Übungsblatt 0

Dieses Übungsblatt soll Ihnen helfen, die Inhalte der Linearen Algebra I zu wiederholen. Die **Abgabe ist freiwillig** und es werden keine Punkte für die Klausurzulassung vergeben.

Aufgabe 1

Sind die folgenden Matrizen A_i mit Einträgen in \mathbb{R} diagonalisierbar?

$$A_1 = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \qquad A_4 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Falls ja, bestimmen sie jeweils eine invertierbare Matrix S_i so, dass $S_i^{-1}A_iS_i$ eine Matrix in Diagonalgestalt ist.

Aufgabe 2

Sei K ein Körper. Der Grad eines Polynoms $f(T) = \sum_{i=0}^{n} a_i T^i$ mit $a_i \in K$ is definiert als

$$\deg(f) := \begin{cases} -1 & \text{falls} \quad a_i = 0 \quad \forall i = 0, \dots, n \\ \max\{i \in \mathbb{N} | a_i \neq 0\} & \text{sonst} \end{cases}$$

Bezeichne mit V_d die Menge der Polynome vom Grad $\leq d$.

- (a) Überzeugen Sie sich, dass die Menge V_d die Struktur eines K-Vektorraums trägt. Was ist die Dimension von V_d ?
- (b) Zeigen Sie, dass für $a \in K$ die Abbildung

$$T_a \colon V_d \longrightarrow V_d$$

 $f(T) \longmapsto f(T-a)$

linear ist. Bestimmen Sie eine Basis \mathcal{B}_d von V_d , so dass die darstellende Matrix $[T_a]_{\mathcal{B}_d}$ in der Basis \mathcal{B}_d trigonal ist. Ist T_a diagonalisierbar?

(c) Zeigen Sie, dass die Abbildung

$$D: V_d \longrightarrow V_{d-1}$$

$$f(T) = \sum_{i=0}^d a_i T^i \longmapsto f'(T) = \sum_{i=1}^d i a_i T^{i-1}$$

linear ist. Bestimmen Sie die darstellende Matrix $[D]_{\mathcal{B}_d}^{\mathcal{B}_{d-1}}$.

(d) Sei $a \in K$. Definiere nun $D_a := D \circ T_a$. Zeigen Sie, dass die Identität

$$D_a = T_a \circ D$$

gilt und finden Sie Basen \mathcal{C}_d und \mathcal{D}_d von V_d , so dass die darstellende Matrix $[D_a]_{\mathcal{C}_d}^{\mathcal{D}_{d-1}}$ die folgende Form besitzt:

$$\begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{bmatrix}.$$

Aufgabe 3

Wir bezeichnen mit $K^{m \times n}$ die Menge der $m \times n$ -Matrizen $A = [a_{ij}]_{i,j}$ mit Einträgen in K.

- (a) Überzeugen Sie sich, dass $K^{m \times n}$ einen K-Vektorraum bildet.
- (b) Zeigen Sie, dass die Matrizen $E^{(kl)}$ (für k = 1, ..., m und l = 1, ..., n), die durch

$$e_{ij}^{(kl)} = \begin{cases} 1 & \text{falls } i = k \text{ and } j = l \\ 0 & \text{sonst} \end{cases}$$

definiert sind, eine Basis von $K^{m \times n}$ bilden.

(c) Sei $C \in K^{m \times m}$ eine feste Matrix. Zeigen Sie, dass die Abbildung

$$M_C \colon K^{m \times n} \longrightarrow K^{m \times n}$$

 $A \longmapsto C \cdot A$

eine K-lineare Abbildung definiert. Bestimmen sie die darstellende Matrix $[M_C]_{\mathcal{E}}$ in der Basis $\mathcal{E} = \{E^{(11)}, \dots, E^{(mn)}\}.$

(d) Zeigen Sie, dass für den Rang von M_C die folgende Gleichung gilt:

$$\operatorname{rk}(M_C) = n \cdot \operatorname{rk}(C)$$
.

(e) Zeigen Sie: Falls C diagonalisierbar ist, so ist ebenso M_C diagonalisierbar.

Aufgabe 4

Sei $S \in K^{n \times n}$ für einen Körper K und betrachten Sie nun die Abbildung

$$T_S \colon K^{n \times n} \longrightarrow K^{n \times n}$$

 $A \longmapsto SAS^T$.

- (a) Zeigen Sie, dass T_S linear ist.
- (b) Sei b_1, \ldots, b_n eine Basis von K^n . Zeigen Sie, dass die Matrizen

$$b_1 b_1^T, \dots, b_n b_1^T, \dots, b_1 b_n^T, \dots, b_n b_n^T$$

eine Basis von $K^{n \times n}$ bilden.

(c) Zeigen Sie, dass, falls S diagonalisierbar ist, dann ist auch T_S diagonalisierbar.