Goethe-Universität Frankfurt Institut für Mathematik Sommersemester 2022

23. Mai 2022

Lineare Algebra 2 Prof. Dr. Martin Möller Jeonghoon So Johannes Schwab

Übungsblatt 6

Aufgabe 1 (4 Punkte)

Seien G eine Gruppe, $H \subseteq G$ eine Untergruppe und $N, M \subset G$ Normalteiler, sodass $M \subseteq N \subseteq G$. Zeigen Sie:

(a) Die Teilmenge

$$HN := \{hn \; ; \; h \in H, n \in N\}$$

ist eine Untergruppe von G.

- (b) $N \subset HN$ ist ein Normalteiler.
- (c) Es gibt einen Gruppenisomorphismus

$$H/(H \cap N) \to HN/N$$
.

(d) Es gibt einen Gruppenisomorphismus

$$(G/M)/(N/M) \to G/N$$
.

Aufgabe 2 (4 Punkte)

Wir bezeichnen im Quadrat mit den Ecken 1, 2, 3, 4 kurz mit ij für $1 \le i < j \le 4$ die Kante oder Diagonale zwischen den Ecken i und j. Betrachten Sie die Operation der Diedergruppe D_4 auf der Menge

$$X = \{12, 13, 14, 23, 24, 34\}$$

aller Kanten und Diagonalen im Quadrat. Bestimmen Sie die Bahnen und die Stabilisatoren für ein Vertretersystem der Bahnen.

Aufgabe 3 (4 Punkte)

Sei X eine Menge und $f: X \to X$ eine selbstinverse bijektive Abbildung, d. h. $f^{-1} = f$.

- (a) Zeigen Sie, dass durch die Vorschrift (-1).x := f(x) eine Operation von $\{\pm 1\}$ auf X gegeben ist.
- (b) Ein Element $x \in X$ heißt Fixpunkt von f, wenn f(x) = x gilt. Zeigen Sie mit Hilfe der Bahnenformel, dass die Anzahl der Fixpunkte ungerade ist, wenn X endlich von ungerader Kardinalität ist.
- (c) Zeigen Sie: Ist G eine endliche Gruppe von gerader Ordnung, dann enthält G ein Element der Ordnung 2.

Aufgabe 4 (4 Punkte)

Der Kommutator zweier Gruppenelemente $g, h \in G$ ist definiert als $[g, h] := ghg^{-1}h^{-1}$. Die Kommutatoruntergruppe $[G, G] \subset G$ ist die Untergruppe, die von allen Kommutatoren erzeugt wird. Zeigen Sie:

- (a) gh = [g, h]hg.
- (b) $gh = hg \Leftrightarrow [g, h] = e$.
- (c) $[G, G] = e \Leftrightarrow G$ ist abelsch.
- (d) Ist $f:G\to H$ ein Homomorphismus, so gilt $f([G,G])\subset [H,H]$. Wenn f surjektiv ist, gilt Gleichheit.
- (e) Jeder Automorphismus von G schränkt sich zu einem Automorphismus von [G,G] ein. Folgern Sie: $[G,G]\subset G$ ist ein Normalteiler.
- (f) G/[G,G] ist abelsch.
- (g) Ist $f: G \to A$ ein Homomorphismus in eine abelsche Gruppe, gilt $[G, G] \subset \ker(f)$.
- (h) Sei $q:G\to G/[G,G]$ die Quotientenabbildung. Es gibt einen Homomorphismus $f':G/[G,G]\to A$, sodass $f'\circ q=f$.