suppose that it intersects the boundary
stratum given by a level graph Γ. Our main criterion to rule out the existence
Teichmüller curves is [BDG22, Theorem 1.5], that characterizes the generic points
of boundary components of the closure M ⊂ ΞMg,n(µ). For a Teichmüller curve
the boundary consists just of points up to the C∗-rescaling of the differential. We
may restate their criterion as:

Proposition 3.2. The boundary points of Teichmüller curves have level graphs
with only horizontal nodes (i.e. just one level) or with two levels and no horizontal
nodes.

Our strategy to rule out that a flat surface (X,ω) generates a Teichmüller curve
is thus to exhibit a cylinder, such that shrinking the core curve of the cylinder leads
to a surface with a horizontal node on lower level. Geometrically this is verified as
follows.

Proposition 3.3. Let (X,ω) be a meromorphic flat surface that admits a cylinder
with core curve in the vertical directions. If the basic domains in the generalized
Boissy presentation are bounded by at least one saddle connection γ that is not
vertical, then (X,ω) does not generate a Teichmüller curve.

Equivalently, if (X,ω) has a saddle connection in a non-vertical direction outside
the closures of the cylinders with vertical core curves, then (X,ω) does not generate
a Teichmüller curve.

Said differently, candidates for meromorphic Veech surfaces are only cylinder-free
flat surfaces and vertically presentable surfaces, i.e. surfaces that have a cylinder,
that we may assume to be vertical, and then all boundaries of the basic domains
are vertical, too.

Proof. Consider the path in the GL2(R)-orbit of (X,ω) by shrinking the vertical
direction while maintaining the period of γ constant. Using Proposition 3.2 we
have to rule out that the resulting degeneration has a level graph with one level
and horizontal edges only. If the initial flat surface is (X,ω) ∈ ΩMg,n(µ), then
the normalization of such a limiting stable curve belongs to a stratum of the form
ΩMg′,n+2(g−g′)(µ,−12(g−g

′)). (In particular the limiting flat surface can be drawn
entirely with Boissy’s algorithm, there is no component on which the differential
tends to zero.) This implies that the ratio of the residue of any of the simple pole
and the length of any interior saddle connection is bounded above and away from
zero on any path approaching this limit. This property is violated for the path we
described initially. �
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3.3. Hyperelliptic components of meromorphic strata with simple poles.
We start our proof of Theorem 1.1 with the easier subcase where simple poles exist.

Proposition 3.4. For g ≥ 1, in the hyperelliptic strata with two simple poles
ΩMg,2(2g,−1,−1) there are no Teichmüller curves, while in the hyperelliptic strata
ΩMg,2(g, g,−1,−1) the Teichmüller curves are the irreducible components of the
linear manifold Hur(d, (g, g,−1,−1)) given in Proposition 2.2 case (i b) for d ≥
g + 1.

Before proving this proposition, we provide a simple, but useful lemma concern-
ing the characterization of linear manifolds in a Boissy presentation. This relates
two surfaces that in general will not lie in the same GL+

2 (R)-orbit but must lie in
the same linear manifold.

Lemma 3.5. If a surface in a Boissy presentation with boundary saddle connec-
tions vi and given by their periods (Per(v1), . . . ,Per(vk)) lies in a linear mani-
fold M , then also the surface obtained in this presentation by complex conjugation
of the periods (Per(v1), . . . ,Per(vk)) lies in M .

Proof. The real path φ(t) = (Xt, ωt) for t ∈ [0, 1] in the strata between the two
surfaces given by Boissy presentations with the same combinatorics and

(1) Pert(vi) :=

∫
vi

ωt = vi − 2t Im(Per(vi))

will satisfy all R-linear equations satisfied by φ(0). �

Proof of Proposition 3.4. Let (X,ω) be a meromorphic surface generating a Teich-
müller curve M . As (X,ω) will be Boissy decomposable in some direction we can
act by GL+

2 (R) to obtain a surface in M that is decomposable in the horizontal
direction, where the residue core curves are also horizontal and have length one.

That is, we can assume that (X,ω) is given by a Boissy presentation in the
horizontal direction where one of the infinite cylindrical domains has coordinates

(v1, . . . , vk) labeled from left to right and with
∑k
i=1 Per(vi) = 1. Furthermore,

the hyperelliptic involution then necessitates that on the other domain the saddle
connections are labeled (vk, . . . , v1) from left to right, as in Figure 1.

I

v1

v2

v3

v4

I

II

v1

v2

v3

v4

II

Figure 1. A hyperelliptic surface with simple poles

If any of the local equations of M are of the form Per(vi) = aPer(vi+1) for some
a ∈ R, that is, if any two consecutive coordinates vi and vi+1 are required to be
parallel, we obtain a contradiction as follows. As not all coordinates can be parallel,
assume after possibly relabeling them, that we have three consecutive coordinates,
v1 and v2 are parallel and not parallel to v3. Further, we can assume that v2 + v3
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is convex (if not, consider the conjugate surface via Lemma 3.5). Then the surface
contains cylinders with core curves in directions v1 + 2v2 + v3 and v2 + v3 which
are not parallel and hence cannot both be parallel to the residue core curve. Hence
M contains a surface with a cylinder in a different direction than the residue core
curve and collapsing the core curve of this cylinder relative to the residue core curve
direction provides a contradiction to Proposition 3.2.

Now as no two consecutive s are parallel we have two possibilities for any two
consecutive coordinates. If vi + vi+1 is convex, then (X,ω) contains a cylinder in
this direction. If vi+vi+1 is concave, then the surface (X ′, ω′) obtained by complex
conjugation of the coordinates also lies in M and contains a cylinder in the direction
vi+vi+1. Since this direction must be parallel to the residue core curve that we have
normalized to be real we have vi + vi+1 = ai for some ai ∈ R for i = 1, . . . , k − 1,
and vk + v1 = ak for some ak ∈ R. This completes the proof that there are no
Teichmüller curves in the hyperelliptic component of ΩMg,2(2g,−1,−1) as in this
case k = 2g + 1 is odd and the above necessitates the contradiction that all vi ∈ R
which cannot hold for a surface that generates a Teichmüller curve.

It remains to consider the hyperelliptic component of ΩMg,2(g, g,−1,−1) for
g ≥ 1. In this case k = 2g + 2 and by Lemma 3.5 we can assume, without loss of
generality, that v1 + v2 is convex. Then as vi + vi+1 is real for all i, necessarily
v2j+1+v2j+2 for j = 0, . . . , g are also convex and we have

∑g
j=0 a2j+1 = 1. Further,

after rescaling we may assume Im(vi) = (−1)i.
Let ψ(t) be the action of the parabolic matrix with t ∈ R which fixes the imag-

inary part of all coordinates and acts on the real part of the coordinate v2j+1 for
j = 0, . . . , g as

ψ(t)(Re(Per(v2j+1))) = Re(Per(v2j+1)) + t (mod Per(v2j+1 + v2j+2)).

However,
∑k
i=1 Per(vi) = 1 and M is closed, hence Per(v2j+1 + v2j+2) is ratio-

nal. The same argument after conjugation of the surface holds for v2j + v2j+1 for
j = 1, . . . , g and also for v2g+2 + v1. Such conditions precisely describe the linear
manifolds given by the Hurwitz space Hur(d, (g, g,−1,−1)). �

3.4. Hyperelliptic components of meromorphic strata with higher order
poles. Throughout this section we work in a hyperelliptic component of some sig-
nature µ, i.e. with one zero or two zeros of equal order and one pole or two poles
of equal order, and suppose moreover that the pole order is at least two.

Proposition 3.6. Every Teichmüller curve in a meromorphic hyperelliptic stratum
contains a flat surface with a cylinder.

As a first step toward this claim we prove:

Lemma 3.7. If (X,ω) generates a Teichmüller curve M and has a Boissy presen-
tation where one basic domain has two saddle connections on its boundary whose
homology classes are independent in M , then there is a flat surface (X ′, ω′) ∈ M
with a cylinder.

Proof. Consider the basic domain in the Boissy presentation of (X,ω) that contains
two saddle connections on its boundary whose homology classes are independent
in M . Hyperellipticity implies that if v1, . . . , vk for k ≥ 2 are the saddle connections
at the boundary of this half-plane labeled from left to right, then vk, . . . , v1 are the
saddle connections at the boundary of an oppositely oriented half-plane in the
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Boissy presentation. If the saddle connections vi and vi+1 for some i = 1, . . . , k− 1
form two sides of a triangle ∆ = ∆(ABC) in the core C(X), then this triangle and
its hyperelliptic image gives a cylinder.

If there is no choice of vi and vi+1 that form two sides of a triangle (i.e. the path
v1, ..., vk is concave) then Lemma 3.5 gives that the surface obtained by conjugating
all periods also lies in M . This surface and the assumption that the original domain
contained saddle connections with independent directions ensures that some v̄i and
v̄i+1 for i = 1, . . . , k − 1 form two sides of a triangle in the core of this conjugated
surface. This triangle and its hyperelliptic image give a cylinder. �

Coordinate dancing. The following argument to move around the saddle con-
nections on the boundary of a Boissy presentation also relies on a path within the
Teichmüller curve, but leaving the GL2(R)-orbit of the initial flat surface.

Pick some saddle connection vk on the boundary of some Boissy basic domain
and let p be the pole corresponding to the (exterior of this) domain. We write
Per(vj) = xj+iyj . Using the action of GL2(R) we may arrange that vk is horizontal,
i.e. Per(vk) = xk with 0 < xk < 1. We now stretch the vertical direction so that
|yj | > xj for all j such that vj is not horizontal (i.e. not parallel to vk). We let V be
this (non-empty) set of indices of (’rather vertical’) saddle connections. Consider
now the path that replaces Per(vk) by Pert(vk) = vk exp(−2πit) and more generally
makes

(2)
Pert(vj) :=

∫
vj

ω(t) = xj exp(−2πit) + iyj

= xj cos(−2πit) + i(xj sin(−2πit) + yj) .

We refer to the path as coordinate dancing. This path stays inside M since M
is cut out by R-linear equations. In fact we only have to verify that those linear
equations hold for the real and imaginary parts along the path. For this we observe
that the real part is rescaled by a common factor, while the imaginary part is the
sum of the initial imaginary part and the real part rescaled by a common factor,
and for those summands the R-linear equations hold individually.

The initial phase of the dance, shrinking and rotating till t = 1/4, is illustrated
in the passage to the second line in Figure 2 using the saddle connection k = 2.

As illustrated in the passage between the third and fourth line of Figure 2,
once vk passes the vertical line as we follow the dancing path, we need to cut
and reglue along vk (and simultaneously along all boundary saddle connections
that are parallel to v1) in order to maintain a Boissy presentation, resulting in the
saddle connection v′k. (Actually the fourth row in Figure 2 is not quite a Boissy
presentation, since some of the the saddle connections in V are ’tilted over’.)

Now two cases may happen. First, none of the saddle connection parallel to vk
touches any of the rather vertical saddle connections, as shown in the figure. (In
this case the cut and reglue for the ’tilted over’ saddle connections in the set V will
be undone in the next step anyway and so we kept their position for simplicity.) We
thus continue along the dancing path and arrive at the point where v′k passes the
vertical line (fifth row in Figure 2). This requires another cut and reglue resulting
in the saddle connection v′′k .
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Figure 2. Dancing coordinate v2 in the stratum ΩM2,2(8,−6)
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To summarize the first case (sixth row in Figure 2): for t = 1 all the boundary
saddle connections in V are back to their initial position, while vk (and all those
parallel to it) have danced to the half-plane at angle 2π in counterclockwise direction
from their initial position.

In the second case some connection parallel to vk touches in the moment of tilt
over a saddle connection in V . In this case we have to reglue the tilted over saddle
connection to arrive at a Boissy presentation. The dancing path stops here and the
sequel depends on the context.

Lemma 3.8. Every Teichmüller curve contains a surface that satisfies the hypoth-
esis of Lemma 3.7

Proof. Let (X,ω) be a flat surface that generates the Teichmüller curve M . We
claim that there is a pole p so that among the saddle connections on the boundary of
the Boissy domains adjacent to p, there are two which are R-linearly independent
in homology. Consider the global picture: each boundary saddle connection is
adjacent to one or two poles. Moreover since (X,ω) generates a Teichmüller curve,
the boundary saddle connections span a two-dimensional subspace in cohomology.
Connectivity of the whole surface implies that there is some p as claimed.

Now we start coordinate dancing with one of the saddle connections adjacent
to p. If the dance stops at the moment of tilt over, we have arrived at a situation
where the hypothesis of Lemma 3.7 is met.

Otherwise, repeating the coordinate dance with the same saddle connection, this
saddle connection successively visits all half-plane at angle m · 2π for m ∈ N from
its initial position until eventually the hypothesis of Lemma 3.7 is met thanks to
the choice of p and the presence of another saddle connection. �

The proof of Proposition 3.6 is an immediate consequence of Lemma 3.8 and
Lemma 3.7.

Thanks to Proposition 3.6 we assume from now on that the surface (X,ω) that
generates the Teichmüller curve has a cylinder, rotated so that its core curve is ver-
tical, in short a vertical cylinder. We work with the generalized Boissy presentation
of this surface. The geometric criterion Proposition 3.3 immediately implies that if
(X,ω) with a vertical cylinder generates a Teichmüller curve, then all other saddle
connections on the boundary of the basic domains in a generalized Boissy presen-
tation are vertical. We refer such a presentation as a pure vertical presentation and
assume this from now on.

We moreover distinguish the saddle connections on the boundaries of the building
blocks. External saddle connections are the (vertical) saddle connections on the
boundary of the infinite half-planes. Internal saddle connections are the remaining
vertical saddle connections. They are internal to subsurfaces made out of cylinders
(with vertical core curves) only.

Since the hyperelliptic involution acts on the surface, mapping Boissy’s building
blocks into building blocks, it also acts on the set of external and internal saddle
connections. These saddle connections are thus either invariant under the action
of the involution, or exchanged in pairs.

Lemma 3.9. There are no invariant internal saddle connections.

Proof. Any invariant internal coordinate will appear at the two ends of the same
cylinder with vertical core curves. Connecting these saddle connections by straight
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lines across the initial cylinder will form the core curves of another cylinder. Since
these crossing lines are not vertical, this cylinder together with any of the other
boundary saddle connections of the vertical presentation gives the desired contra-
diction to Proposition 3.3 (after turning the new direction into the vertical one). �

We isolate another situation favorable to prove the existence of a non-vertical
cylinders: A cleaver consists of two cylinders with vertical core curves, a simple
cylinder and a cylinder with two or more saddle connections, with both boundary
curves of the simple cylinder glued to the boundary of the non-simple cylinder as
in Figure 3 left. Elementary geometry shows:

Lemma 3.10. A cleaver contains a cylinder with a non-vertical core curve.

Proof. Shearing by a vertical parabolic we may assume that the open ends of the
non-simple cylinders are facing each other, at the expense of having a skew cleaver.
By rescaling we assume that S in Figure 3 right is a unit square, the cleaver is
twisted by 0 ≤ t < 1, and its hold has length a. Now the direction of slope
btc/(1 + a) contains a cylinder. �
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II

v3

II

I
v1
v2

v3
I
1

v3

v5
v4

Iv1
v2

v3

a

t
S

Figure 3. A cleaver and its shear that exhibits a horizontal cylin-
der

Lemma 3.11. A surface (X,ω) that contains a cylinder and generates a Teich-
müller curve, given in pure vertical generalized Boissy presentation, consists only of
Boissy basic domains (half-planes) and simple cylinders (at least one). The bound-
ary saddle connections are all external, either invariant or alternatively exchanged
on the two ends of a simple cylinder.

Proof. By the preceding Lemma 3.10 and our main criterion Proposition 3.3 we
may exclude systems of cylinders in the complement of the half-planes that contain
a cleaver. Since we excluded invariant internal saddle connections in Lemma 3.9
there are four types of cylinders in a generalized Boissy presentation that we have
not yet excluded:

a) A simple cylinder between two external saddle connections, hence zero in-
ternal saddle connections.

b) Two external and at least two internal saddle connections.
c) At least four external and zero or more internal saddle connections.
d) Zero external and at least four internal saddle connections.

(It is in (d) that we can exclude cylinders with two internal saddle connections, as
they will create a cleaver.) We denote by the same letter as in the list the number
of such cylinders by e the number of non-invariant external saddle connections, by
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i the number of non-invariant internal saddle connections and by f the number of
invariant (’fixed’) external saddle connections.

We count the number of Weierstraß points. These are the pole (if unique),
the zero (if unique), the f midpoints of the invariant (hence external) saddle con-
nections, and two points in the interior of each cylinder. In fact, in a hyperelliptic
component all cylinders are fixed by the involution, since otherwise we could change
the size of one of them, destroying the existence of the involution while staying in
the stratum. If we write Z for the number of zeros, P for the number of poles, and
C for the number of cylinders, we get

2g + 2 = (2− Z) + (2− P ) + 2C + f .

Altogether we find the first of the conditions

a+ b+ c+ d =
1

2

(
2g − 2 + Z + P − f

)
2a+ 2b+ 4c ≤ e

2b+ 4d ≤ 2
(
2g − 2− Z + P − f − e

)
.

The second condition gives the count of non-invariant external coordinates, which
appear in on opposite sides of the same cylinder (if adjacent to some cylinder). The
third equation gives the count of non-invariant internal coordinates, each of which
is counted twice. The right hand side expresses that the total number of boundary
saddle connections i + f + e = 2g − 2 + Z + P gives a coordinate system for the
stratum ΩMg,n(µ).

Summing twice the second and the third equation implies b = c = 0. In this
situation the internal coordinates of any element in d) can only be glued to the
same cylinder, since a) does not provide internal coordinates. This means that the
element in d) form their own connected components. Since this is impossible, we
conclude d = 0 and all the claims of the lemma. �

Next, we constrain how these boundary saddle connections are distributed on
Boissy’s basic domains as in Figure 4, left.

Lemma 3.12. The boundary of each Boissy’s basic domains has either

i) no boundary saddle connections, or
ii) only invariant external saddle connections, or
iii) exactly one non-invariant external saddle connection (thus bounding a sim-

ple cylinder on its other side).

Proof. Suppose some basic domain has two adjacent non-invariant saddle connec-
tions on its boundary.

Shearing by a vertical parabolic element we may assume that those simple cylin-
der with vertical core curves bounding the non-invariant boundary saddle connec-
tions do not have horizontal saddle connections. By cut and re-glue we may present
the cylinders to be twisted by less that the length of the waist curve, i.e. such that
the diagonal decomposes the cylinder into two acute triangles, see the left of Fig-
ure 4. This figure also shows the new coordinates that we are using. The coordinate
system no longer contains the waist curves of the cylinders si, but the sides of the
acute triangles v1, . . . , v4 and (if they exist) the remaining coordinates v5, . . . , vn
on the boundary of the half planes.
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Figure 4. Pulling through cylinders: The surface Φ(0) on the left
and Φ(1) on the right

We consider the ’pulling through’ path φ(t) = (Xt, ωt) as in (1). For t ∈
[0, 1]. This path stays within the complex two-dimensional manifold containing
the GL+

2 (R)-orbit of the initial surface. At its endpoint t = 1 we construct the
desired cylinder as drawn on the right of Figure 5. Proposition 3.3 applies, giving
a contradiction.
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I
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v1I

Figure 5. Finding cylinders

The other case to rule out is (at least) one simple cylinder (with its adjacent)
non-invariant external saddle connections next to some invariant external saddle
connection. By ’pulling through’ as in the previous case we arrive at the configura-
tion in Figure 5 on the left. Then there is a cylinder having this vertical coordinate
as one of its diagonals, and together with the saddle connection bounding the cut-
out acute triangle that does not lie inside the cylinder we have the configuration
that provides a contradiction by applying Proposition 3.3. �

Rotate again for the next dance. So far, for Lemma 3.12 we have been using the
generalized Boissy presentation, i.e. admitting cylinders with vertical core curves.
In order to get further constraints on the periods of the saddle connections we have
to use again paths in the linear manifold that leave the GL2(R)-orbit, i.e. dancing
paths or a variant of it. For this purpose consider a surface with in Lemma 3.12 and
pull through the cylinders, like in Figure 4 right (but with only one cylinder or one
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invariant external saddle connection per basic domain). Cutting the basic domains
open along vertical lines at the end of the broken line of saddle connections (the
dotted lines in Figure 4 right), regluing along the infinite horizontal separatricies
and rotating the picture by π gives a flat surfaces in (standard) Boissy presentation
that we use next.

Lemma 3.13. Suppose the surface (X,ω) in the presentation of Lemma 3.12 has
an invariant external saddle connections (as in (ii) of that lemma). Then the Teich-
müller curve generated by (X,ω) is one of the obvious cases from Proposition 2.2
(iii a) or (iii b) covering surfaces with residues conditions.

Proof. We may assume by Proposition 3.6 that there is at least one cylinder. We
pull this cylinder through and rotate for the next dance, as described above. We
select one of the invariant external saddle connections v1 to apply the coordinate
dancing. Since (X,ω) generates a Teichmüller curve, all the invariant external
saddle connections are parallel and hence dance simultaneously and if there are
several of them adjacent to one Boissy domain, they dance (i.e. move between the
Boissy domains) together. This dance will terminate in one of two ways:

The first possibility is that a set of invariant coordinates appears on a basic
domain with two pulled-through coordinates at the end of a certain number of full
dancing paths (i.e., full rotations 2kπ for some k ∈ N). This is a contradiction, since
we have three or more non-parallel coordinates on a basic domain, as in Figure 5
left (erasing v2, v3, v4 to get the simplest case).

The second possibility is the dance ends the moment the cylinder coordinates
are tilted over (i.e., rotations by (2k + 1)π for some k ∈ N). One pulled-through
coordinate and the adjacent invariant coordinate now form a cylinder. Hence if the
set of invariant coordinates adjacent to any Boissy domain contains more than one
coordinate we obtain a contradiction.

Let v2 and v3 be the saddle connections that have been pulled through. On the
original surface v2+v3 is the waist curve of the cylinder, so there must be a relation
Per(v2 + v3 − sv1) = 0 for some s ∈ R, since otherwise Proposition 3.3 provides a
contradiction. At the end of the dance −v1 + v2 is the waist curve of a cylinder
(possibly after changing the role of v2 and v3). This implies that v3 ∈ R · (−v1 +v2)
and thus (possibly changing the orientation of v1) we find s = 1.

Now we consider the surface globally. If there were any more invariant coordi-
nates they cannot appear at the end of the dance in their own basic domains as
this would form a contradiction (by applying Proposition 3.3 to the newly formed
cylinder). Similarly, if there were any other pulled-through coordinates they will
now appear in ”tilted-over” position. Using them as saddle connections and the
newly formed cylinder, Proposition 3.3 will provide a contradiction unless one of
the pulled-through coordinates is now parallel to the waist curve of the new cylinder
(that is, to v3) and the other forming a new cylinder with an invariant coordinate
with necessarily parallel waist curve to v1.

Labeling these coordinates u1, u2, u3 consistently with the vi we find u1 and vi
are parallel and in fact, ui = kvi for some k > 0.

Now we label the (even number) Boissy domains adjacent to a poles in coun-
terclockwise order, starting with a pulled-through cylinder on domain number one.
Since the ’first possibility’ above provided a contradiction, the first Boissy domain
with an invariant saddle connection has an even number. Rotating in the other
direction we find the the next Boissy domain with pulled-through cylinders sits
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on a Boissy domain with an even number and inductively we see that this parity
constraint holds for all cylinder and all invariant saddle connections. Comparing
the triples of saddle connections for a pulled-through cylinder and an invariant sad-
dle connection for clockwise and counterclockwise dancing implies that all pairwise
comparison factors (denoted by k above) are equal to one, i.e. any two invariant
saddle connections and any two cylinders have the same geometry.

The parity constraint for the Boissy domains containing a (don’t pull it through!)
cylinder implies that the cylinders cannot connect Boissy domains adjacent to the
same poles. Consequently, there are precisely two poles since we are in a hyperel-
liptic stratum.

The parity constraint (together with the length agreements that follow from
k = 1) also implies that the map stacking all the cylinders on top of each other
(or equivalently all the invariant external saddle connections on top of each other)
extends to a well-defined covering map. Depending on the degree of the map we
are in case (iii a) or (iii b). �

Lemma 3.14. Suppose the surface (X,ω) in the presentation of Lemma 3.12 has
no invariant external saddle connections (as in (ii) of that lemma). Then the Teich-
müller curve M generated by (X,ω) is one of the obvious cases from Proposition 2.2
(i a), (ii a), or (ii b).

Proof. We may assume by Proposition 3.6 that there is at least one cylinder. We
pull this cylinder through and rotate for the next dance, as described previously.
The situation is illustrated in the first row of Figure 6. We now select a steepest
saddle connection vi for dancing, i.e., one for which Im(Per(vi))/Re(Per(vi)) is
maximal. The dancing path is easier to visualize if we normalize this coordinate
to be vertical at the start of the dance (see the coordinate vi in the second row
of Figure 6), as opposed to horizontal in the original coordinate dancing. (In fact
with this choice any saddle connection not parallel to the selected one will remain
adjacent to its initial basic domain throughout the dance.) We stretch sufficiently
in the horizontal direction (such that Re(Per(vj)) > |Per(vk)| for all k with vk
parallel to vi and for all j in the complementary set H of (’rather horizontal’)
saddle connections).

Now we rotate Per(vi) while modifying slightly the periods of the saddle con-
nections so as to stay in M , just as in (2) with the role of real and imaginary part
swapped. The dancing procedure is illustrated in the remaining rows of Figure 6).
It ends once the selected saddle connection appears on the same basic domain as
some other saddle connection. If a dancing coordinate arrives on a domain with
two coordinates we have a contradiction by the three coordinates on a domain
argument.

Hence the dance must terminate with a dancing coordinate on a domain with
just one other coordinate. However, this means that the other coordinate that
originated on this domain must have danced and was hence parallel to our steepest
saddle connection. If that saddle connection now lies in a domain by itself we
obtain a contradiction as we obtain a cylinder (after possibly pulling-through) with
waist curve not parallel to this saddle connection. Hence this saddle connection
coordinate must have danced to a domain with exactly one other saddle connection.
However, this means a saddle connection that originally lay on this domain must
have danced. Chasing this argument around the surface we see that every cylinder
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contributed a pulled-through saddle connection that danced and hence was parallel
to the selected saddle connection.

Label the saddle connections v1, . . . , vd where d = 2g+|µ|−2 such that v2j−1 and
v2j for j = 1, . . . , d/2 are the pulled-through coordinates from each cylinder from
left to right on the upper basic domains, and such that the dance results in v2j−1 ap-
pearing on the domain with v2j+2 (considering the indices modulo d). Our argument
above gives v2j−1 = kjv1 for kj ∈ R and j = 2, . . . , d/2. The same argument danc-
ing instead saddle connections in the direction such that Im(Per(vi))/Re(Per(vi))
is minimal gives v2j = `jv2 for `j ∈ R and j = 2, . . . , d/2.
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Figure 6. Dancing the steepest saddle connection
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In (X,ω) the waist curves were necessarily parallel and hence imposed the con-
dition that v2j−1 +v2j = mj(v1 +v2) for mj ∈ R. Similarly, after dancing we create
cylinders by pulling through which implies v2j−1 + v2j+2 = nj(v1 + v4) for nj ∈ R
and j = 1, ..., d/2.

The only solution to these equations is kj = lj = mj = nj = 1 for all j. Thus all
the flat surfaces parametrized by M admit a cover onto a flat surface with just two
saddle connections on the boundary of the Boissy domains. Hence the Teichmüller
curve generated by (X,ω) is one of the obvious cases as listed in the proposition,
the cases being distinguished by the number of zeros (and poles) in the range of
the covering map and the degree of the cover. �

The proof of Theorem 1.1 is complete as a combination of Proposition 3.4 in
Section 3.3 and the series of lemmas in this Section 3.4.

Appendix: An R-linear non-algebraic manifold

by Benjamin Bakker and Scott Mullane

An R-linear manifold is a submanifold of a stratum of differentials defined locally
by homogenous real linear equations in period coordinates. They hold great impor-
tance stemming from a diverse range of connections including billiards in polygons,
Jacobians with real multiplication, and dynamical rigidity. In this appendix, we
present a simple example of R-linear manifold in a meromorphic stratum that is not
algebraic, hence showing the algebraicity of these loci in holomorphic strata [Fil16]
does not extend to the meromorphic case.

For µ = (m1, . . . ,mn) an integer partition of 2g − 2, the stratum of differentials
of type µ is the moduli space of flat surfaces or pairs of pointed smooth curves and
meromorphic differential of type µ, set theoretically,

ΩMg,n(µ) := {(X,ω, p1, . . . , pn) | (X, p1, . . . , pn) ∈Mg,n, (ω)0−(ω)∞ =
∑

mipi}.

While the strata inherit an algebraic structure as a stratification of the Hodge
bundle, integrating the differential ω yields a presentation of X, punctured at the
poles of ω, as polygons in the complex plane with parallel side identifications. Hence
we obtain a complex analytic orbifold structure locally at a point from a choice of
basis for the relative homology H1(X\P,Z,Z), where Z and P are the zeros and
poles of ω respectively. This basis extends locally via the flat connection and local
orbifold coordinates known as period coordinates are obtained by integrating the
differential by this basis.

For example, Figure 7 contains polygon presentations for three different flat
surfaces in the stratum ΩM1,2(2,−2). In this case, both Z and P are one-point
sets and a flat surface in the stratum can be expressed by two broken half-planes
with parallel side identifications as follows. The pairs of line segments a and b are
identified as labeled and the two infinite half rays extending to the left and the
two infinite half rays extending to the right are identified respectively. This gives
one vertex with cone angle 6π, the unique double zero of the differential, and the
surface is punctured at infinity, the unique double pole of the differential. Varying
a and b in C with the condition Re(a),Re(b) > 0, provides period coordinates for a
local chart in the stratum ΩM1,2(2,−2). The flat surface on the right in Figure 7
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Figure 7. Three flat surfaces in ΩM1,2(2,−2)

is obtained by setting a = b = 1 in this chart and identifying the infinite half rays.
The polygon presentation for this flat surface is then the infinite plane with two
slits with opposite sides identified as labeled.

Now consider the stratum ΩM1,4(2,−2, 0, 0) obtained by further allowing two
phantom zeros and let π be the forgetful map to ΩM1,2(2,−2) that forgets these
two points. We obtain period coordinates for the fibre of π over the flat surface
on the right in Figure 7 as (C\{0, 1, 2})2\∆ where ∆ denotes the diagonal and we
identify a and b with the open real intervals (0, 1) and (1, 2) respectively. Setting
u − v = 1 we obtain a local R-linear condition and we are left to consider the
closure. The only monodromy is obtained by passing the phantom zeros through
the passage of slits, that is, the coordinates (u, v) change as a point passes through
the passage (0, 1) ∪ (1, 2). For example, Figure 8 shows how the the loci u− v = k
and u− v = k + 1 are connected for any k ∈ Z\{0} and k 6= −1. Further, the loci
u − v = −1 and u − v = 1 are connected by passing both phantom zeros through
the slits simultaneously. Hence we obtain an irreducible R-linear manifold T in the
stratum ΩM1,2(2,−2, 0, 0) as the C∗-orbit of the loci cut out by u− v ∈ Z\{0}.

Figure 8. Inside the linear manifold T

However, the forgetful map factors as π = π1 ◦π2 through the stratum with just
one phantom zero, that is, forgetting first p4 and then p3:

ΩM1,2(2,−2, 0, 0)
π1−→ ΩM1,2(2,−2, 0)

π2−→ ΩM1,2(2,−2)
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Fixing a = b = 1 and u = c ∈ C\{0, 1, 2} and allowing v to vary in C\{0, 1, 2, c}
we obtain a fibre of π2 which is hence algebraic. However, this fibre intersects T in
infinitely many points given by u = c, a = b = 1, v = c+ k 6= 0, 1, 2 for k ∈ Z\{0}
contradicting the algebraicity of T .
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