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A TALE OF TWO MODULI SPACES: LOGARITHMIC AND
MULTI-SCALE DIFFERENTIALS
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ABSTRACT. Multi-scale differentials are constructed in [BCGGM19], from the viewpoint
of flat and complex geometry, for the purpose of compactifying moduli spaces of curves
together with a differential with prescribed orders of zeros and poles. Logarithmic dif-
ferentials are constructed in [MW20], as a generalization of stable rubber maps from
Gromov—Witten theory. Modulo the global residue condition that isolates the main com-
ponents of the compactification, we show that these two kinds of differentials are equiva-
lent, and establish an isomorphism of their (coarse) moduli stacks. Moreover, we describe
the rubber and multi-scale spaces as an explicit blowup of the moduli space of stable
pointed rational curves in the case of genus zero, and as a global blowup of the incidence
variety compactification for arbitrary genera, which implies their projectivity. We also
propose a refined double ramification cycle formula in the twisted Hodge bundle which
interacts with the universal line bundle class.
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1. INTRODUCTION

1.1. Background and main results. Let u = (mq,...,m;) be a tuple of integers with
>orym; = 2g — 2. The (projectivized) stratum of differentials of type p is the moduli
space of smooth curves X of genus g with distinct marked points 21, ..., 2, € X such that
>, m;z; is a (possibly meromorphic) canonical divisor.

The study of differentials with prescribed zeros and poles is important for at least two
reasons. On the one hand, a (holomorphic) differential induces a flat metric with conical
singularities at its zeros, such that the underlying Riemann surface can be realized as a
polygon with edges pairwise identified by translations. Varying the shape of the poly-
gons by affine transformations of the plane induces an action on the strata of differentials
(called Teichmiiller dynamics), whose orbit closures (called affine invariant subvarieties)
govern intrinsic properties of surface dynamics. On the other hand, a differential (up to
multiplication by a scalar) corresponds to a canonical divisor in the underlying complex
curve. Hence the union of the moduli spaces of differentials with all possible configurations
of zeros stratifies the Hodge bundle over the moduli space of curves, thus producing a
number of remarkable questions to investigate from the viewpoint of algebraic geometry,
such as compactification, enumerative geometry, and cycle class calculations. The interplay
of these aspects has brought the study of differentials to an exciting new stage (see e.g.,
[Zor06; Wril5; Chel7] and the references therein for an introduction to this subject).

Just like many other moduli problems, having a geometrically meaningful compactifi-
cation plays a crucial role in the study of the strata of differentials. Extending the setup
of canonical divisors with prescribed zeros and poles to (pre)-stable curves, we define an
algebraic stack GEMg,n(u), the moduli space of generalized simple multi-scale differentials
of type p. The relative coarse moduli space GMS,, over Mg,n of this stack is defined the
same way as the multi-scale differentials in [BCGGM19], but dropping the global residue
condition.! Compared to the multi-scale space, the key player in [BCGGM19], the stack
GEMg,n(,u) has additional irreducible components whose generic elements parameterize
differentials on (strictly) nodal curves. Indeed GEM,, ,,(11) maps onto the space of twisted
canonical divisors constructed by Farkas—Pandharipande [FP18]. The precise definition is
recalled in Section 3.

On the logarithmic side, Marcus and Wise [MW20] defined, for any line bundle £ on
the universal curve X, , over ﬂgm, a space Rub, over Mg,n. The fiber of Rub, over
a curve X is the set of piece-wise linear functions 8 on the tropicalization of X, together
with an isomorphism of line bundles from Ox () to £. The natural C* quotient, which
forgets the data of the isomorphism, is denoted P(Rubg). When £ = Ox, (>, mizi),
this space P(Rub/) is the space of rubber maps to P! with zeros and poles prescribed by
the m;, giving an alternative definition to that of Li, Graber and Vakil [Li01; GV05]. This
machinery gives an extremely clean and functional definition of the double ramification

1Our_deﬁnition thus solves a task left open in [BCGGM19], namely to describe the smooth
stack ZMg n(p) dominating the stack of multi-scale differentials MS,, without invoking Teichmiiller
markings.
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cycle, as well as its logarithmic, pluricanonical, universal, and iterated variants [BHPSS20;
HS21; MPS21; MR21; HMPPS22].
To connect this space with moduli of differentials, we define the line bundle

n
ﬁ/i = ng’n/ngn< — Zm,zz)
i=1

on X, n, leading to the category Rubg,, together with its relative coarse moduli space
Rub??"™¢ over M2 The virtual fundamental class of P(Rubz?™¢) is the ‘canonical’
double ramification cycle described in [HS21].

The definitions of the spaces Rub,, and GMS,, look very different. They can be found
in Section 2 and Section 3 respectively. The main aim of this paper is to show that these
definitions are in fact essentially equivalent. More precisely, we prove the following theorem.

Theorem 1.1. There is an isomorphism of algebraic stacks over Mg,n
F:Rubg, — GEM, (1),
which induces an isomorphism of the corresponding relative coarse moduli spaces
F: Rubaarse —gMs,.

Note that the global residue condition (GRC) described in [BCGGM18] can isolate the
main component of GMS,,, called the multi-scale space and denoted by MJS,,. In other
words, a generalized multi-scale differential not satisfying the GRC is not smoothable
while preserving the prescribed zero and pole orders. Moreover, in [BCGGM19] the space
of multi-scale differentials MJS,, was shown to possess nice geometric properties, such as
smoothness (as stacks), normal crossings boundary, and extension of the GL2(R)-action to
the boundary (after a real oriented blowup). It would be interesting to see whether these
properties can be obtained directly by using rubber differentials and logarithmic geometry.

1.2. Applications and related topics. In what follows we address several constructions,
results and conjectures related to the main result above.

1.2.1. A blowup description of the space of multi-scale differentials. First, describing a
modular compactification via blowups can be useful in many aspects, e.g., for projectivity
and intersection calculations. There is a natural action of C* on generalized multi-scale
differentials by simultaneous rescaling of all differentials and we denote the quotient, the
space of ‘projectivized generalized multi-scale differentials’, by P(GMS,,); Theorem 1.1
induces an isomorphism P(Rubz?"¢) —= P(GMS,,).

In the case of genus zero we can identify P(Rubz?™¢) with a blowup of Mo p.

Theorem 1.2 (Theorem 7.4). For g = 0 there exists an explicit sheaf of ideals in Mg,
such that its blowup is P(Rubz?"™).

2See [AOV11] for the definition of relative coarse moduli spaces. Moreover, note that one can replace w

with any power w®* in the formula for £, extending the theory to k-canonical divisors.
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We recall that the projectivized stratum of differentials can be compactified in different
ways. Firstly, one can consider simply its closure in the Deligne-Mumford compactification
ﬂg,n. Secondly, one can consider the closure of the stratum in the total space of the
projectivized Hodge bundle over Mg,n (twisted by the polar parts). This compactification
is described completely in [BCGGM18], and is called the incidence variety compactification
(IVC). The IVC clearly admits a morphism onto the Deligne-Mumford closure of the
stratum, while P(MS,,) maps onto the IVC, and in general both these morphisms are
‘forgetful’, i.e. contract some loci in the compactifications. We further write NIVC for the
normalization of the IVC.

In [Ngu21] Nguyen showed that in the case of genus zero the IVC can be described as an
explicit blowup of Mom- From the above theorem one can also retrieve Nguyen’s result,
which we do in Proposition 7.6.

In arbitrary genus, recall that the multi-scale space MJS,, is the main component of
GMS,,, whose generic element parameterizes differentials with prescribed zero and pole
orders on smooth curves.

Theorem 1.3 (Theorem 7.7). For arbitrary genus there exists a global sheaf of ideals on
NIVC such that the normalization of the blowup of the NIVC along this ideal gives the
projectivized multi-scale space P(MS,,). Consequently, the coarse moduli space of the stack
P(MS,,) is a projective variety.

In [BCGGM19] a local blowup construction to obtain P(M.S),) from the normalization
of the IVC was described. That construction does not glue to a global sheaf of ideals, and
hence did not yield the projectivity of P(MS,). In [CCM22] the projectivity of P(M.S,)
was established by constructing an explicit ample divisor class on it. Thus the above
theorem provides a distinct conceptual understanding of the projectivity result.

1.2.2. A Hodge double ramification cycle. Next we propose a refined version of the double
ramification (DR) cycle in the twisted Hodge bundle and conjecture a Pixton-style formula
for this class involving coefficients of higher powers of the regularizing parameter ‘r’. For
this purpose we also generalize our considerations to k-differentials.

Let A = (a1,...,a,) € Z™ where |A| == >, a; = k(29 — 2+ n) for some k > 0, and

denote by
ﬁA = w®k( — Z(CLZ — k)ZZ)
i
the associated degree zero line bundle on X, ,, where m: X, , — Mg,n is the universal
curve with sections z;, and w is the relative canonical bundle.? Taking

H = w®k( — Z (a; — k:)zl)

ira; <k

3Here we switch to the logarithmic version of indices to match the notation in [JPPZ17]. In other words,
as a signature of k-differentials each of the zero and pole orders is given by a; — k. In particular, by slight
abuse of notation £4 is simply the bundle we denoted by £, in the previous convention.
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to be the relative k-canonical bundle twisted by the polar part, we obtain a natural diagram

P(Rubg,) —5— P(m.H)

(1.1) \ l

(see the discussion leading to (6.3) for more details). Pushing forward the virtual funda-
mental class of P(Rub. ) gives a lift

DR} = F. [P(Rube,)]™

of the twisted DR cycles to P(m,H), which we call the twisted Hodge DR cycle.
Let H = ¢1(O(1)) be the universal line bundle class on P(m,H) and let n = F*H be
its pullback to P(Rub, A).4 By the projective bundle formula associated to the map q,

—~k
to determine the class of DR 4 in the Chow ring CH®*(P(7.H)) it suffices to determine the
cycle class

(12) 0. (DR H") = p. ([B(Rub, )™ o) € CHI (M)

for every wu.

Before proceeding to give a conjectural formula for these cycles, let us make a remark
about the case kK = 0. When trying to follow the construction above, we encounter the
issue that in general the higher cohomology of H will not vanish, so that P(m.,#H) is not
a projective bundle. In Section 6 we explain how this can be remedied. However, there
is also an alternative approach to defining n, which makes clearer a connection to relative
Gromov-Witten theory: there both the space P(Rub.,) and its forgetful map p to M,
still make sense, and it was proven in [BHPSS20, Proposition 50] that there is a natural
isomorphism

P(Rubg,) = Mg (P, 0,00)™

with the space of stable maps to rubber P! relative to 0, 00, with contact orders specified
by the vector A. This space of stable maps parameterizes maps from prestable curves
to a chain of rational curves, with marked points 0,00 at opposite ends of the chain (see
[JPPZ17, Section 0.2.4] for details). What is important for us is that it still carries a natural
divisor class n = W, defined as the class of the cotangent line bundle at the marked point
oo on the chain of rational curves.

Continuing in the general case k > 0, consider the space of twisted r-spin structures

M;’;Z, which parameterizes line bundles L on curves such that L®" 22 w®*(— 3" (a; — k)z;).
Here we follow the notation of [JPPZ17]. Let £ be the universal line bundle on the universal

curve m: C — M’;’z, and e: M’;Z — M, the natural map. Define the following Chiodo’s

4In the literature sometimes ¢ denotes the universal line bundle class on the space of k-differentials and
1 denotes the tautological line bundle class ¢1(O(—1)).
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class as the first cycle class given in [JPPZ17, Proposition 5]:
k,r,d — ywi
Chy " = r? 294 e, cy(—R*'m, L) € RY(My.,) -

It is a polynomial in r (for r sufficiently large). Following computations of Chiodo [Chi(§],
the class Ch’;:gd can be computed explicitly as a sum over stable graphs, decorated with
polynomials in k and v-classes (see [JPPZ17, Corollary 4]). We propose the following
conjecture, giving a formula for the cycle classes (1.2).

Conjecture 1.4 (Hodge DR). For every g,k,u > 0 and every A € Z™ with |A| = k(2g —
2+ n), the following relation holds:

pe ([P(Rube, )] ") = [r]CHET9 ™ € CHIP (R, )
where [r"] means taking the coefficient of .

For u = 0, by definition the left-hand side of this equation is the usual twisted DR cycle
DRZ and by [JPPZ17, Proposition 5] the right-hand side agrees with Pixton’s formula for
this cycle. Therefore, the conjecture is true for u = 0 by the results of [BHPSS20].

For w > 0, the conjecture can be verified computationally in many examples for the
special case g = 0. Indeed, in this case the space Rub,, agrees with the space of multi-
scale k-differentials by Theorem 1.1 (since the global residue condition is automatically
satisfied in the case g = 0). Then the software package diffstrata [CMZ20] can compute
powers of 77 on this space using relations in its Picard group, and express the left-hand side
of the conjecture in terms of tautological classes. On the other hand, the right-hand side of
the conjecture can be computed in admcycles [DSZ20] using the graph-sum formula from
[JPPZ17]. Using this, the prediction of the conjecture has been verified for several example
vectors A, giving many non-trivial equalities in the Chow group of ﬂom. The calculations
in diffstrata for £ > 1 rely on some code in development related to the forthcoming
paper [CMS].

On the other hand, for £ = 0 the left-hand side of the conjecture has been computed
in [FWY21, Corollary 4.3]. The formula given there is similar, but not equal to the one
above. However, using properties of the Chiodo class proven in [GLN21, Theorem 4.1 (ii)],
a short computation shows that the formula from [FWY21] can be simplified to the one
we give above.’

Theorem 1.5. Conjecture 1.4 is true for k = 0: for any g,u > 0 and vector A € Z™ with
sum |A| = 0 we have

e ([P(RubgA)]Vir-n“) = pu ([Mga(P',0,00)~ " - W) = [r]Ch)79 .

5Special thanks go to Longting Wu for patiently explaining their formula and to Danilo Lewaniski for
informing us of the above property of the Chiodo class.
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1.3. Sketch of the comparison. We hope that this paper will foster more communica-
tions between two groups of researchers, those working in logarithmic geometry for moduli
spaces and those working in moduli of differentials for Teichmiiller dynamics. With this
in mind, we have written out definitions of objects on both sides of the story in a rather
detailed way, in particular assuming minimal background knowledge about logarithmic
structures. We now give an overview of the comparison in Theorem 1.1.

The definition of generalized multi-scale differentials on a stable curve X is geometrically
very concrete but quite lengthy. The level structure (or full order) on the vertices of the
dual graph I' of X, corresponding to the irreducible components of X, encodes the vanish-
ing orders of a differential in a family of differentials on smooth curves that degenerates
to a given multi-scale differential on a nodal curve. One can twist differentials that vanish
identically, on the irreducible components of the same level, by a rescaling parameter for
that level, to obtain twisted differentials that are not identically zero on the components on
that level. A multi-scale differential contains the combinatorial data of the zero and pole
orders of twisted differentials at the nodes. Moreover, the prong-matchings of a multi-scale
differential are combinatorial data that arise from choices of smoothing a nodal differential
with matching zero and pole orders at the two branches at a node, under the flat metric
induced by the differential. Lastly, a multi-scale differential stores the smoothing param-
eters of the nodes in a way consistent with the level structure, packaged in the notion of
a rescaling ensemble. On all these parameters, the certain level rotation torus acts and
induces a notion of equivalence that forgets the extra information due to various choices
being made in the above process, e.g., how simultaneously scaling twisted differentials on
the same level affects prong-matchings.

The definition of an element of Rub,, is very concise; it is simply a piece-wise linear
function on the tropicalization subject to certain conditions (see Definitions 2.1 and 2.7).
However, it may seem cryptic at a first reading. In particular, it may not be immediately
apparent why the data of a log curve, a piece-wise linear function, and an isomorphism of
line bundles should yield up all the above data of an equivalence class of multi-scale differ-
entials. Some parts of the comparison (such as the enhanced level graph) are obtained es-
sentially by some bookkeeping, but extracting the level rotation torus and prong-matchings
from the logarithmic data requires significantly more care.

Our first key insight about prong-matchings is Lemma 3.1, giving a new, coordinate-free
characterization of prong-matching via the residue isomorphism. The second key insight
exhibits the reason for equivalence relation given by the level rotation torus in log language.
We define a log splitting of a point in Rubg, (B) essentially as a section of the quotient
map Mg — Mp from the sheaf of monoids Mg built into the log structure to the ghost
sheaf Mp. The precise statement is given in Definition 5.1. We show that the set of log
splittings is closely related to the level rotation torus, and in particular changing the choice
of log splitting corresponds to the action of the level rotation torus.

Finally we remark that an analogue of Theorem 1.1 should also hold for rubber k-
differentials and multi-scale k-differentials. Indeed on the logarithmic side the generaliza-
tion is straightforward as noted earlier. Moreover, the space of multi-scale k-differentials
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was described similarly in [CMZ19]. Thus the arguments in the current paper can be
adapted directly to compare the two versions of k-differentials. We leave the details to the
interested reader.

Outline of the paper. In Section 2 we give the basic definitions of logarithmic rubber
maps, and in Section 3 we do the same for generalized multi-scale differentials. In the
somewhat technical Section 4 we describe the underlying algebraic stack that comes from
the logarithmic definition in Section 2, which will be essential for what follows. Section 5
is the technical heart of our comparison theorem, where we show how to construct a
multi-scale differential from a logarithmic one, and vice versa. In Section 6 we discuss
several constructions of the universal line bundle class n that appears in the Hodge DR
conjecture and prove the conjecture in the case of k = 0. In Section 7 we describe some
of the concerned moduli spaces by blowup constructions. Finally, the sign conventions
generally adopted in the logarithmic and multi-scale worlds are unfortunately opposite to
one another; in Appendix A we explain a small variation on the logarithmic definitions
which makes the signs match.

Acknowledgments. The authors would like to thank Quentin Gendron for many helpful
discussions. We also thank Qile Chen, Honglu Fan, Danilo Lewanski, Rahul Pandhari-
pande, Adrien Sauvaget, Johannes Schwab, and Longting Wu for sharing comments and
insights on a preliminary version of the current paper. This project was initiated during
an online seminar organized by D.H. and J.S.; we would like to thank all the participants
for making the seminar a success.

2. LOGARITHMIC RUBBER MAPS

2.1. Overview of log divisors. A log scheme is a pair
(2.1) (B,a: MB—>OB),

where B is a scheme, Mp is a sheaf of monoids on B, and « is a map of monoids, where
Op is equipped with the multiplicative monoid structure, and where we assume that «
induces an isomorphism between the submonoids of invertible elements. We denote Mp =
Mp/a™1(O3), called the ghost sheaf or characteristic sheaf. Recall that a monoid M is
called saturated if the natural map M — MB®P to its groupification is injective, and if for
every n € Z>1 and g € M®P with ng € M we have g € M. A log structure is called
saturated if all its stalks are saturated. We work throughout only with fine saturated log
structures (log structures admitting charts by finitely generated saturated monoids).
If seI(B ,M%"), then the preimage of £ in the short exact sequence

(2.2) 10— M® - MF — 1

is a G,-torsor, which we denote by O3(8). We write Op(f3) for the associated line bundle
(see Appendix A for our sign convention here).
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Following [Kat00], the formal definition of a log curve is a morphism of log schemes®

m: X — B that is proper, integral, saturated, log smooth, and has geometric fibers which
are reduced and of pure dimension 1. This definition is rarely important to us, so rather
than explicating the terms involved we present a crucial structure result (to be found in
[Kat00; GS13]). If 7: X — B is a log curve, then the underlying map of schemes is a
prestable curve, and if x is a geometric point of X mapping to a geometric point b of B,
then exactly one of the following three cases holds:

(1) z is a smooth point of X, and the natural map MBJ, — MX@ is an isomorphism;

(2) z is a smooth point of X, and there is a natural isomorphism Mg, ®N — My, (in
this case = we say is a marked point, and we choose a total ordering on our markings
to be compatible with the standard definition of marked prestable curves);

(3) x is not a smooth point of the fiber X; (i.e. z is a node), and there is a unique
element ¢, € MBJ, and an isomorphism

(2.3) Mx. = {(u,v) € M2B,b such that ¢, divides u — v}.

We write 9 for the fibred category over LogSch whose objects are log curves X/ B, with
the fiber functor taking X/B to B. This is representable by an algebraic stack with log
structure, see [GS13], generalizing the construction of [Kat00] in the stable case. As shown
in those references, the underlying algebraic stack of 91 is naturally isomorphic to the
stack of prestable curves. The stack 9t naturally contains all M, , as open substacks, by
equipping a stable curve X /B with its basic log structure (see [Kat00; GS13]); equivalently,
with the log structure coming from the boundary divisor.

Given a log scheme, we define

Gy (B) = T(B,MF),

which we call the tropical multiplicative group. It can naturally be extended to a presheaf
G:;o% on the category LogSchp of log schemes over B, and admits a log smooth cover by

log schemes (with subdivision [P!/G,,]); see [MW20].
Definition 2.1. Rub is the stack in groupoids over 9t with objects tuples
t
(m: X = B, f: X —>Gnr;”%)

with X/B a log curve, satisfying two conditions on each strict geometric fiber:

(1) The image of 3 is fiberwise totally ordered”, with largest element 0.
(2) Writing R for the stack obtained from GheP by subdividing at the image of 3, we
require that the fiber product X x 5GP R is a log curve.

The morphisms are defined by pullback. A

Over a given geometric point of B, write N + 1 for the cardinality of the image of f;
since the latter is totally ordered, there is a unique isomorphism 7 of totally ordered sets

6The reader concerned about the case g = 1, n = 0 should rather take log algebraic spaces.
"Here we mean that for any two elements in the image of 3, one of their differences is contained in Mp.
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between the image of 8 and {0,—1,...,—N}. The composition
(2.4) l=1o0f
is then called the normalized level function associated with .

Remark 2.2. This definition will be unpacked in Section 2.3, but for now we make a
couple of remarks on how it differs from that given in Marcus—Wise [MW20]. Firstly, they
declare the image of 8 to have smallest element 0; this makes no material difference, and
the reason for our choice of conventions is explained in Appendix A.

More significantly, condition (2) is not stated by Marcus and Wise. However, it is
assumed, for example in datum (R1) in Section 5.5 of their paper. Most of their results go
through without this condition, but it is necessary for making a connection to the spaces of
rubber maps of Jun Li, Graber-Vakil etc., and is also necessary for the comparison results
in the present paper.

Theorem 2.3 ([MW20]). The category Rub is a log algebraic stack locally of finite pre-
sentation.

Marcus and Wise prove this in the absence of condition (2) above, but imposing this
condition simply corresponds to a root stack construction, and does not affect the result.
One benefit of imposing condition (2) is the following theorem, which did not hold for the
version of Rub considered by Marcus and Wise (and which will be proven in Section 4.3).

Theorem 2.4. The algebraic stack Rub is smooth.

Given 8 € M5 (X), then taking the preimage in the standard exact sequence (2.2)
applied to X yields the line bundle Ox (/3); in other words, it yields an Abel-Jacobi map
aj: Rub — Pic

to the Picard stack of the universal curve over 9 (the stack of pairs (X/B,F) where X/B
is a log curve and F is a line bundle on X). One of the main results of [MW20] is that
the composite of this Abel-Jacobi map with the forgetful map Pic — Pic to the relative
Picard space is proper.

Definition 2.5. Write n for the locally constant function on 99 giving the number of
markings. Then there is an outgoing slopes map
Rub — Z"

sending a point (X/B, ) to the outgoing slopes of 3, i.e., the values of 5 in the groupifi-
cations of the stalks My, p(2i) = Mx(z)/Mp(m(z)) = N at the markings.

Given a tuple = (my,...,m,) of integers, we define Rub, to be the open-and-closed
substack of Rub where the log curve has n markings and the outgoing slopes are given
by u. A

Note that the forgetful map from Rub, to 91 is birational (it is an isomorphism over
the locus of smooth curves); in particular if we fix a genus and a number of markings, then
Rub,, is connected.
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Writing d == )" ; m;, the image of Rub, under the Abel-Jacobi map aj lands in the
connected component Pic? of Pic consisting of line bundles of (total) degree d.

Remark 2.6. In fact one can show that the map Rub, — 91 is not only birational
but also log étale. This is a type of a birational map basically consisting of an iterated
blowup of boundary strata, followed by root constructions on some of these strata, and
then followed by taking some open subset. For the details, we refer the reader e.g. to the
paper [HMPPS22|, where such morphisms are used extensively. An important point there
is that they can be described uniquely by an (incomplete) subdivision of the tropicalization
of M. While again we do not explain the details, one consequence is that one can obtain
a smooth local model of the morphism Rub, — 91 by the toric map induced via some
explicit subdivision of a cone.

In Figure 1 we use this to illustrate the importance of condition (2) in Definition 2.1. For
this, consider a point of 99T where the curve has genus 0 and the stable graph I' has three
vertices and two edges e, es as illustrated. Assume that each vertex carries one marking
and that u is chosen so that the unique slopes of a piece-wise linear function on the edges
are 1,2 for e, ex (see Definition 2.10 for a discussion of PL functions).

Then the tropicalization of 91 contains a cone op = R2>0 parameterizing the ways of
putting lengths ¢, on the two edges. Depending on which of the quantities ¢; or 2/,
is greater, a piece-wise linear function on I' with the given slopes will take a larger value
either on vo or v1. Then the smooth local picture of Rub,, — 9 is given by the map of
toric varieties associated to the subdivision of op at the ray spanned by ({1, ¢2) = (2,1).

However, there is a subtlety: for the standard integral structure (black dots), the upper
cone is simplicial, but not smooth. Indeed, the primitive generators (0, 1), (2, 1) of its rays
form a rational basis, but not an integral basis. Hence, the toric variety associated to this
cone has a singularity, which would contradict Theorem 2.4. And indeed, this is precisely
what happens for the variant of Rub defined by omitting condition (2) from Definition 2.1.
Putting this condition forces us to adjoin the element (0,1/2) to the lattice on the upper
cone (adding the points marked by crosses).® Then the new ray generators are (0,1/2),
(1,1/2), which indeed form a basis of the integral structure Z & (1/2)Z, so that Rub is
smooth as claimed.

2.2. Logarithmic rubber differentials. The stack Rub is in some sense the universal
space of logarithmic rubber maps. In this section we specialize to the case of logarithmic
rubber differentials. For this we fix g, n and write X, , /ﬂg,n for the universal curve, with
markings z = (z1,..., 2,). Fix a tuple g = (my,...,my) such that d = Y"1 ; m; = 2g — 2.
We define a line bundle on the universal curve X, over Mg,n by the formula

n
L:=L, = WX, My ( — Zm122> )
i=1

8Note that in contrast to the toric situation, not all cones in the tropicalization of Rub lie in the same
ambient vector space with integral structure, so that it is possible to change this integral structure on
different cones of the tropicalization.
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FIGURE 1. Subdivision associated to the drawn stable graph, with slope 1
at edge e; (of length ¢1) and slope 2 at edge e (of length ¢5).

where w = w Xym/ My is the relative dualizing sheaf of X, — Mg,n. Then £ induces a
morphism

©r: ﬂgm — iBiC.
Definition 2.7. We define the space of logarithmic rubber differentials to be

(2.5) Rubg = Rubg XBic,or Mgm .
A

Remark 2.8. If we had taken the fiber product over the relative Picard space (instead of
the Picard stack) we would have obtained the projectivized space P(Rub,). This is the
approach taken in [MW20; BHPSS20], as the space P(Rub,) is what is needed for the
study of the double ramification cycle.

Remark 2.9. There are two equivalent descriptions of the rubber differential space as

Rubﬁ = Rubg XPic,or Mg,n = Rubu XPic, 0w Mg,n .

2.3. Local description. In what follows we will make the definition of the space Rub
more explicit for log curves over ‘sufficiently small’ bases; more precisely, for nuclear log
curves as defined in [HMOP20]. This is a slight refinement of asking for the base to be
atomic (in the sense of [AW18]), and is needed because a log curve even over a point does
not have a well-defined dual graph unless the residue field is sufficiently large. We omit
the details of the definition of a nuclear log curve, mentioning only the key properties we
use:

(1) For any family of log curves X/B, there exists a strict’ étale cover |lic; Bi — B
such that each X xp B; — B; is nuclear;

N map f: X = Y of log schemes is strict if the log structure on X is the pullback of the log structure
on Y. In particular, the strict étale topology on log schemes reflects very closely the usual étale topology
on schemes.
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(2) For X/B a nuclear log curve and for any b € B, the curve X, has a well-defined
dual graph I'y, with edges labeled by non-zero elements of M B,p; we denote the label
(also called length) of e by d.; this was denoted ¢, in (2.3). If §, € Mp(B) is a lift
of d, then a(d)) € Op(B) is a smoothing parameter for e, in the sense that X can
be described locally around the corresponding point by an equation uv = a(d.).
The stalk of Mx at the corresponding node g of the fiber over b € B is given by

(2.6) Mx 4 = {(u,v) € Mg, & Mp, such that & | (u—v)};

(3) For X/B nuclear, the base B has a unique closed stratum'®, and for any b in that
closed stratum the restriction gives an isomorphism I'(B ,MB) = MBJ,.

(4) If X/B is nuclear and b, ¥’ € B, with b in the closed stratum, there is a natural
identification (of labeled graphs) of I'y with the graph obtained from I', by mapping
every label to MBJ,/, and then contracting all edges that are labeled by 0. We often
abuse notation by writing Mg = MBJ, (for b in the closed stratum) in place of
I'(B,Mp). We often write I' for the graph over any point in the closed stratum,
which comes with an M pg-metric.

If B is the spectrum of a strictly Henselian local ring with atomic log structure (for example,
if B is the spectrum of a separably closed field), then by [HMOP20, Lemma 3.40] any log
curve X/B is nuclear.

Let X/B be a nuclear log curve. Let b € B be a point in the closed stratum, with
associated dual graph I" with vertex set V =V (I'), set of half-edges H = H(I") (including
legs), and set of non-leg half-edges H' = H'(T").

Definition 2.10. A piece-wise linear (PL) function on X/B is an element of T'(X,M5%).
A combinatorial PL function on X/B consists of the data:
(1) a function g': V(T') — M%‘jb (the values on the vertices), and
(2) a function x: H'(T') — Z (the slopes on the non-leg!! half-edges),

such that if hy and hy are half edges forming an edge e, with h; attached to vertex v;, we
have

k(h2)de = B'(v2) — B'(v1)
(so that in particular x(h1)+k(he) = 0). Edges of I" with slope 0 (that is, where both half-
edges have slope zero) are called horizontal; all the other edges of I" are called vertical. A

We want to show that these two types of PL functions are in natural bijection. First,
we construct a combinatorial PL function from any PL function. At generic points n of X,
there is a natural isomorphism MB,b = MX,,?, so the section 8 € H°(X, M%?) determines a
function f': V — M%’fb. To complete the definition of x we first show:

10Every log scheme comes with a decomposition into locally closed subschemes (called strata).

U1y this paper we do not include slopes on the legs, as we are interested only in the case where these
slopes are equal to 0 (since we work throughout with Rubg). Recall as in Remark 2.9 that we have moved
the data of the zeros and poles in to the line bundle £,..
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Lemma 2.11. If hy and hy are half edges forming an edge e, with h; attached to vertex v;,
then for the function 8’ constructed from B as above, the value 5'(vy) — 5/ (v1) is an integer
multiple of de.

Proof. This follows from (2.6) and the fact that the images of 5 under the two projections
to Mng,b are exactly given by '(v1) and f'(v9). O

In the notation of the lemma above we can then define
_ B'(v2) = B'(v1)
Oe

(which is unique because MBJ, is torsion-free). This accomplishes one direction of the
following lemma.

(2.7) r(hg)

Lemma 2.12. The above construction induces a bijection between the set of PL functions
and the set of combinatorial PL functions.

Proof. Let 8’ be a combinatorial PL function; we build a PL function 3 giving the inverse
image of 3 under the construction above. If z is a smooth point of X;, then M Xz = MBJ,,
and we define the value of 8 at = to be f'(v), where v corresponds to the irreducible
component of Xj containing x. The presentation (2.6) makes it clear that there is a unique
way to extend this section to all non-smooth points x € X;. For any other point ' € B the
combinatorial PL function can naturally be transferred (using property (4) of the definition
of a nuclear log curve) to the fiber X, and we repeat the above argument to give a PL
function on Xp. These then fit together to a global PL function on X/B, O

Our concrete local description of Rub is now given by the next proposition.

Proposition 2.13. For X/B nuclear and b € B in the closed stratum, there is a natural
bijection between the set of X/B-points of Rubyg (i.e., the set of maps B — Ruby lying
over X/B) and the set of maps
(2.8) BV — Mg,
satisfying the following conditions:
(1) The divisibility condition d. | 5'(vy) — B'(v1) holds at every edge e in Ty connecting
vertices vy,v9 € V.
(2) The image of 5 is a totally ordered subset of M%'ib with largest element being 0;
(8) For every edge e connecting vertices vy and ve, with slope ke (defined as the absolute
value of (2.7)), and for every y € Image(B3') with §'(v1) <y < B'(v2), the monoid
MBJ, contains the element %,(vl)

e

Proof. Conditions (1) and (2) are translations of point (1) of Definition 2.1. Condition (3)
corresponds to point (2) of Definition 2.1, as explained in [BHPSS20, Section 6.2]. O

Remark 2.14. If 5] and S} are combinatorial PL functions with the same slopes k., then
there exists ¢ € Mng,b such that 8] = B, + ¢. In the definition of Rub we restrict to PL
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functions whose values are totally ordered and take maximum value 0, and such functions
are completely determined by the values of their slopes k.

We would like to characterize in a similar spirit when a point of Rub lifts to Rub, .
More concretely, this means describing explicitly the line bundle Ox () associated to a PL
function. The next lemma describes the restriction of Ox (/) to the irreducible components
of the curve X (in the case where  comes from Ruby, i.e. has vanishing outgoing slopes).
To describe the gluing between irreducible components would require us to get into quite
a few more details of log geometry, and is not necessary for what we do in this paper.

Lemma 2.15 ([RSPW19, Lemma 2.4.1]). Let Y be the normalization of an irreducible
component of Xy, corresponding to a vertex v. For each half-edge h attached to v, write Ky,
for the outgoing slope and qp, € Y for the associated preimage of a node of Xy. Then there
s a canonical isomorphism

Ox(B)ly = 7'05(8(v)) oy Oy (3 rnzn)
h

In particular, for a point (X3/b, 3) of Ruby to lie in Rub, it is necessary (though not
in general sufficient) to require that on the normalized Y of any irreducible component of

X there exists an isomorphism
Ly = OY(Z Hh2h> )
h

where the sum runs over all half-edges h attached to v.

3. GENERALIZED MULTI-SCALE DIFFERENTIALS

We recall basic notions from [BCGGM19], in order to define the groupoids GEM, (1)
of simple generalized multi-scale differentials and GMS,, of generalized multi-scale differ-
entials, where u = (mq,...,my) is a tuple of integers with sum 2g — 2. The adjective
‘generalized’ refers to the fact that we do not impose the global residue condition.

3.1. Enhanced level graphs. The boundary strata of the stack of generalized multi-scale
differentials are indexed by enhanced level graphs. Such an enhanced level graph, typically
denoted by I', is the dual graph of a stable curve, with legs corresponding to the marked
points, with a level structure (i.e. a weak full order) on the set of vertices V(I'), and with
enhancements k., which are non-negative integers attached to the edges. The edges E(T)
are grouped into the set of horizontal edges E™(I") joining vertices at the same level, and
the set of vertical edges EV(I'). The enhancements are required to be zero precisely for
horizontal edges. We thus may consider an enhancement as a function

k: HI) —»Z
on the set of half edges of I', assigning x. > 0 to the upper half and —k. < 0 to the lower
half of a vertical edge, assigning zero to both halves of a horizontal edge, and letting s

agree with m; at the legs of the graph. We normalize the set of levels so that the top level
is zero, and let L(I") be the set of levels below zero, usually given by consecutive negative



16 CHEN, GRUSHEVSKY, HOLMES, MOLLER, AND SCHMITT

integers L(I') = {—1,...,—N}, where N := |L(T)|, so that we typically use the normalized
level function
(3.1) ¢: V(') —{0,-1,...,—N}.

Occasionally we use L*(T") for the set of all levels including the zero level. In the sequel we
will only consider enhancements that are admissible in the sense that the degree equality

(3.2) deg(v) == > mj+ Y (ke—1)— Y (I+re)—h(v) = 2g(v) —2

Jj=v eeEt(v) e€EE~(v)

holds, where the first summand is over all legs attached to v, where E*(v) (resp. E~(v))
is the set of vertical edges whose upper (resp. lower) end is the vertex v, and h(v) is the
number of horizontal half-edges adjacent to v.

Enhanced level graphs come with two kinds of undegeneration maps. First, there are
vertical undegeneration maps d;, . ;, for any subset I = {ij,...,i,} € {-1,...,—N}
which contract all vertical edges except those that go from level at or above i + 1 to a
level at or below i, for some i € I. Especially important among those are the two-level
undegenerations ¢§;, which contract all vertical edges except those that cross a level passage
above i, i.e. go from a vertex at level i+ 1 or above, to a vertex at level ¢ or below. Second,
there are horizontal undegeneration maps 5}55 that contract all the horizontal edges except
those in S € EM(T). An undegeneration of a level graph is a composition of a vertical and
a horizontal undegeneration. Undegenerations determine the adjacency of boundary strata
of the space of multi-scale differentials.

3.2. Prong-matchings. Let (X,w) be a smooth complex curve with a meromorphic 1-
form. We fix a direction, i.e., an element in S' C C throughout, say the positive horizontal
direction. If a differential w has a zero of order m > 0 at ¢ € X, then there are m—+1 choices
of local coordinate z on X centered at ¢ such that locally in this coordinate w = z™dz;
similarly for a pole of order m < —2 at ¢ € X, one can find local coordinates such that
w = (2" +r/z)dz. and the tangent vectors 0/0z of these coordinates differ by multiplying
a root of unity of order —m — 1 = |m + 1|; see [BCGGM19, Theorem 4.1]. The horizontal
directions in one of these coordinates are called prongs, which can be positive or negative
(also called outgoing and incoming), depending on which direction the ray goes. We think
of the outgoing prongs as a collection of kK = m + 1 points P;ut in the tangent space at a
zero of order m, and of the incoming prongs as a collection P;nc of Kk = —m — 1 points in
the tangent space at a pole of order m.'?

Let now X be a stable curve with a node ¢ corresponding to a vertical edge e € EV(T),
where two components of X meet, and suppose these components X; and Xy come with
differentials forms w; and w» having a zero and a pole respectively at the respective preim-
ages ¢ € X1 and ¢~ € Xy of q. A (local) prong-matching at the node ¢ is a cyclic
order-reversing bijection o: P;l — P;Et between the incoming prongs at ¢~ and the
outgoing prongs at ¢q*.

121y differential geometry it is more common to use the real prongs, lying in the real projectivized
tangent space P, X = T, X /R0 22 S1. These are in obvious bijection to the (complex) prongs we use here.
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Let now (X, z,I",w) be a pointed stable curve with an enhanced level graph I" and let w =
(w(i))iere(r) be a twisted differential of type p compatible with I', possibly except for the
global residue condition. Following [BCGGM18], this means a collection of meromorphic
differentials w, for each vertex v, vanishing to order m; at each of the marked points z;,
vanishing to order x(h)—1 at the preimages of nodes associated to the half-edges h € H'(T")
and such that the residues at the two sides of a horizontal node add up to zero. Grouping
objects level-wise, we denote w(;) the tuple of differentials w, for all vertices v on level .

Given a twisted differential, we have the data to define local prong-matchings for each
vertical edge. Packaging such a choice for each vertical edge e € EY(T'), we call the
collection o = (0¢)ccpy(r) @ global prong-matching.

There is an alternative viewpoint on prong-matchings, which can be generalized to germs
of families X — B, where a node ¢ corresponding to an edge e in the dual graph of the
special fiber persists over the base. In the normalization of the family there are two
components X* (as the edge is vertical, necessarily X+ # X~) that admit sections ¢*
that specify the two preimages of the node q. We let

(3.3) N = (") wx+ @ (¢7) wx- -

A local prong-matching is then a section o, of A such that for any pair (v*,v”) of an
incoming and an outgoing horizontal prong the equation o (v ®v™ )% = 1 holds. To see the
equivalence, given 0., we assign to v~ the prong v™ given by the condition o (v ®@v™) = 1.
A global prong-matching is a collection of local prong-matchings for each persistent node
(as defined formally in Section 3.4) in the family.

We give another reformulation that eliminates the dependence on the choice of a pre-
ferred (‘horizontal’) direction. Let UT be neighborhoods of the points ¢* in the normaliza-
tion of X'. Suppose the edge e joins level i to the lower level j. Then w;) extends uniquely
to a section of wy+p(—(ke —1)¢") and w(;) to a section of wy - /p((ke +1)¢~). Restricting
to ¢* and ¢, respectively, yields canonical elements

Tt e wy+ /B (—(Ke — 1)q+)|q+ = Tﬁ‘“e and 77 € wy-/p((Ke +1)q7 )|~ = Tfi“e
(where we use the residue isomorphism for the equalities). We define
Te= ('@ (17) € (Tyr @ T, ) = N2%e.

Lemma 3.1. In the notation of the previous definition, let vt and v~ be some horizontal
prongs at e. Then (vT @ v )% € N®%e s independent of the choice of prongs and of the
direction to be called horizontal, and we have

(3.4) Te = (vT @v7)®re,

Proof. For a fixed direction, the different choices of prongs v™ differ by k.-th roots of
unity, and likewise for v~. Thus the formula for 7. implies that it does not depend on these
prong choices. On the other hand, changing the direction from horizontal to direction 6
multiplies v by €2 and v~ by e 2™ and thus preserves vT ® v~. The equality is
obvious, by writing it out in any local coordinate that puts the differentials in normal
form. O
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This implies that the earlier definitions of prong-matching agree with the following;:
Definition 3.2. A local prong-matching is a section o, of N such that o%<(7.) =1. A

3.3. Level rotation tori. To an enhanced level graph we associate some groups and
algebraic tori. The level rotation group Rr = Z*1) acts on the set of all global prong-
matchings, where the i-th factor twists by one (i.e. multiplies o, by e2mi/ %) all prong-
matchings associated to edges that cross the i-th level passage, a horizontal line above
level i and below level i + 1. '3 The (vertical) twist group is the subgroup Twr C Rr fixing
the prong-matchings under the above action. The level rotation group also acts (via its
i-th component) on the set of prong-matchings of the two-level undegenerations §;(I"). We
define the simple twist group Twi C Twr C Rr to be the subgroup that fixes each of the
prong-matchings of each 4;(T").

Let CEM — (C*)LM) be the universal covering of the algebraic torus (C*)XD): we
identify the level rotation group Rp € CE() as the kernel of this covering. As a subgroup
of the level rotation group, the (simple) twist group acts on CL™), and we define the level
rotation torus T = CET) /Twr, together with its simple counterpart, the simple level
rotation torus T2 == C*T) /Tws..

Next we define the data that provide the model for the toroidal embedding of the bound-
ary inside the space of multi-scale differentials. Since Twy. = @;Tws, ) has by definition
a direct sum decomposition level by level, the simple level rotation torus comes with a
natural level-wise identification Tj = (C*)*(I). The embedding C* < C with respect to
these coordinates defines an embedding 17 — Tp = CMD), We let
(3.5) ai = ag,r) = eé%?&) e
be the least common multiple of the enhancements of the edges of I' that persist in the
two-level undegeneration 0;(I'). Then Tw{ = @;a,Z C Rr. Consequently, Tj% is a cover of
the original torus ((C*)L(F ), of degree 1, a;. Finally, we define the quotient twist group to
be

(3.6) Kr = Twp/Twp .
This group acts on T{ with quotient Tr. In coordinates the quotient map is given by
(C*)L(F) N (C*)L(F) « (C*)E”(F)
+
(3.7) def)=t
(@) = (ri,pe) = (qz ; H g/ )
i=l(e™)

where we view Tt C (C*)E0) x (C*)E'(T) as cut out by the equations

(3.8) To(e=) - Toet)—1 = Peo’

1311 this paper we index levels and all quantities indexed by them, such as t¢;, s;, §; below, by negative
integers, as in [BCGGM19], but contrary to several subsequent papers that use this compactification.
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for each e. The action of Kt on T} extends to an action on the closure Tr, and we let
Tr = Tp/Kr, which is the normalization of the closure of Ty € (C*)X(1) x (C*)#*(1),

All these tori come with their extended versions, denoted with an extra dot (e.g. 1),
that have an extra C*-factor. This factor will act on differentials of all levels simultaneously
by multiplying all differentials by a common factor, and lead to the projectivized version of
the corresponding quotient functor.

3.4. Germs of families of generalized multi-scale differentials. We now relate those
tori to parameters of families of curves and differentials. In this subsection we assume
throughout that B = B is the spectrum of a strictly Henselian local ring with closed
point b. We start with a family (7: X — B, z) of pointed stable curves and let T be the
dual graph of the special fiber X := Xj.

For each node g. of Xj there is a function f. € Op called the smoothing parameter,
such that the family has the local form u.ve = f. in a neighborhood of ¢g.. In fact, such
a function exists in general after an étale base change by [Stacks, Tag 0CBY], see also
[ACG11, Proposition X.2.1] for the version in the analytic category. Since B is strictly
Henselian, any étale cover is a product of trivial covers and the function f. exists over B
itself. The parameter f, is only defined up to multiplication by a unit in Op. We will write
[fe] € Op /O3 for the equivalence class of the smoothing parameter.

We say that a node e is persistent in the family X if f. =0 € Opg. If the dual graph I'y
has been provided with an enhanced level graph structure, we say that a node e is semi-
persistent if frFe = 0. The notion of prong-matchings makes sense for a persistent node g.

For our families of multi-scale differentials, we need to include an explicit choice of
smoothing parameters f. into our data. This can be achieved via a section of the partial
compactification T; of the simple level-rotation torus. Indeed, given the coordinates (r;, pe)
on the torus closure from (3.8), a morphism R*: B — Tp determines for each vertical edge e
a function f. € Op and for each level i a function s; € Op, defined as the compositions
fe=peomoR® and s; = r; 0omo R®, where 7: Tli — T; is the canonical morphism. If an
edge e joins levels j < i, then by (3.8) these functions satisfy

(39) f:e = 5j...8—1-

The following definition makes precise the notion that a morphism R® as above defines a
compatible system of node smoothing parameters:

Definition 3.3. A simple rescaling ensemble is a morphism R*: B, — T;b such that the
parameters f, € Op; for each vertical edge e determined by R? lie in the equivalence
class [fe] determined by the family 7: X — B. A rescaling ensemble is a morphism
R:B — T?b which arises as the composition m o R® for some simple rescaling ensemble
R*. A

The s; and f. will be called the rescaling parameters and smoothing parameters deter-
mined by R or R®. The composition of R® with the coordinate projections gives functions t;
such that s; = tfl We refer to those t; as the level parameters.
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The adjective ‘generalized’ in the following definition refers again to the fact that the
global residue condition has been dropped, compared to [BCGGM19]. For an illustration
of some elements of the definition see Figure 2. The well-definedness of the period in the
following definition is checked (in any characteristic) e.g. in [Boj19, Lemma 1.8].

Definition 3.4. A collection of generalized rescaled differentials of type p = (mq, ..., my)
on the family (7: X — B,z) is a collection of sections w(;) of wy,p defined on open
subsets U; of X, indexed by the levels ¢ of the enhanced level graph I'. The irreducible
components of the special fiber X on level strictly below i are called vertical zeros, those
strictly above i are called wvertical poles of w(;). Each U; is required to be a neighborhood
of the subcurve X <;) \ (X(>4) U Z2°°), where Z°° denotes the locus of marked poles in the
universal curve. For each level ¢ and each edge e of I' whose lower end is at level i or below,
we define r, ;) € Op to be the period of w(;) along the vanishing cycle 7. for the node g.
We require the collection to satisfy the following constraints:

(1) There exist sections s; € H*(B,Op) with s;(b) = 0 such that for any levels j < i
the differentials satisfy w;) = s;---si—1w(;) on U; N Uj.

(2) For any edge e joining levels j < i, the vanishing orders of w;) and w(;) at the
corresponding node in the special fiber are k. — 1 and —k. — 1 respectively.

(3) The w;y have order my along the sections Zj. of the k-th marked point that meet
the level-i subcurve of Xj; these are called horizontal zeros and poles (where Z°
records the horizontal poles). Moreover, w(;) is holomorphic and non-zero away
from its horizontal and vertical zeros and poles.

If the rescaling and smoothing parameters s;, f. for the collection w;) agree with those
of a rescaling ensemble R® or R, we call them compatible. We denote the collection by

W= (W(i))ieL'(F)- A

The reader comparing with the definition in [BCGGM19] will realize that there in
item (2) there is the following additional requirement: For any edge e joining levels j < i
of I', there are functions u.,v. on X and f. on B, such that the family has local normal
form ueve = fe, and in these coordinates

. . du
(3.10) wiiy = (uge + fEre ;)7

dve

and  wi) = — (Ve + e ()~

9

where k. is the enhancement of I'y, at e. In fact, for any edge which is not semi-persistent,
this normal form is automatic by [BCGGM19, Theorem 4.3]. For any semi-persistent edge
this condition is not needed here, since we do not require that the family is smoothable.

Remark 3.5. Let w be a collection of generalized rescaled differentials with a compatible
rescaling ensemble R® or R . Then for any non-semi-persistent edge e, there is a natural
induced prong-matching o. over B, the vanishing locus of f., which is determined by the
choice of the rescaled differentials w(;) and the rescaling ensemble. This prong-matching oe
is defined explicitly in local coordinates by writing it as o, = due ® dv. when restricting
to the nodal locus corresponding to e, where u, and v, are as in (3.10) with f. prescribed
by the rescaling ensemble. Any two possible choices of u. and v, are of the form a.u. and
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— Ve —

FI1GURE 2. The underlying curve for a family of generalized rescaled differ-
entials of type p = (4), with neighborhoods Uy, U_1 (in red, green) and the
vanishing cycle 7. (in blue).

o, Lo, for some unit a, € O (see [BCGGM19, Section 4]), so the induced prong-matching
does not depend on this choice.

We can now package everything into our main notion.

Definition 3.6. Given a family of pointed stable curves (7: X — B, z) and B} a germ
of B at b, the germ of a family of generalized simple multi-scale differentials of type u over
By, consists of the following data:

(1) the structure of an enhanced level graph on the dual graph I'y of the fiber Xj;

(2) a simple rescaling ensemble R*: B — T;b, compatible with

(3) a collection of generalized rescaled differentials w = (w;)iere(r,) of type p, and

(4) a collection of prong-matchings & = (0¢)ccpyr), Where o, is a section of N/
over B., the vanishing locus of f.. If e is non-semi-persistent nodes, o, is required
to agree with the induced prong-matching defined in Remark 3.5. A

A section of the simple level rotation torus TFSb(OB), that is a morphism ¢ : B — T,
acts on all of the above data via

5 : (w(i)7R87 Ue) = (g : w(i)vé_l ' RS7£ : Je) .
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Here, for £ € 17, (Op) mapping to ((7i)ieL(ry): (Pe)ec kv (r,)) under the quotient map (3.7),
the action is defined by

§ wu) = (HT@)W@), §0e = pelec,
>4
and €71 - R® denotes the post-composition of R® with the multiplication by £-1.14
A morphism between two germs of generalized simple multi-scale differentials

(3.11) (7' X' - B, 2, Ty,(R*),w' 0') — (7: X - B,2,T, R°,w, o)

is a pair of germs of morphisms ¢: B’ — B and ¢: X’ — X and an element { € 17, (Op)
such that
i) (¢, ®) jointly define a morphism of families of pointed stable curves,
ii) the induced isomorphism of dual graphs I'yy — T’ is also an isomorphism of en-
hanced level graphs,
iii) the action of & sends ((R®)',w’, 0’) to ¢*(R%, w, o).

Pullbacks of germs of a family of generalized multi-scale differentials are defined as in
[BCGGM19, Section 11.2]. This step requires some care, since the number of levels, the
nodes where the prong-matching is an induced prong-matching, and the target of the rescal-
ing ensemble map change. Given that, we may define families of generalized multi-scale
differentials by sheafification, proceeding the same way as in [BCGGM19, Section 11.3].

Definition 3.7. We let GEM,,, (1) be the groupoid of families of generalized simple
multi-scale differentials. A

There are two variants of this definition. First, replacing 7§, (Opp) with the extended
level rotation torus be(OB,b) in the definition of a morphism, we obtain projectivized
generalized simple multi-scale differentials. Here the additional torus factor acts by scaling
the differential on all levels simultaneously, including level 0. These are relevant to get
compact spaces. Here we compare the unprojectivized definitions and will not elaborate
further on this.

Second, there is a “non-simple” variant that we need to compare to the relative coarse
moduli space. The remarks above about pullback and sheafification apply here as well.

Definition 3.8. A germ of a family of generalized multi-scale differentials of type pu is
defined as in Definition 3.6, replacing (2) by a rescaling ensemble R: B — T?b. A morphism
of such germs consists of (p,,&) as above, except that now we allow £ € Tr,(Op/). We
let GMS,, be the resulting groupoid of families of generalized multi-scale differentials. A

Modifying Definition 3.4 by additionally imposing the global residue condition gives a
groupoid that we denote by ZM, ,, (1) for the simple version (Definition 3.6) and by MS,,

MMost of the checks that this action is well-defined are straightforward. To verify part (2) of Defi-
nition 3.4, assume we are given local coordinates u,v around a node associated to e € EY(I'y) satisfy-
ing (3.10). Then the rescaled differential is put in the required normal form using the new coordinates

= ([Tpss re)Y"eu, and O = (ITes, re) Y e,
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for the non-simple version (Definition 3.8). We state the comparison to the objects defined
in [BCGGM19].

Proposition 3.9. The stack EM, (1) is a smooth DM-stack. The stack MS,, is a stack
with finite quotient singularities and agrees with the normalization of the orderly blowup of
the normalized incidence variety compactification [BCGGM19, Section 14].

The paper [BCGGM19] also defines a smooth stack denoted by =M, (1), patched
locally from quotients of stacks with a Teichmiiller marking. The full proof that this stack
is isomorphic to the stack with the same symbol defined here would require recalling the
lengthy definitions of level-wise real blow-up and Teichmiiller marking from [BCGGM19].
This identification directly implies the second statement of the proposition. The proof given
here provides the main content of the proposition, the smoothness of this stack without
using the smoothness results from [BCGGM19].

Proof. Recall from [BCGGM19] that a versal deformation space B of MS, is given by a
product B = T?b X By, where T?b gives a parametrization of possible rescaling ensembles R

(which have values in T?b), and where By parameterizes the remaining data (deformations
of the components X, for v € V(I';) and twisted differentials on these components). In
fact, this local structure is given in loc. cit. for the model space in [BCGGM19, Section 8.1].
This model space is locally isomorphic to Dehn space by the plumbing construction given
in [BCGGM19, Theorem 10.1] and Proposition 12.5 shows that every family can locally be
lifted to Dehn space.

Consider the fiber product

~

B=B XMS,, Emg,n(ﬂ) B— Eﬂg,n(u)

| |

B MS,

We claim that B is equal to the stack quotient [Th./Kr] times the product of the other
factors. Then the maps B — Emg,n(,u) provide a smooth cover by spaces which are smooth
themselves, which is what we needed to show.

To show that B is equal to [Tp/Kr] x By, let us write down what the maps B — B

from the spectrum B of some strictly Henselian local ring are. For this, recall'® that a
morphism to a fiber product as above is given by a triple

(B — EMyn(p), B — B,G),
where G is a 2-isomorphism between the compositions
B — EM, (1) = MS, and B — B — MS,,.

Inserting the definitions of the moduli stacks, this data above is equivalent to a triple of

15For a reminder on fiber products of stacks, we recommend the excellent paper [Fan01].
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e a germ (m: X — E,z,Fb,Rs : B — T;b,w,a) of generalized simple multi-scale
differentials ,

e morphisms s : B — T;b and sg : B — By (which together can be thought of as
(s7,50) : B — T?b X By = B)

e an isomorphism (X = A7, { € Tr,(Og)) of generalized (non-simple) multi-scale
differentials, sending the family (7: X — B,z, Ty, R, w, o) to the family (7': X’ —
E,z’,Fb,R’,w’,a’) induced by (sr, sg) : B— B

By identifying the families of curves X = X’ we can act on the pair (sp,sg) with the
section ¢ of the level rotation torus. Replacing (s, so) by this modified pair, we obtain a
new, equivalent triple of data, where the isomorphism in the last bullet point is taken as
the identity. But then we see that such a triple is uniquely determined by the pair

(Rs : E—)T?NSQ : E —)Bo),

by taking s in the second bullet point as the composition B — Tlib — T;b and the data
(m,2,Tp,w, o) in the first bullet point which is determined by the non-simple generalized
multi-scale differential from (s7,sg) : B — B.

Above we have found that any morphism B — B can be described by a morphism
(R®,s0) : B — T;b X By. Two such morphisms are 2-isomorphic if they can be related
by compatible isomorphisms for the stacks B and Eﬂg,n(,u) in the fiber product. Since
B is a scheme, the only such isomorphisms come from sections ¢ : B — Iy, leaving the
underlying non-simple generalized multi-scale differential fixed. These are exactly identified
with sections ¢ : B — Kr,, which act in a natural way on the first morphism R* : B — TF

Since B is connected, the section ¢ is necessarily constant, so that we have identified '
Mor(B, B) = Mor(B, T}, x By)/Kr = Mor(B, [T, /Kr] x By).

This proves the isomorphism B & [Tlib /Kr] x By. Since both the quotient stack [Tlib /Kr]
and By are smooth, this finishes the proof. O

Proof of Theorem 1.1, second part. Assuming the first part of the theorem, the proof of the
second part is completed by showing that the map GEM,,(u) — GMS,, is the relative
coarse moduli space over Mg,n- First, we observe that the map GMS, — Mg,n is repre-
sentable. Indeed, the stabilizers (¢, @, &) of a germ of a family of generalized multi-scale
differentials lying over the identity morphism ¢ = idg, @ = idx of the underlying stable
curves are those £ € T, (Op) fixing both the differentials w and the prong-matchings o.
By the definition of the level-rotation torus, this forces £ to be trivial, so that indeed the
stabilizers of GMS,, inject to the stabilizers of ﬂg,n-

16For the second equality below we use that for a finite group K acting on a scheme T, the morphisms
B — [T/K] from the spectrum Bof a strictly Henselian local ring can be identified with the set-quotient
{B — T}/K. This itself uses the definition of the quotient stack together with the fact that all K-torsors
over a scheme B as above are trivial.
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By definition of the relative coarse space, we then have a factorization
GEM (1) = GEM, (1) — GMS,,

and we show that the second map is an isomorphism. For this, let B — GMS,, be
associated to a germ of a family of generalized multi-scale differentials. Then we have a
commutative diagram, where we define the diagrams on the right to be cartesian:

S

[Tr,/Kr] ¢------ GEMyn()p ———— GEM (1)

GEMg,TL(H)CB?arse s GEMg,n (M)coarse

| |

Tr, = B » GMS,,

Similar arguments to the proof above then show that the fiber GEM, ,, (1) p of GEM g, (1)
over B consists of the stack parameterizing the choices of simple rescaling ensemble R*
lifting the given rescaling ensemble R : B — T ;b associated to the family of generalized

rescaled differentials. Thus GEM,,(u)p is also the fiber product of R with the map
[T?b /Kr] — T?b, so that the dotted arrow on the top left makes the left diagram cartesian.

To conclude we first note that by [AOV11, Proposition 3.4] the space GEM, ,, (1) 52",

which was defined as a fiber product, is in fact a relative coarse space for GEMg,n(,u) B
over M ,,. But since the map GEM,,,(u)p — My, factors through the representable

map B — My, the space GEM,,,(1)55°"¢ is also a coarse space of GEM, (1) g over B,
by an application of Lemma 3.10 below to X = GEMQ,N(M)B, Y =Band ) = mgm.
On the other hand, since T?b is the coarse space of [T;b /Kr] (over Spec(C)), applying

[AOV11, Proposition 3.4] again shows that B itself is the coarse space of GEM,,(u)B.
This proves that the map GEM, ,(1)55°™¢ — B is an isomorphism. Since we prove this
for any B — GMS,,, we conclude that GEM,,, (1) — GMS,, is an isomorphism as

desired. 0

Lemma 3.10. Consider a sequence of morphisms X — Y’ — Y of algebraic stacks, locally
of finite presentation, and assume the relative inertia I(X/Y) — X is finite. Then if
V' — Y is representable, the relative coarse space XY of X over ) is isomorphic to
the relative coarse space XY of X over Y.

Proof. 1t follows from the properties of relative coarse spaces ([AOV11, Theorem 3.1 (2)])
that there is a natural sequence of maps

X Xcoarse,y Xcoarse,y/ N y/

<
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Taking the fiber product with a cover U — Y by an algebraic space, we obtain a sequence
of morphisms

coarse,))’

Xy —— — Ay Vi U,

coarse,)
XU

and by the representability of ) — Y and the properties of relative coarse spaces, all
stacks in this sequence except possibly Xy are in fact algebraic spaces. Now it follows
from the construction in the proof of [AOV11, Theorem 3.1] that the map Ay — Xéoarse’y

is an (absolute) coarse moduli space. On the other hand, seeing Y, — )’ as a cover by

coarse,))’
XU

an algebraic space, the same argument implies that Ay — is an absolute coarse

space, forcing the map Xéoarse’y — Xgoarse’y, to be an isomorphism. We have checked on a
cover that xcoarse.Y _y yeoarse V' ig an jsomorphism, finishing the proof. O

Remark 3.11. In practice it is often relevant to count how many projectivized multi-scale
differentials there are on a given pointed curve with twisted differential (X, z,T’,w). By
definition of the above equivalence relation, this is the number of prong-matching equiv-
alence classes, i.e. the number of orbits of the set of global prong-matchings under the
action of the level rotation group Rr. Determining this number is complicated in general,
but for a two-level graph with prongs k1,...,ks there are []x;/lem(k;) prong-matching
equivalence classes.

3.5. Quotient twist group and rescaling ensembles in a worked example. Con-
sider the triangle graph I' with three levels, each containing one vertex, and three edges
forming a triangle, as illustrated in Figure 3 (to which we also refer for the labeling of the
edges). For simplicity we restrict to the case k1 = 1 = kg and k3 = n. In this case the

X(0) X(0)
K1 K3 K1
K3
X1 K3 Xy
) K2
X(-2) X(-2)

FIGURE 3. The triangle graph (the generic fiber X, left) and its subdivision
(the special fiber Xy, right) where the extra vertex stands for a semistable
rational component.

simple twist group is Twi = nZ & nZ. The full twist group is generated by the simple
twist group and the element (1,—1). In particular we note that the quotient twist group is

(3.12) Kr = Twr/Tw} = Z/nZ.

To work explicitly with invariants, we now specialize to the case n = 3 in the sequel.
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The simple level rotation torus is isomorphic to (C*)?, hence Tii = (2, and a morphism
R*: B — T} is given by two functions (t_1,t_5). Consequently
Tpr = Tr/Kr = {(s—1,5-2, f1, fa, f3) : f1 = s_1,f3 = s_2,f5 =s_15-2}
= {(f1, fa, f3) : f3 = fif2}
where s_1 = f1 =3, s_9 = fo = t3, and f3 = t_1t_5. Thus the coordinates (t_1,t_5)
on Tii parameterize a deformation, which is in fact the universal choice in a neighborhood
of this graph, disregarding changes of the complex structure of the underlying curve. To

summarize, the rescaling ensemble R induced by R*® is given by the composition of R* with
the quotient map Ty — Tp/Kr, and has coordinates

(8—17 5-2, fla f27 f3) = (t?il, t?ig, t?il, t?iQ, t_lt_g) .

Let w = (wp,w—_1,w_2) be a twisted differential on some pointed stable automorphism-
free curve (X, z) compatible with the I'" discussed here. By plumbing (see [BCGGM19,
Section 12]) we get a family of curves X — Tp with an underlying collection of rescaled
differentials

W)y = wWo, W(-1) = S-1W-1, W(—2) = S-15-2W-2

and the rescaling ensemble R.!"

To summarize: near (X, z,I",w) as above, GMS,, = MS,,, since there are no GRC; both
functors are representable by an algebraic variety; this algebraic variety is singular with a
quotient singularity given by the group Kr.

Finally we remark that as illustrated in Figure 3, a geometric way to think of the
[P!/G,,] subdivision is to modify the definition of level graphs by eliminating all long
edges (i.e., edges crossing more than one level passage) and instead inserting semistable
rational vertices at each level crossed by a long edge, with the same prong value. Then
the corresponding twist group, level rotation torus and rescaling ensemble have only their
‘simple’ versions. To see this concretely, suppose uv = f is the local model of a node
corresponding to a long edge crossing k level passages, where f* = s;,_p...s;_1 as in
(3.9). Introduce new parameters uj,vj, f; for i — k < j < i — 1 satisfying ujv; = fj,
f]"‘ = sj, vjuj—1 = 1, u;—1 = u and v;_p = v. Then [v;,uj_1] represents the inserted
semistable rational vertex at each intermediate level that can subdivide the long edge into
k short edges, where the differential on the semistable rational vertex is u;f”_l(duj_l Juj—1) =

—v;"(dvj/vj) and the prong remains equal to k.
4. THE UNDERLYING ALGEBRAIC STACK OF RUB

The category Rub is naturally fibred over LogSch. Our goal in this section is to
understand its underlying algebraic stack (a fibred category over Sch). We use the notion
of minimal log structures from [Gill12] and [Wisl6, Appendix B]. We describe here the

1Ty fact, replacing the initial datum w by the universal equisingular deformation inside the appropriate
stratum of differentials and taking as new base T}L times the base of the equisingular deformation we obtain
the universal family.
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minimal log structures on points of Rub, a variation on the description of the minimal log
structures on Div given in the proof of [MW20, Theorem 4.2.4].

Throughout this section we work with Ruby in place of Rub, as it is notationally slightly
simpler, and fits better with what we do in the rest of the paper. The interested reader
will check that the results go through for Rub essentially unchanged.

4.1. Brief recap on minimal log structures. This is taken from [Wis16, Appendix B|,
based on [Gil12]. The purpose of minimal log structures is to understand how to pass from
a category fibred in groupoids (CFG) over LogSch to a CFG over Sch. Now LogSch is a
CFG over Sch via forgetting the log structure, so one could just take the composite. How-
ever, this is the ‘wrong’ way to extract the underlying CFG over Sch. For an elementary
example, let X := (pt,N?) be a point with log structure N2. Then there are very many
maps from Y := (pt,N) to X: one can choose both the underlying monoid map N? — N,
and the lift to the log structure giving a C* parameter. Hence if we take the CFG over
LogSch associated to X and view it as a CFG over Sch via the forgetful functor, we will
get a very large and complicated object'®, when what we really wanted was a point!

However, given a map T" — pt of schemes, there is a unique log structure M on T and
morphism (7, M) — X = (pt,N?) such that any other log morphism (7, M’) — X factors
through (7, M) — X. Namely, M is simply the pullback log structure under 7' — pt of
the log structure N? on pt. Such a log structure is called minimal, and if we take the full
subcategory of log schemes over X given by minimal objects, then view it as a CFG over
Sch via the forgetful functor, we recover exactly what we wanted, namely a point.

In the next two subsections we will apply the same machinery to the CFG Rubg over
LogSch. An object (X/B, ) of Ruby is called minimal if every solid diagram in Ruby

(X'/B', 5 » (X/B, B)

(4.1) \ a

(X///BH,B/ )

with the induced maps B’ — B and B’ — B” on underlying schemes being isomorphisms,
admits a unique dashed arrow.

Gillam proves that the full subcategory of Ruby consisting of minimal objects, together
with its natural forgetful functor to Sch, is (equivalent to) the underlying algebraic stack of
Rubgy. Thus, objects are those log points of Rubyg for which the log structure is minimal,
and morphisms are simply the usual morphisms of log objects 1°.

18For example the fiber over pt € Sch is the category of pairs of a log structure M on pt and an associated
log morphism (pt, M) — X.

A warning: suppose that one starts with a CFG over LogSch which is equivalent to a category fibred
in setoids, and which has enough minimal objects. It is then representable by an algebraic stack with log
structure, but this need not be equivalent to a category fibred in setoids over schemes (in other words, it can
still have non-trivial stacky structure). The most elementary example of this is perhaps the subdivision of
GP at 1, which is certainly a category fibred in setoids over LogSch, but whose underlying algebraic stack
is [P'/G,,]. This is because a given schematic point can admit two (or more) different minimal logarithmic
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As such, if we want to understand the relative inertia of Rubg over 9, we need to
understand not only the minimal objects and their morphisms, but also all possible ways
of equipping a schematic object of Ruby with minimal log structure.

4.2. Minimal log structures for Ruby. Let (X/B, ) be a point of Ruby with X/B
nuclear, where Mp is the sheaf of monoids on B. Recall that from this family, we obtain
e the stable graph I' describing the shape of X,
e the length maps 6: E(I') — Mp, which we extend to a monoid homomorphism
6: N <E(P)> — MBJ,,

e the value map 5 : V(T') — M%‘ib at vertices, whose image is totally ordered, inducing
the level map

¢: V() —{0,-1,...,—N} = {0} U L(T),
e the slopes k : H(I') — Z at half-edges, where given an edge e € E(I") consisting of
half-edges h,h’ we set k. = |k(h)| = | — k()| and let EY = {e € E(T') : k. > 0}
be the set of vertical edges and E" = {e € E(T) : k; = 0} be the set of horizontal

edges.
For i € L(T"), we define with (3.5)
a; ‘= lem, ke

where the lem runs over the set of all edges e such that {(e™) < i < {(et) (we say such an
edge e crosses level i). We let P := N(p_y,...,p_n) be the free monoid on N = |L(I')|
generators. Then we can define a map g: E¥ — P by

Let)—1
(4.2) gle):= > Zp;,

i=le=) ¢
and extend this map additively to a map g: N(E") — P. Finally, we let

;= B(vi) = B(vi_1) € My,

where v; is any vertex of level 1.
Lemma 4.1. o; is divisible by a; in MBJ,.

Proof. Showing that o; is divisible by «; is exactly equivalent to showing that it is divisible
by k. for every edge e crossing level i (since we work with saturated monoids, if an element
is divisible by two integers then it is also divisible by their least common multiple). But
this is exactly condition (3) in Proposition 2.13. O

Set 7; :== 0;/a; € Mg}, (noting that division in Mp is unique since it is sharp, integral
and saturated), and define a monoid homomorphism

(4.3) P P MBJ,; Vi p; =T

structures, which can have several isomorphisms between them even if we have a CFS over LogSch; the
fiber over any given log scheme can still have no non-trivial automorphisms.
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Lemma 4.2. The triangle

(4.4) \ Jw

commutes.

Proof. We compute:

(45)  (g(de)) =1 <Z :—p) =y G = % Zo = %@(ﬂ(m — B(v_)) = dc

- Ke
i

(2

where the last equality comes from the fact that g8 is a PL function. O
Definition 4.3. We say (X/B, 3) is basic if the natural map

Y@ 0| g :IS@N<E">—>MB,1)

is an isomorphism. In general we say a point of Ruby is basic if it is so on a nuclear
cover. A

Our motivation for introducing this definition lies in Lemma 4.5. The intuition behind
the definition is that M B,b is precisely big enough to contain the elements that are necessary
to accommodate the images of the maps 9, the differences of images of 3, and roots of these
differences whose existence is required by condition (3) in Proposition 2.13.

Lemma 4.4. Every point of Ruby comes with a map to a basic object.

Proof. For (X/B, ) a nuclear point of Ruby, we define a sheaf of monoids P on B as the
fiber product

(4.6) P= (ﬁ@N<Eh>) X, M.

This P comes with a map P — Opg, namely the composition of the projection to the second
factor Mg and the old log structure map Mg — Op, making it into a log structure.

This uses that for any nuclear point (X/B, ) the map v @ d|gn from the definition
above satisfies that the preimage of 0 € Mg is 0 € P®N <Eh> From this it also follows
that the ghost sheaf P of P equals

P = (PoN(E")) oy, 05 = PoN(E").

Now we make (B, P) into a point of Ruby: we take the underlying family X /B of curves,
and equip X with a log structure making it a log curve over (B, P) with length map

5 D le)-1a;, f Ev
6:E(')— PN <Eh> . e (Zizﬁ(e*) Repz,0> or e € BV,
(0,e) for e € EM.



MODULI OF LOGARITHMIC AND MULTI-SCALE DIFFERENTIALS 31

With this we obtain a family of log curves (X /(B, P)). Using Proposition 2.13 we then lift
to a (B, P)-point of Rubg by specifying the combinatorial PL function

—1
~ gp
(4.7) g:vV(I) — (P@N<Eh>) , U — Z a;pj .
j=L(v)
The construction gives a map from (X/B, () to this basic object (B, P) — Ruby. O

Lemma 4.5. The Ruby-point (X/B, B) is basic if and only if it is minimal.

Proof. We proceed just as in the proof of [MW20, Theorem 4.2.4], using that the image of
N (E) has finite index in P®&N <Eh>, and that division is unique in sharp integral saturated
monoids. ([l

Definition 4.6. Let Rub'g be the full subcategory of Ruby whose objects have minimal
log structure, viewed as a fibred category over Sch via forgetting the log structure and the
curve. A

As explained in Section 4.1, Gillam’s minimality machinery immediately yields the main
theorem of this section, slightly refining the results of [MW20]:

Theorem 4.7. The underlying algebraic stack of Ruby is given by Rub’Q.

4.3. Smoothness of Ruby. With the preparations above, we can now prove Theorem 2.4,
stating that the algebraic stack Rubg is smooth.

Proof of Theorem 2.4. Note first that Rubg — 9 is log étale; this is proven in [MW20,
Lemma 4.2.5 and Corollary 5.3.5] for their version of Ruby (without condition (2)), and
our version of Ruby is obtained from theirs by taking a root stack, which is again a log
étale morphism. Since 9 is log smooth, this implies that Ruby is itself log smooth.

Now Definition 4.3, Lemma 4.5, and Theorem 4.7 together imply that the stalks of the
characteristic monoid of Ruby are free monoids of finite rank. Fix a geometric point p €
Ruby, and suppose the characteristic monoid has stalk N" at p. Then by log smoothness of
Ruby there exist a scheme U and smooth strict morphisms f: U — Rubg and g: U — A"
such that p lies in the image of f. In particular Ruby is smooth in a neighborhood of p. [

Note that the base-change Rub/ is not in general smooth, except in genus 0 (when the
map M — Pic is an open immersion, hence smooth). In particular, the smoothness of
the main component of Rubg, (proven in [BCGGM19] granting the verification that the
spaces named ZM,, (1) there and in Proposition 3.9 indeed agree) does not follow directly
from Theorem 2.4 outside of genus 0.

4.4. Relative automorphisms. As a log stack, Rubg has trivial automorphisms relative
to the stack of log curves. But (as discussed in footnote 2) this does not mean that the
underlying algebraic stack of minimal objects has trivial automorphisms. Rather, they
come from automorphisms of the log structure; the following remark makes this precise.
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Remark 4.8. In general, given a map X — ) of log stacks with underlying stacks X', ) and
a point z : Spec(C) — X, we can ask: what is the relative inertia of z over y = (X — ))oz?
For this, let (Spec(C),M,) — X and (Spec(C),M,) — Y be the minimal log structures
lifting z,y. Then by minimality of M, the composition (Spec(C),M,) — X — ¥ must
factor through a map
f: (Spec(C),M;) — (Spec(C),M,).

Such a map is uniquely described by a monoid map M, — M, over C* = gpec((C)’ Then
the desired group of automorphisms is just the group of those automorphisms of M, that
are constant on the image of M,, and commute with the map to C*.

Returning to our situation, the ‘tropical’ part of the log structure (the ghost sheaf M)
has no non-trivial automorphisms. Thus the automorphisms all arise from automorphisms
of the log structure M that are trivial on M and trivial on the structure sheaf. So they are
really automorphisms of the extension structure of M.

4.5. The worked example again. Let (X/C,3 € MY) be a point of Ruby with the
underlying enhanced level graph given by Figure 3, still restricting to the case k1 = ko =1
and r3 = n. We would like to understand the relative inertia of this point of Rubg over 9.

The minimal monoid on C for the curve X/C is just N(E) = N (e, e,e3), and the
minimal monoid as a point in Ruby is given by P=N (p—1,p—2), with one generator p;
for each level i (there are no horizontal edges in this example, otherwise they should also
appear in this minimal monoid). The natural map is then given by

9: N(E) = P; €1+ np_1, exr>np_2, e3rp_1+p-2.
To see this, note that a3 = as = n, and then apply formula (4.2). Note that there are no

non-trivial automorphisms of P that act as the identity on the image of g. The map g¢
extends in the obvious manner to a map on the stalks of the log structures

N(E)®C* » P=P®CX,

and the relative inertia is then given by the automorphisms of P& Cx which act as the
identity on the image of N (E) ®C*, and which lie over the identity map on P (since any au-
tomorphism of P constant on the image of g must be the identity). Such an automorphism
sends
((1,0),1) = ((1,0),u) and  ((0,1),1) = ((0,1),v)

for some u, v € C* satisfying

(1) u™ = 1, because n((1,0),1) = ((n,0),1™) lies in the image of N(E) & C* and is

thus fixed;

(2) v™ =1 for the analogous reason;

(3) uv =1 because ((1,1),1) lies in the image of N (E) & C* and is thus fixed.
Such a choice of u, v evidently determines such an automorphism. (Or more precisely,
there are two canonical isomorphisms with the roots of unity, one coming from ‘above’
and the other from ‘below’ on the graph, and the composite of these isomorphisms is the
inversion map on the group of roots of unity).
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We conclude that the relative inertia for this triangle graph is equal to the group Kt
computed in (3.12).

5. FROM LOGARITHMIC TO MULTI-SCALE

In this section we construct the morphism of functors F': Rubgﬂ — QMSM whose
existence is claimed in Theorem 1.1, and then prove the theorem. At the end of the section
we include two related results about describing the multi-scale space as a Zariski closure
and describing a morphism from the rubber space to the Hodge bundle, which can be of
independent interest.

Let (X/B,3 € T(X,M%),¢: Ox(B) —= L,) € Rublﬁu. Recall that the dash on Rub
indicates that we are working with the minimal log structure as described in Section 4,
and that we work always with saturated log structures.

We assume moreover for now, and for most of this section, that X/B is nuclear, and
explain at the end why the functor glues to general families.

5.1. The enhanced level graph. The first item to build the F-image of (X/B, 3, )
is an enhanced level graph. As the underlying graph I', we simply take the dual graph
of the curve fiber over the closed stratum of B. The level structure, given in terms of a
normalized level function, comes from 3 € M5 (X) as explained in (2.4). The definition of
the enhancement & is given in (2.7), where the divisibility required for this definition has
been proven in Lemma 2.11. The stability condition just comes from the fact that we work
with stable curves.

Given a vertex v and the corresponding component X, of the central fiber, the admis-
sibility of x comes down to the equalities

(5.1) 2g(v) =2+ #H'(v) = Y _m; = deg(Lylx,) = Y -

jl—)’v h—v

The first equality is immediate from the definition of £,,, and the second comes from the
isomorphism ¢ and a computation of the degree of Ox (/) on the component X, presented
in Lemma 2.15.

The dual graph I'y of the fiber over a general &’ (possibly outside the closed stratum)
comes with a level structure obtained from I" by undegeneration (as defined in Section 3.1),
by the Key Property (4) of nuclear log curves from Section 2.3. Constructing the rest of
the data of a generalized multi-scale differential requires more work, which we now begin.

5.2. Logarithmic splittings and rotations. We write P=N (p—1...,p—N) as in Sec-
tion 4.

Definition 5.1. A log splitting is a map
(5.2) ¢: P— Mp

whose composition with the canonical map Mg — M B,b is the map v P MB,b from (4.3)
(recall that we work throughout this section with minimal objects).
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The simple log level rotation torus Tl‘zg, abbreviated simple LLRT, is the set of log
splittings. A

Remark 5.2. Let us unpack the simple log level rotation torus definition a bit. Recall our
key exact sequence (2.2). The presence of the gp is not so important, as we work always
with integral monoids (i.e. monoids which inject into their groupifications). Consequently,
a choice of a splitting is essentially a choice of an invertible function on B (which we think
of as a scalar) for every level below 0. Pre-composing ¢ with the map g from (4.2) and
using Lemma 4.2, we then also obtain a lift of the map J, i.e., a choice of a scalar for each
edge. These must satisfy appropriate compatibility equations, and the saturation condition
also imposes the existence of certain roots.

Definition 5.3. The simple log rotation group is the group
Hommon(ﬁv Op(B)) = Homgp(ﬁg”’OE(B)),
where the identification stems from the universal property of the groupification.?® A

We define an action of an element ¢ of the simple log rotation group on the simple log
rotation torus by the formula

(5.3) (¢ 9)(p) = @(p)d(p) forpe P.

Lemma 5.4. Via the action (5.3), the simple LLRT is either empty, or a torsor for the
simple log rotation group. After possibly shrinking B, we can ensure the existence of a log
splitting.

Recall that a pseudo-torsor is a space with a free transitive action, but unlike a torsor, it
may be empty (here, if the base B is too large to support the appropriate sections). Thus
the above lemma says that the simple LLRT is a pseudo-torsor.

Proof. In the exact sequence
1 — H(B,0}) — HY(B,M®) — H'(B,M%) — H'(B,0}) — -
N8P
=Mz

if all elements 1 (p;) = 7; € Mg, map to zero in H'(B,O}), then they have preimages in
H°(B,Mp) (i.e. there exists a log splitting). Any such choices of preimages differ precisely
by elements in H°(B, OF), which together define an element of the simple log rotation
group. Thus the action of this group is free and transitive.

Finally, if the elements 7; € Mg,b do not map to zero in H'(B, O}) = Pic(B), we can
always find an open neighborhood By of b € B on which these N line bundles are trivial
after all. Then on By, the long exact sequence and the argument above shows the existence
of a lift, finishing the proof. O

20Note that there is also a (non-simple) log rotation group, consisting of the set of compatible choices
of elements in O5(B) for all e € E¥ and the elements o; = 8(v;) — B(vi—1). Since this non-simple group
will not be needed in the following, we don’t give a formal definition.
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5.3. Log viewpoint on smoothing and rescaling parameters. In this subsection we
construct the rescaling ensemble from the choice of a log splitting, and provide auxiliary
statements about the smoothing and rescaling functions contained in the ensemble. N

Let ¢v: P — Mp be a log splitting. Recall the definition of the maps g: N(E") — P
from (4.2) and of a: Mp — Op from the definition of a log scheme.

Definition 5.5. The smoothing parameter associated to a vertical edge e € EV(T") by the
log splitting 1 is

(5.4) for=(aotog)(e).
Fix a level i € L(T"). The level parameter and rescaling parameter associated to i by J are
(55) t; == (Oé o 72;) (pl) and S; = (Oé o T,Z)(alpl) . AN

The collection of functions ¢ = (¢;);cr(r) defines a map R°: B — Tt to the closure of

the simple level rotation torus, which is just CV, and a rescaling parameter s; = 7; 0w o R®
in the notation of Section 3.4.

Lemma 5.6. The morphism R°: B — Tfﬂ defined above is a simple rescaling ensemble.

Proof. By Definition 3.3 we must verify that the functions f, from (5.4) are indeed smooth-
ing parameters for their respective nodes, lying in the correct equivalence class in Og/O}.
To see this, consider the following diagram

N(EYy —L — P

MB’(, L) OB/OE

What we must show is that f, = (w0 v o g)(e) € Op maps to the class of a smoothing
parameter in Op/OF. Now the commutativity of the upper left rectangle follows from

Lemma 4.2 and the assumption that J lifts the map ) : P — MBJ,. On the other hand,
the map @ is just defined to make the lower triangle commute. Then we have

[fe] = (aovog)(e) = @(d(e) € Op/OF.

The fact that d(e) maps to a smoothing parameter for the node associated to e under @ is
then just a basic property of families of log curves, see point (2) of Section 2.3. O
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5.4. The collection of rescaled differentials. By definition of lying in Rub,, we are
given an isomorphism

(56) gp:wX/B<—kazk) ;OX(ﬂ)
k=1

On the other hand, it follows from the definition of v that the element — Z]_:ll a;p; € pep
maps to S(v;) € M%‘ib under 1), where v; € V(I') is any vertex on level i. Using the log

splitting ¢, we obtain the elements

0; = 1/1(— Z ampm> € Mng
m=1t
in the preimage of 5(v;). Since this preimage can be identified as the complement of the

zero section in Op(f(v;)), we can see o; as a nowhere-vanishing section of Og(5(v;)).
Finally, we claim that there is a well-defined map

(5.7) w; : 7 Op(B(vi))|v, = Ox (B)|u; -

Indeed, the left hand side is the line bundle on U; associated to the piece-wise linear
function which is constant, equal to 5(v;). Since we removed X, this function dominates
the function § on the right, so we have a map as desired. Thus w;(7*0;) gives a section of
Op(B) on U;, and we define

(5.8) way = Prwi(ro;) € H° <Ui,wX/B< — En:mkzk» .
k=1

We check that wy;) satisfies the conditions in Definition 3.4 and that the smoothing
and rescaling parameters fe, s; defined in (5.4) and (5.5) (and thus the simple rescaling
ensemble R®) are compatible with these generalized rescaled differentials.

(1) For any levels j < i < 0, there is a natural map of line bundles Op(5(v;)) —
Opg(B(v;)). On the level of sections we then have

1 -1 i—1 i—1
0; = 7;(_ Z ampm) = 7;(_ Z ampm) ) H J(ampm) =0y - H i(ampm)) .
m=t m=j m=j m=j

Via the isomorphism ¢*, and using that s, = oz(J (@mpm)), this becomes the desired
equality w(;) = wj) - Hi;:lj sm. The fact that s; vanishes at the closed point of B
comes from the fact that the map of line bundles is the zero map when restricted
to the fibers over the closed point of B.

(2 & 3) On the normalization Y; of all components of the special fiber X}, sitting at level i,

we have (see Lemma 2.15)

Ox(Bly, = 7 O5(B(v)) Doy, Ov, (Y rnh).
h
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where the sum is over all non-leg half edges h attached to the vertices at level i,
and ky, is the slope. Pulling back via ¢*, the line bundle on the left becomes

wXb<—kazk>\yi = wy<—2mkzk+2h).
k=1 k=1 h

Rearranging the equality of line bundles, we then get
wy (=D maz = > (sn — k) = 7 0p(B(v).
k=1 h

Seeing w(;) as a meromorphic section on the left, it then corresponds to the nowhere
vanishing section 7*0; on the right. Thus it extends to all of Y on the left hand
side. But then seeing this extension as a meromorphic section of wy, it has the
desired order m; at the marked points 2z and kj, — 1 at the preimage of the node
associated to h.

5.5. Prong-matchings. To recall the notion of a prong-matching, consider a vertical edge
e € BV and let B, < B be the closed subscheme of B over which the node e persists, i.e.
the vanishing locus of the smoothing parameter f..

The sections g+ of the two preimages of the node identify B. as a subscheme of the
blowup of X x p B, along the section corresponding to e. Recalling (3.3), we let N/ =
(¢")*wx, ®(¢~)*wx_ be the corresponding line bundle on B.. Then a local prong-matching
at e is a section o, of N such that ofe(7,) = 1 for the section 7. € Nfe defined in
Lemma 3.1.

To identify this notion in the logarithmic context, recall that we have the element d(e) €
MBJ,. Then the bundle N, has an interpretation as follows:

Lemma 5.7. There are canonical isomorphisms of line bundles
(5.9) Op(d(e)s. = N

for each edge e. Moreover, let f € Mp be an element mapping to §(e) € MB,b, so that

-~

we can see it as a section of Op(d(e)). Then the function f = a(f) € Op is a smoothing
parameter for the node associated to e. Let u,v be local coordinates around the node on
X such that the local ring at the node is the localization of Oplu,v]/(uv — f). Then the

isomorphism (5.9) sends the section ﬂBe € Op(d(e))|B. to
du®dv eN,) = (q+)*wx+ ® (¢ ) wx_-

Proof. Since both sides commute with base change, it is enough to check this in the uni-
versal case, in which the log structure is divisorial coming from the boundary (and the
map « of the log structure is injective, so there are no non-trivial automorphisms of the
log structure). Over a versal deformation R, the local equation of the node is given by
R[u,v]/(uv — f), where f € R is an element corresponding to d(e). So Op(d(e)) is canon-
ically identified with the ideal sheaf generated by f in R (cf. Appendix A). On the other
hand, N,/ is canonically identified with the conormal bundle in R to the locus f = 0 (see
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[ACG11, Section XIII.3]) and thus agrees with Op(d(e))|z.. Tracing through the construc-
tions of these canonical identifications yields the second part of the lemma; alternatively
this can be seen as a very slight generalization of [Edi98, Section 4], where ¢(x) corresponds
to the element du ® dv and 7°(¢) to the element f. O

Let : ;15 — Mp be a log splitting, and let e be a vertical edge. By Lemma 4.2 the
element (¢ o g)(e) € Mp maps to d(e) € Mp and hence lies in O%(5(e)) € Mp (by the
definition of this bundle via (2.2)). Applying the isomorphism of (5.9), we thus obtain a
section of NY.

Definition 5.8. We call the section o, = (1 o g)(e)|p, € H(B.,N.Y) the local prong-
matching o. = o.(1)) at e determined by the log splitting. The collection o = (0¢)ec E(T)
of these is called the global prong-matching determined by the log splitting. A

There are two compatibility statements to check for this definition: to get a prong-
matching, see the discussion after (3.3), and to make this part of a multi-scale differential,
see Definition 3.6 (iv).

Lemma 5.9. The prong-matching o determined by any log splitting is indeed a prong-
matching in the sense of Section 3.2, i.e. the condition o.(v" ® v™)" = 1 holds for each
edge e € EV(T), for each pair (vT,v™) of an incoming and outgoing prong at e.

Proof. Assume that the vertical edge e connects levels ¢ > j in I'. Via the translation of the

notion of prong-matching given by Definition 3.2, it is equivalent to show that o< (7.) = 1,

where 7. is the section of N¥¢ obtained as 7. = (qu)*w(_i)1 ® (¢7) w()-

On the other hand, the differentials w(;) and w;) are also determined in (5.8) by the
formulae

way = (- Zampm and w) = @ w;(m*B(— Zampm

Putting this into the formula for 7, the pullbacks (¢")*, (¢7)* cancel the pullback 7*.
Interpreting 7. as a section of Op(—kd(e)) via (5.9) we thus have

= J(_Zlampm—_zlampm) = J(- Zampm) = ) (—regle)) = 0"
m=i m=j

Here in the second to last equality we used the deﬁnltlon of g from (4.2). This finishes the
proof that o%¢(7.) = 1, and thus that o, is a local prong-matching. O

Lemma 5.10. Let {/;: P Mp be a log splitting and e a non-semi-persistent vertical node
(i.e. f¥e #0). Then the local prong-matching determined by 1 is equal to that induced in
Remark 3.5.

Proof. The local prong-matching o, of Remark 3.5 is constructed by writing the local
equation of the node as uv = f,, and setting

oe = du®dve N, = (¢ wx, ® (¢ ) wx_.
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On the other hand, the local prong-matching o associated to e by J is given by applying
the isomorphism in Lemma 5.7 to the element (¢ o g)(e).

Recalling that f. = (ao 1; o g)(e), the desired equality o, = 7, is then the second part
of Lemma 5.7. O

5.6. Morphism of functors from rubber to multi-scale. We put the above together
to build a morphism of functors, first when the base is strictly local. We start with with
a family (X/B,3 € Mx(X), ), which we take to have minimal saturated log structure.
This immediately gives us the structure of an enhanced level graph. We choose a log
splitting ¢: P — Mp. This determines a simple rescaling ensemble, a collection of rescaled
differentials, and induces local prong-matchings at each node. Hence we have a simple
multi-scale differential.

We next claim that a different choice of log splitting yields an isomorphic simple multi-
scale differential, together with a choice of isomorphism. Indeed, for a sufficiently small B,
by Lemma 5.4 any two log splittings differ by the action of the simple LLRT, and one
checks easily that the action of the simple LLRT corresponds to the action of the simple
level rotation torus.

It is clear from the constructions that the above map is independent of choices and is
compatible with shrinking the base B. By descent it then glues to a global morphism of

functors F': Rubg, — GEM, ,(u).

5.7. Showing the map of functors induces an isomorphism. The above construction
gives a morphism from the logarithmic space to the multi-scale space. In this section we
complete the proof of Theorem 1.1 by showing that this functor induces an isomorphism.

Theorem 5.11. The morphism
(5.10) F:Rubg, — GEMy (k).
18 an isomorphism.

Proof. Given a strictly local scheme B and a map B — GEmgm(,u), we show that there
exists a unique map B — Rub,, making the diagram

(5.11) V \

commute. Let (7: X — B, z,I", R°,w, o) be the simple multi-scale differential correspond-
ing to B — GEM, ,(11). Given i € L(T), we write t; € Op(B) for the composite with the
appropriate coordinate projections B — T° — C.

Let Mp be the minimal log structure making X/B into a log curve; in particular its
characteristic monoid Mg, is canonically identified with the free monoid N(E) on the

edges of I". For each edge e choose a section f. € Mp(B) lifting f., yielding a splitting

f:me—)MB.



40 CHEN, GRUSHEVSKY, HOLMES, MOLLER, AND SCHMITT

Denote P = (p-1,...,p—n) the free monoid on the levels, and define
(5.12) t: P— Op; pi—ti,
and define
(5.13) £ ﬁ@N<Eh> 0,
acting as ¢t on the first summand and as f on the second.
Let then
(5.14) g N(E) = ﬁ@N<Eh>

be the map given by ¢ on the vertical edges and by the identity on the horizontal edges.
The equalities

Let)—1 ay
(5.15) fe= ]I
i=l(e™)
imply that the diagram
Mg —%— Op

(5.16) fT t’T

Mp —L P N(E"

commutes.
Now we define a sheaf of monoids P as the pushout

Mp ——— P

(5.17) il T

Mp —L P N(E"

which by the commutativity of the previous diagram comes with a map ap: P — Op. One
checks easily that P is in fact a log structure on B, with characteristic sheaf P = P®N <Eh>
at a point b € B in the closed stratum. The map Mp — P gives X/(B, P) the structure
of a log curve, and mapping a vertex v of level ¢ to the element

-1
(5.18) =Y a0 | € PoN(E" )
j=i

defines a map 8: V — P® so that the pair (X/B, ) is a (minimal) point of Rub.
To lift this point to a point of Rubg,, we need to build an isomorphism of line bundles

(5.19) Ox(B) i)wX/B(—Zn:mizi> .
i=1
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We first define this map on the smooth locus; let p € B and let x € X, be a smooth
point of X, lying in the component associated to a vertex v € I'. Then the image of 3 in
M%?,x = ?ip is given by B(v). Our splitting P — P from (5.17) extends to P®* — P& and
thus (v) maps to a unique section of Op(5(v)) € P. Then we define

(5.20) Ox(B)e — wx/Ba

to be the unique map sending this section to the differential wy(,)). That this isomorphism
extends over the nodes then follows from the compatibilities conditions on prong-matchings
by a local calculation.

Unraveling the constructions earlier in this section yields that the constructed point of
Rub,, does indeed lie over our starting point in GEM, ,(1).

To show that we have constructed an isomorphism of fibred categories, we must finally
check that the composites

(5.21) Rub,,(B) — GEmgvn(,u)(B) — Rubg, (B)
and
(5:22) GEM (1) (B) — Rube, (B) = GEMy (1) (B)

are isomorphic to the respective identities. This can be done by comparing the actions of
the simple LLRT and the simple level rotation torus on the respective spaces; we omit the
details. (]

5.8. The multi-scale space as a Zariski closure. Fix g, n, and define £, on the
universal curve over M, ,, as before.

Definition 5.12. We define Rub°® to be the fibred category of LogSchy;  whose
123 g,n

objects are pairs (X/B, ), where X/B € M, , and j is a PL function satisfying condi-
tion (1) of Definition 2.1, and such that the line bundle £,,(—f) has multi-degree 0 on each
geometric fiber.

This is a slight variant on P(Rubg,). By ignoring the divisibility condition in Defini-
tion 2.1 we are effectively taking the coarse moduli space, and we only require that £,(—03)
has multi-degree 0, rather than requiring it to be trivial. Since we in particular do not
record the data of an isomorphism, we are effectively also taking a C*-quotient.

The map Rubtﬁrzp — Mg,n is birational and representable, but not in general proper.

Using stability conditions as in [HMPPS22] we can construct a compactification
Rub** — P(Rubf ) = My,

where P(Rub$% .) = Mg, is proper, birational, and representable, and Rubtrop — P(Rub% )
is an open immersion; but we do not pursue this here as it would require Substantlal addl-
tional notation.

Let P(MSY) C Mg be the locus of smooth curves over which £, admits a non-zero
global section; this can be seen as the interior of the locus of (projectivized, generalized)
multi-scale differentials.
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Theorem 5.13. The Zariski closure of MS° in Rubtﬁrzp (or, equivalently, in ]P’(Rub%#) )
is equal to P(MS,,), the projectivized space of (non-generalized) multi-scale differentials.

Proof. There is a natural closed immersion P(Rubz?™¢) — Rubtﬁrzp, and the main com-
ponent of P(Rub??™%) is P(MS,). O

One can obtain the stacky version ZM,, ,, (1) (of which MS,, is the relative coarse moduli
space) in a similar fashion, replacing ]P’(Rub%u) with a stacky modification; we leave the
details to the interested reader.

6. THE HODGE DR CONJECTURE

In this section we present several equivalent constructions of the universal line bundle
introduced in Section 1.2.2, discuss its various properties, and prove Theorem 1.5.

As explained in Section 1.2.2, the projectivized space of (generalised) multi-scale differ-
entials comes with a map to the projectivized Hodge bundle, by taking the differential at
top level, and allowing it to vanish at all lower levels. Pulling back O(1) from the Hodge
bundle gives a line bundle on the generalized multi-scale space. We begin by giving several
equivalent versions of this construction.

First we write out explicitly the objects of the fibred category P(Rub):

P(Rub) = {(r: X — B,5,F)},

where (X/B, ) is a point of Rub as in Definition 2.1, and F is a line bundle on B. The
Abel-Jacobi map sends such an object to 7*F (), giving a proper map P(Rub) — Pic.

Now fix a line bundle £ on X, /Mg,m which is of total degree 0 on each fiber. Then
we can write explicitly the fibred category of P(Rub,) as

P(Rubg) = {(X/B,5,F,¢)}
where (X/B, 3, F) is an object of P(Rub) with X /B stable of genus g, and ¢: 7*F(8) — L

is an isomorphism.

Construction 1: tautological bundle. This is just the bundle F on P(Rub), or its
pullback to F on P(Rubg) along the tautological map. We denote the dual of this line
bundle by 7.

Construction 2: projective embedding. Let D be an effective divisor on X, such
that m,L(D) is a vector bundle on M,,. Such a D can always be found as an element
of the linear system of a sufficiently relatively ample sheaf on X, over Mg,n- Then over
P(Rub,) we have natural maps

(6.1) T F = L(-B) — L — L(D),

where the first map is induced by ¢, the second is induced by the natural map O(—3) — O,
and the third by the natural map O — O(D). Adjunction yields a map

(6.2) F = ma*F = mL(D),
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which is by definition?' a map
(6.3) F: P(Rubg) — Pprub,) (mL(D)) .
Lemma 6.1. F*O(1) =1.

Proof. The equality F*O(1) = FV is immediate from [Stacks, Example 0FCY]; the fact
that we obtain F" instead of F is because we define the projectivization to be the moduli
of rank 1 sub-bundles, not rank 1 quotient bundles. O

In particular, we observe that the line bundle F*O(1) turns out to be independent of
the choice of the sufficiently relatively ample divisor D. In the case considered in the
introduction, we take

(6.4) L= w;g;];,n/ﬂg,n ( - Z(ai - k)Zz)

and D = X0 — bz

Construction 3: pullback from rubber target. For this construction we restrict to
the case where £ = Ox ()", a;2;) for k = 0; put another way, we choose a rational section
of £ whose locus of zeros and poles is contained in a union of disjoint sections of X — B.

We write
FE = Z a;z; and D = — Z ;% .
i:a; >0 i:a; <0
Since these are effective divisors we have natural maps
Ox—>OX(E) and OxéOX(D),

~

and combining with the natural map Ox — Ox () and the isomorphism ¢: 7*F(5) —
Ox (F — D) yields maps

Ox(—D)(—ﬂ) — OX and Ox(—D)(—ﬂ) — Ox(E — D)(—,@) — 1 F.

The induced map
Ox(—D)(—B8) - Ox @ n"F

is universally injective since the first map is injective around the support of E and the
second is injective away from the support of E. This induces a map

X —>POpaF).
The cotangent line at co to this rubber target is then given by
(6.5) U, =F".
We have deduced
Lemma 6.2. ¥ =17.

210ur projectivizations are moduli of sub-bundles, not quotient bundles.
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Remark 6.3. Above we have constructed a rubber target of length 1 (i.e. with no expan-
sions). This is because we are only interested in what happens near the infinity section,
so we do not need to construct the whole expanded chain. The reader who is more com-
fortable with expansions may verify that the length-1 target we construct here is exactly
what is obtained by following through the proof of the expanded target in [BHPSS20,
Proposition 50], and then contracting all except the top component.

6.1. Computation of n for k = 0. Here we prove Theorem 1.5, which we restate for the
convenience of the reader.

Theorem 6.4. Conjecture 1.4 is true for k = 0: for any g,u > 0 and any vector A € Z"
with sum |A| = 0 we have

pe ([P(Rubg, )™ - 5") = pu (M, a(P',0,00) " Wi) = [r]Chir™".

Proof. The first equality follows from Lemma 6.1 and Lemma 6.2. For the second equality,
we note that the term on the left has been computed in [FWY21, Corollary 4.3] in terms
of a slightly modified Chiodo class. Indeed, we define an r-shifted version A(r) of A by

i for a; > 0,
A(T),- _Ja or a 0
r+a; fora; <O.

In other words, for all indices ¢ with a; < 0 (which form a subset I, C {1,...,n}), we
shift the vector A by r in the i-th entry. Then the Chiodo class Ch ' ’( ) is a polynomial
in r, for r sufficiently large. Denote by

0,r,e 0rd
Chyity = > Chy'i
>0

the associated mixed-degree class. Then in this notation, the formula from [FWY21, Corol-
lary 4.3] reads as follows:

. ([M%A(PI,O,OO)N]VH'\PQOLO) — Z H (1@¢7, U= eﬂ‘]ChOTQ(H)—g €]

GEZI;S i€l

a; €
— u _7/ . . h07r7.
| 2 TT () engity
gezloo i€l
_ee 20 - codim g+u

u i 1 0 r,e
= [r"] H 1 — %y, CgA(r)]
Li€Too T codim g+u

o]

codim g+u
Here the last step uses [GLN21, Theorem 4.1 (ii)]. O
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6.2. (A)symmetry. Above we gave three constructions of the line bundle n = n(£) on
P(Rubg). We know that the push-forwards to M, of [P(Rubg)]"" and [P(Rub,v)]""
agree. However, once we intersect with the class n things are a little more subtle. The
universal curve over P(Rub) carries a PL function f, totally ordered and with maximum
value 0. The minimum value of 3 we denote f™; this is a PL function on P(Rub).

Lemma 6.5. We have
(6.6) e ([P(Rub,v)]™ - e (n)*) = pu ([P(Rub)]"™ - (—er(n(58™™))") -

Proof. There is a natural isomorphism (compatible with the virtual fundamental classes)
over Mg, from P(Rub,) to P(Rub,v), given by

(67) (X/Bvﬁa}-v 90) = (X/B75min - 57 (]:(ﬁmin))\/’(p/)’

where ¢ is the composite

(6.8) T (F(Fmm))V(pmr — B) = 7 FV(—p) @D v

7. BLOWUP DESCRIPTIONS

In this section we give a description of P(Rub??*¢) as a global blowup. First in genus
zero, we construct an explicit sheaf of ideals on My 5, such that blowing up My ,, along this
sheaf gives P(Rub??™¢). In [Ngu21] Nguyen described the incidence variety compactifica-
tion (IVC) in the case of genus zero as an explicit blowup of Mg . Note that in genus zero
there are no global residue conditions (because any top level vertex must have a marked
pole), and hence in genus zero the rubber space and the space of generalized multi-scale
differentials coincide with the space of multi-scale differentials. Our blowup description
can thus recover Nguyen’s result about the IVC of the strata of meromorphic 1-forms in
genus zero as a blowup of ﬂo,n' We also provide an example demonstrating the difference
between the rubber space and the IVC in genus zero.

Next for arbitrary genus, we construct a globally defined sheaf of ideals on the normal-
ization of the incidence variety compactification (NIVC) whose blowup gives the (projec-
tivized) multi-scale moduli space (i.e., the main component of Rub?%"*¢). Consequently
it follows that the (coarse) space of projectivized multi-scale differentials is a projective
variety for all g. Recall that in [BCGGM19, Section 14.1] the moduli space of multi-scale
differentials was described as a local blowup, where the ideals locally defining the center
of the blowup can differ by principal ideals on the overlaps of local charts. In particular,
the description of [BCGGM19] did not yield projectivity of the space of multi-scale differ-
entials. By constructing an explicit ample divisor class, projectivity of the moduli space
of multi-scale differentials was later established in [CCM22, Section 3]. Our global blowup
description thus provides a direct conceptual understanding of this projectivity result.

Besides projectivity, knowing a blowup description of compactified strata of differentials
can be helpful for obtaining geometric invariants, such as volumes of the strata, by using
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intersection theory, see [Ngu21]. We also provide a tropical interpretation of our blowup,
which sheds further light on the geometry of the construction.

7.1. The sheaf of ideals in genus zero. Let I' be the dual graph of a boundary stratum
Dr C My, For each vertex v € V(T), let d(v) be the degree of £, restricted to v (so
ZUGV(F) d(v) = 0 by definition). Since I is a tree, there exists a unique ‘slope’®? function
k: H — Z from the set H = H(T') of half-edges of I" such that

(1) K agrees with m; at the leg corresponding to a marked point z;;

(2) k(h) + k(W) =0 for any h and A’ that are opposite halves of an edge;

(3) for all vertices v we have >, ¢y, £(h) = d(v), where we sum over all half-edges

attached to v.

For every pair of vertices v and v/, let v be the unique path from v to v’ in I'. We
view this (directed) path as a sequence of half-edges, where if an edge e = (h,h’) € E(T)
appears in v in the direction going from h to h' then we put (only) h in our sequence of
half-edges. We define an ideal locally around the boundary stratum Dr C Mo, by

I(U,’U,) — H 5(h)max(n(h),0)’
hery

where we write d(h) for the ideal associated to the edge containing h (that is, for the
defining equation of the boundary divisor of My, where the corresponding node exists).
Define

J(v,v") = I(v,0") + IV, v);
this evidently satisfies J(v,v") = J(v/,v) and J(v,v) = (1). Finally we set

w(v) = valence(v) — 2,
which is a positive integer by stability of the curve, and define
J(T) = H J(v,’u')w(”)w(”/) .
(v,0")eV XV

A concrete example of this ideal is given in Example 7.5 below.

7.2. Compatibility under degeneration in genus zero. To show that the ideals J(I")
defined in the neighborhood of each stratum Dr C My, glue to a global ideal sheaf over
Mo, we need to show that they behave well under degeneration. As any dual graph I' can
be obtained from any other IV by a series of operations of inserting and contracting edges,
it is enough to check that the ideals glue under contracting a single edge of the graph.

Lemma 7.1. Let e be an edge of T', and let I be the graph obtained from T' by contracting e.
Then J(I') = J(T), after inverting the ideal 6(e).

Note that inverting d(e) geometrically corresponds to restricting to the locus where the
edge e is contracted, i.e. where the corresponding node of the curve is smoothed out.

22The justification for this terminology is given by (5.1), which shows that the slopes of points Rubg,
satisfy the same conditions.
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Proof. We denote c: I' — I" the contraction map, and let v; and v, be the endpoints of e,
and let v" be the vertex of I” to which e is contracted, so that d(v') = d(v1) + d(v2).

If v is any vertex of I" different from v; and vy, then clearly w(v) = w(e(v)). Furthermore,
the slope function on I' clearly restricts to the slope function on IV. Thus for any two
vertices u1 and ug of I distinct from vq and vy, we have

Jr(u1,uz) ~ Jry(u1,ug),
where to simplify notation we write I ~ J if the ideal sheaves I and J become equal after
inverting d(e). Similarly Jp(vq,ve) ~ (1).
It therefore suffices to show that
(71) H J(?}/,’U)2w(vl)w(v) -~ H J(Ul’v)2w(v)w(v1)J(v27,U)2w(v)w(v2) )
veV (V) veV (I)

Let V° := V() \ {v1,v2} = V() \ {v'}. Then (7.1) reduces to showing

H J(?}/,’U)w(v/)w(v) ~ H J(?}l,?})w(vl)w(v)J(?}g,?})w(m)w(v) )

veVe veVe
This follows from w(v') = w(vy) + w(ve) and

J(W',v) ~ J(vi,v) ~ J(vg,v)

for all v € V. O

Definition 7.2. Define J(L,) to be the (global) ideal sheaf on M, that for any boundary
stratum Dr restricts to the ideal J(I') on a neighborhood of Dr. A

The existence of J(L) follows from the above lemma.

7.3. A tropical picture in genus zero. The normalized blowup in the ideal J(I") corre-
sponds tropically to a subdivision of the positive orthant in the vector space Q (E), where
E = E(T) is the edge set. This subdivision is built by taking a hyperplane (or sometimes
the whole space) for every pair of vertices in I': if 7 is the path from v to v’ as above, then
the corresponding hyperplane L(v,v’) is cut out by the equation

> k(h)e(h) = 0,

hery

where e(h) is the edge containing the half-edge h, viewed as an element of the group N (FE)
(and we recall that a half-edge h is said to be contained in a directed path ~ if v goes via h
before going through the complementary half-edge of the same edge).

These local subdivisions glue to a global subdivision of the tropicalization of My,

inducing a proper birational map Mg, — Mo .

Lemma 7.3. The normalization of the blowup of My, in the ideal J(L,) is equal to the
proper birational map Mg, — Mo, induced by the subdivision above.
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Proof. The standard dictionary between toric blowups and subdivisions implies that the
normalized blowup in J(v,v) is equal to that induced by the subdivision in L(v,v’). Since
w(v) > 1 (by stability), blowing up in J(v,v’) is the same as blowing up in J(v, v/ )? @),
Normalized blowup in a product of ideals corresponds to superimposing their subdivisions.

O

7.4. Comparing blowups and rubber maps in genus zero. We are ready to prove
our main statement in genus zero:

Theorem 7.4. The normalization of the blowup //\/lvo,n of Mo along the ideal sheaf J(L,)
is the projectivized coarse moduli space of rubber differentials P(Rub®2™¢).

Proof. Let X/B be a nuclear log curve of genus zero.

Claim: There exists a PL function § on X such that £, = O(f), and moreover such 3
is unique up to scaling by an element of Mp(B)8P.

To prove the claim, we use the fact that the graph is a tree to deduce that there is a
unique collection of admissible slopes k.. We pick a vertex vy, and let S be the unique
PL function vanishing on vy and with slopes given by the .. The line bundle £,,(—/3) has
multi-degree zero, and is hence trivial since X has genus 0. This proves the claim.

Now recall that Rub%®?"¢ can be obtained by omitting the divisibility condition (2) from
Definition 2.1. In other words, the point X/B lies in Rub?*® if and only if the values
of B on the vertices of I' form a totally ordered set. It therefore remains to check that this
is equivalent to the map B — Mo,n factoring via the subdivision described in Section 7.3.

If v is a directed path in I', we define

$(7) = Koy

hey

Since the difference of values of 5 at the two ends of an edge is the slope k. of that edge
(with the appropriate sign), the values of 5 at the two ends of a path v differ by ¢(v).

Fix a vertex vy, and write =, for the unique path from vy to v. Then the set {5(v) : v €
V(T')} is totally ordered if and only if the set

{o(r) rv e V(D)}

is totally ordered. This is in turn equivalent to requiring that for every path v C I' (not
necessarily a path from vg), the element () is comparable to 0, i.e., either ¢(y) € Mg or
—¢(y) € Mg. Imposing this condition is equivalent to subdividing N(E) in the hyperplane
L(v,v") of Section 7.3, where v and v are the endpoints of ~. O

7.5. Comparison to Nguyen’s blowup in genus zero. As mentioned, in genus zero
Nguyen [Ngu21] described the IVC as an explicit blowup of My, (also for the general case
of k-differentials in genus zero). Since the rubber/multi-scale space is the normalization
of a blowup of the normalization of the IVC, our blowup described in Theorem 7.4 must
dominate the blowup defined by Nguyen. In this subsection we recall Nguyen’s construc-
tion, provide a viewpoint of his blowup from our setup, and give an alternative proof for
Nguyen’s result that blowing up My, in his ideal gives the IVC.
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FIGURE 4. The graph I of a stratum in My 7; the desired slopes k can be
obtained, e.g., by using the signature p = (—1%,4) with the six markings
associated to simple poles attached to the vertices v, v, and vs.

We begin by recalling Nguyen’s construction of a sheaf of ideals on My ,,. Let X/B be a
nuclear log curve of genus zero with graph I', and let k be the slope function on the edges
of I', i.e., the PL function constructed in the proof of Theorem 7.4. For a given vertex
v € V(I') and an edge e € E(T), let hy(e) be the half-edge of e such that the path from
the end of h,(e) to v passes through e. For a vertex v € V(I') we define

5= T &,

ecE(T)

where K, = max(k(hy(e)),0). Let N(I') be the (local) ideal (in the variables J., as in
our setup) generated by the set of elements ¢, for all vertices v € V(T'). It was shown in
[Ngu21] that these N(T') can be patched together to a sheaf of ideals N globally defined
on Mom- This can be seen the same way as Lemma 7.1, and we will discuss this in more
generality in Remark 7.8 for arbitrary genera.

Before proceeding, we illustrate Nguyen’s ideal and our ideal in the following example.

Example 7.5. Consider a (partially ordered) dual graph I as illustrated in Figure 4, with
all slopes k = 1. Writing 6; := ., to lighten notation, we obtain d,, = 010203, d,, = 203,
Oy, = 0103, and 0y, = d102. In this case Nguyen’s ideal N(I") is given by

N(T') = (0162, 6103, 0263, 610203) = (6102, 0163, 6203) .
In contrast, our ideal J(I") is given by
J(T) = (61,62)%(61,83)% (82, 03)*(01)*(02)* (03)* .

Blowing up J(I"), each ideal generated by a pair (J;,d;) for 1 < i < j < 3 becomes principal,
and so does the ideal N(I"). Therefore, the blowup in J(I') dominates the blowup in N (T').

Nguyen [Ngu21] proved that blowing up My ,, along the globally defined sheaf of ideals N
gives the IVC. Indeed, in the example above we see explicitly that locally around the
boundary stratum with the dual graph I", the rubber /multi-scale space obtained by blowing
up along J is a further blowup of the IVC.

The situation of this example can also be understood in general, from our viewpoint,
which gives an alternative proof of the result of Nguyen.
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Proposition 7.6. The local blowup ofﬂo,n near Dr along the ideal J(T') makes the ideal
N(T') become principal.
Moreover, in genus zero the blowup of My, along the ideal sheaf N is the IVC.

Before giving the proof, we first reinterpret N (I') geometrically as follows. If two vertices
v and v/ are joined by an edge e (which is necessarily vertical in genus zero), and if
l(v) > L(v'), then ¢, divides d,. Therefore, the ideal N(I') is the same as the ideal
generated only by the elements &, where v ranges over all vertices that are local maxima
of ' (in the sense that all edges from v go down — recall that this is a partial order on
the graph, and the multi-scale differential upgrades this to a full order). A vertex v that is
a local maximum of I", such that the corresponding §, generates the ideal N(I") after the
blowup, becomes a global top level vertex. On the other hand, those local maxima v whose
dy terms do not generate the principal ideal after blowing up N(I') may not divide each
other, and thus remain unordered. This corresponds to the fact that a point in the IVC
records actual differentials merely on top level vertices where the stable differential is not
identically zero, while on any lower vertex the stable differential is identically zero (though
the underlying marked zeros and poles of the twisted differential are still remembered).

Proof. For the first claim, note that the edge parameter J. appears with the same exponent
in the expressions of ¢, and d,, unless e lies in the unique path from v to v/, in which case
the exponents of d. in §, and d,/ are the same as those in I(v,v") and I(v',v), respectively.
Since blowing up along J(I') makes the ideal (I(v,v"),I(v',v)) principal, it follows that
each ideal (d,,d,/) becomes principal under that blowup. This is to say that after blowing
up in J(T'), one of §, and J,, must divide the other. Doing this for all v and v’ shows
that after the blowup along J(I'), a number of elements d,,, ..., d,, will divide 6, for any
v € V(T'). In particular, such §,, and d, ; divide each other and thus differ by multiplication
by a unit, and the ideal N(T'), after blowing up along J(I'), is generated by any one of
these ¢,,, and hence it becomes principal.

For the second claim, we will construct the desired morphisms between the blowup and
the IVC in both directions that are inverses of each other. These will be constructed locally
over each boundary stratum Dr of Mom-

The upshot underneath the constructions is that d, for v € V(I') is an adjusting param-
eter in the sense of [BCGGM19, Proposition 11.13], which means that multiplying by 4, !
makes the limiting differential become not identically zero on the component corresponding
to v. To see this, let D,, be the boundary divisor of ﬂo,n corresponding to a given edge
e; of I'. Contracting all edges of I' except e; produces a graph with two vertices connected
by an edge e;, and the family of differentials over it vanishes on the irreducible component
corresponding to the lower level vertex, with generic vanishing order |ke,|. If the image
of a given vertex v of I" under this contraction is the lower of these two vertices, then
over Dr the differential vanishes identically on the irreducible component corresponding
to v. Therefore, §, is precisely the local defining equation with multiplicity equal to the
total vanishing order over Dr of the stable differentials on the irreducible component of
the curve corresponding to the vertex v. By definition, this implies that ¢, is an adjusting
parameter for v.
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Now we construct a morphism from the IVC to the blowup of mom along N by using
the universal property of the blowup. More precisely, as we blow up (in a neighborhood
of Dr) the ideal generated by all d,, it suffices to check that this ideal becomes principal
on the IVC. Recall that the IVC parameterizes pointed stable differentials (of prescribed
type) that are not identically zero, where a stable differential is a section of the dualizing
sheaf over the stable curve, considered up to an overall scaling by a nonzero constant
factor. If a vertex v is not a local maximum of I, i.e., if there exists an edge e going up
from v, then the (stable) differential on the irreducible component corresponding to v is
identically zero. Thus given a (non-identically-zero) stable differential, we can declare a
local maximum vertex v of I' to be a global maximum if and only if the stable differential
on the corresponding irreducible component of the curve is not identically zero. By the
preceding discussion, this is precisely to say that all adjusting parameters ¢, for the global
maxima vertices v differ by units, and divide all the other §,. Hence the ideal N(I") pulls
back to be principal in the IVC, which induces the map (locally) from the IVC to the
blowup of My, along N(T).

Next we construct a morphism in the opposite direction, from the blowup of ﬂo,n
along N to the IVC, by using the universal property of the Hodge bundle over M,
(twisted by the polar part of the differentials, and projectivized as always).

Consider the universal family of differentials with prescribed zeros and poles over a
punctured neighborhood of Dr in Mg ,. We claim that this family of differentials extends
to a family of stable differentials over the local blowup of My ,, along N (T'). Indeed, for each
point in the preimage of Dr in the blowup, we know the set of global maxima vy, ..., v of
the graph (with £ > 1), where the corresponding adjusting parameters &, ,...,d,, divide
all the other §,. It follows that the limiting stable differential will be not identically zero
precisely on the irreducible components corresponding to vy, ..., v, and thus in particular
not identically zero on the entire stable curve. By the universal property of the projectivized
Hodge bundle, the blowup along N(I') carrying a family of (non-identically-zero) stable
differentials admits locally a morphism to this bundle. Moreover, since over the locus of
smooth curves this family of differentials coincides with the family of differentials in a given
stratum, it implies that the image of the morphism from the blowup to the Hodge bundle
is the closure of the stratum, i.e., the IVC. By construction, it is clear that this map is the
inverse of the morphism in the other direction. O

7.6. A blowup description for arbitrary genus. Recall that the NIVC denotes the
normalization of the incidence variety compactification (i.e. of the closure of the stratum
in the Hodge bundle), and let T be a partially ordered level graph of a boundary stratum
in the NIVC. For every vertex v € V(I'), by normality an adjusting parameter h, exists
by [BCGGM19, Proposition 11.13]. Recall that by definition this means that multiplying
by h,' makes the limiting differential in a degenerating family not identically zero on
the irreducible component of the stable curve corresponding to v. Define an ideal locally
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around the boundary stratum of the NIVC corresponding to I' by

J(F) — H (h’l)7 hv,)w(v)w(v/) 7
(v,v")eV(IT)xV(T)

where the product runs over all ordered pairs of vertices (including the case v = v') and
where w(v) = 2¢g(v) — 2 4 valence(v). Since the blowup in J(I') makes the adjusting
parameters comparable for any two vertices, the (local) blowup of the NIVC along J(T") is
orderly, and by the same argument as in the proof of [BCGGM19, Theorem 14.8] it follows
that the normalization of this blowup is isomorphic to the moduli space of multi-scale
differentials.

Finally we show that the local ideals J(I') are compatible under degeneration, so that
they form a global sheaf of ideals J on the NIVC. For this, again it is enough to check
compatibility under an edge contraction (recalling that unlike the genus zero case, the
edge can be a loop). First in the case of a loop, by the formula for w(v), we see that
contracting a loop does not change J(I'). Suppose now that two distinct vertices vy, vg of
I' connected by an edge e are merged, when e is contracted, to a vertex v’ in the resulting
graph I". Note that this contraction makes h,, ~ hy, ~ hy modulo units. Moreover,
w(v") = w(vy) + w(ve). Then for any vertex u different from vy, vy, v" we have

T (Y ) e (0 ) R

(h’l)l ) h’l)l )w(vl)z (hU27 hU2 )W(vz)z (h'l)l ) h’UZ )2w<v1)w(v2) ~ (h’l)/7 h’l)/ )w(vl)z °

It follows that J(I"”) specializes to J(I'). Therefore, the local ideals J(I') can be glued to
a global sheaf of ideals J. In summary, we have proven the following theorem.

Theorem 7.7. The main component P(MS,,) of P(GMS,,) is the normalization of the
blowup of the NIVC' in the ideal sheaf J; in particular, its coarse moduli space is a projective
variety.

Remark 7.8. For arbitrary genera one can describe the IVC (and then also the rubber
and multi-scale spaces) by blowing up the normalization of the closure of the stratum in
the Deligne-Mumford compactification Mg,n, which we denote by NDM. The argument
is similar to the one in the proof of Proposition 7.6. Since the NDM is normal, for every
vertex v of I an adjusting parameter h, for v exists as in [BCGGM19, Proposition 11.13].
Then the blowup of the NDM along the (local) ideals (hy,, ..., hy, ), where vq,...,v; are
local maximum vertices of I', carries a family of stable differentials and hence it maps to
the IVC by the universal property of the Hodge bundle. The inverse map from the IVC to
this blowup is similarly obtained by using the universal property of the blowup.

To see that these local ideals patch together to form a global sheaf of ideals, suppose
that a local maximum vertex v; joins a lower vertex vg via an edge e. Suppose further that
e is contracted so that vy and vy merge as one vertex v}, which makes h,, ~ hvﬁ modulo
units. If v} remains to be a local maximum, then (hy,, huys- - hoy) = (B By, o5 hay)
after contracting e, so these ideals match. If v] is not a local maximum, then there
exists another local maximum vertex, say ve, that goes along a path downward to v}
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(in terms of the partial order of I'). It follows that h,, divides hy,, ~ h, and hence
(hoys Py - oo sy ) = (B, - ., By, ) after contracting e, so these ideals still match.

APPENDIX A. SIGN CONVENTIONS

The sign conventions adopted in [MW20] and in [BCGGM19] are opposite to one another;
as this sign plays a more prominent role in [BCGGM19] we follow that sign convention,
which we now explain in the logarithmic language.

Let (X,Mx) be a log scheme and 3 € M%?(X ). The preimage of § in the exact sequence

1— 0% > M® > MY — 1
is a Gp,-torsor which we denote by O%(f), from which we construct a line bundle Ox ()
by gluing in the zero?® section. In particular:
(1) If X has divisorial log structure and 3 € Mx(X) then Ox () is naturally an ideal
sheaf on X.
(2) If (X, z) is a DVR with divisorial log structure at = then the stalk of Mx at z is
naturally identified with N, and the association 8 — Ox(f) sends n to Ox(—nz).
(3) If a < b € My (X)8 then we have a natural map Ox(b) — Ox(a).

If e: u — v is a directed edge of a graph I' of length J., and § is a function on the
vertices of v with slope x along e, then f(v) = S(u) + k - d.. We identify a half-edge h
attached to a vertex e with an outgoing edge at e.

If (X/B,[) is a nuclear object of Rub, then the image of f§ is totally ordered with
largest element 0. If the image of S has cardinality N + 1, then there is a unique iso-
morphism of totally ordered sets between Im(/3) and {0,—1,...,—N} (the latter having
largest element 0). We denote by £: V' — {0,—1,..., —N} the induced map, in accordance
with (3.1).

If e is an edge between vertices u and v, we define £*(e) and ¢~ (e) to be the unique pair
of elements of {0,—1,...,—N} such that ¢T(e) > ¢~ (e) and {{*(e), £ (e)} = {€(u),l(v)}.
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