Goethe-Universität Frankfurt Institut für Mathematik

Wintersemester 2021/22

7. November 2022

Algebra

Prof. Dr. Martin Möller M.Sc. Johannes Schwab

M.Sc. Jeonghoon So

Übungsblatt 03

Aufgabe 1

Sei K ein Körper mit höchstens abzählbar vielen Elementen. Zeigen Sie, dass der algebraische Abschluss \overline{K} von K abzählbar unendlich viele Elemente hat.

Aufgabe 2

Sei L/K eine endliche Körpererweiterung von Grad [L:K]=n. Gegeben Sei weiter $\alpha \in L$ und eine Menge von Isomorphismen $\sigma_j \colon L \longrightarrow L, \ j=1,\ldots,n$, sodass $\sigma_j|_K=\mathrm{id}_K$ und $\sigma_j(\alpha) \neq \sigma_\ell(\alpha)$ für $j \neq \ell$. Zeigen Sie, dass $L=K(\alpha)$.

Aufgabe 3

Sei $L = \mathbb{Q}(\sqrt[4]{2}, i)$.

- (i) Zeigen Sie, dass L ein Zerfällungskörper von X^4-2 über $\mathbb Q$ ist.
- (ii) Bestimmen Sie $[L:\mathbb{Q}]$, und eine \mathbb{Q} -Basis von L.
- (iii) Bestimmen Sie alle acht Elemente in

$$\operatorname{Aut}_{\mathbb{Q}}(L) := \{ \varphi : L \to L \text{ K\"orperautomorphismus } : \varphi|_{\mathbb{Q}} = \operatorname{id}_{\mathbb{Q}} \}.$$

Tipp: Bestimmen Sie wohin jeder Automorphismus die Nullstellen und $X^4 - 2$ and $X^2 + 1$ abbildet.

(iv) Zeigen Sie, dass $L = \mathbb{Q}(\sqrt[4]{2} + i)$. Tipp: Benutzen Sie Aufgabe 2.

Aufgabe 4

Untersuchen Sie, welche der folgenden Polynome seperabel sind:

- (a) $X^3 X^2 + 1$ über \mathbb{F}_3 .
- (b) $X^4 + 2X^3 + 3X^2 + 2X + 1$ über \mathbb{O} .
- (c) $X^6 a$ über einem beliebigen Körper K mit $a \in K$.

Aufgabe 5

 $Tipp: (\Leftarrow) \ Angenommen \ K(\alpha) = K(\alpha^p), \ dann \ gibt \ es \ ein \ F \in K[X], \ sodass \ \alpha \ eine \ Nullstelle \ von \ F(X^p) - X \ ist. \ Wieso?$