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Abstract

We prove that the moduli space of compact genus three Riemann
surfaces contains only finitely many algebraically primitive Teichmüller
curves. For the stratum ΩM3(4), consisting of holomorphic one-forms
with a single zero, our approach to finiteness uses the Harder-Narasimhan
filtration of the Hodge bundle over a Teichmüller curve to obtain new
information on the locations of the zeros of eigenforms. By passing to the
boundary of moduli space, this gives explicit constraints on the cusps of
Teichmüller curves in terms of cross-ratios of six points on P1.

These constraints are akin to those that appear in Zilber and Pink’s
conjectures on unlikely intersections in diophantine geometry. However, in
our case one is lead naturally to the intersection of a surface with a family
of codimension two algebraic subgroups of Gn

m × Gn
a (rather than the

more standard Gn
m). The ambient algebraic group lies outside the scope

of Zilber’s Conjecture but we are nonetheless able to prove a sufficiently
strong height bound.

For the generic stratum ΩM3(1, 1, 1, 1), we obtain global torsion order
bounds through a computer search for subtori of a codimension-two sub-
variety of G9

m. These torsion bounds together with new bounds for the
moduli of horizontal cylinders in terms of torsion orders yields finiteness
in this stratum. The intermediate strata are handled with a mix of these
techniques.
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1 Introduction

A closed Riemann surface X of genus g equipped with a nonzero holomorphic
quadratic differential q determines an isometrically immersed hyperbolic plane
H → Mg in the moduli space of genus g Riemann surfaces. Occasionally this
may cover an isometrically immersed algebraic curve C = H/Γ→Mg. Such a
curve is called a Teichmüller curve, and the pair (X, q) is called a Veech surface.

The trace field of H/Γ is the number field F = Q(Tr(γ) : γ ∈ Γ). A Teich-
müller curve is said to be arithmetic if F = Q. It is said to be algebraically
primitive if the generating quadratic differential q is the square of a holomorphic
one-form ω and the degree of F attains its maximum, namely [F : Q] = g. In
this case, we call the pair (X,ω) an algebraically primitive Veech surface.

While arithmetic Teichmüller curves are dense in every Mg, algebraically
primitive Teichmüller curves seem to be much more rare. There are infinitely
many examples of algebraically primitive Teichmüller curves inM2, discovered
independently by Calta [Cal04] and McMullen [McM03], and it remains an open
problem whether there are infinitely many such curves for any larger genus. The
aim of this paper is the following partial solution to this problem.

Theorem 1.1. There are only finitely many algebraically primitive Teichmüller
curves in M3.

The methods used here do not use any dynamics of the Teichmüller geodesic
flow, with the exception of the hyperelliptic locus in the stratum ΩM3(2, 2)odd

(consisting of forms with two double zeros which are fixed by the hyperelliptic
involution). We emphasize that our proofs of Theorem 1.1 are effective, in the
sense that a reader keeping careful track of constants at every step should arrive
at an explicit bound for the number of algebraically primitive Teichmüller curves
in any stratum (except ΩM3(2, 2)odd). Good effective bounds would allow one
to finish classifying Teichmüller curves in these strata with a computer search.
Unfortunately, the bounds produced by our methods are so large that this is
not feasible.

In parallel to our work, Matheus and Wright showed [MW15] that for ev-
ery fixed genus g which is an odd prime, there are only finitely many alge-
braically primitive Teichmüller curves generated by Veech surfaces with a sin-
gle zero. These results rely on recent results of Eskin, Mirzakhani, and Mo-
hammadi ([EM], [EMM15]) on SL2(R) orbit-closures in strata of holomorphic
one-forms. In particular, these methods are not effective. We appeal to the
techniques of [MW15] to obtain finiteness in the hyperelliptic locus of the stra-
tum ΩM3(2, 2)odd, as none of our methods could handle this case. We give a
summary of the known results on the classification of Teichmüller curves at the
end of the introduction.

One essential ingredient of the proof of Theorem 1.1 is a height bound for the
cusps of these Teichmüller curves. We obtain these bounds by applying methods
used to attack conjectures on unlikely intersection in the multiplicative group
Gn
m (whose complex points are just (C∗)n). In our case, we are lead to study

similar unlikely intersection problems in the group Gn
m ×Gn

a .
The remaining techniques depend on the stratum the Teichmüller curve lies

in. In the case of few zeros the main new ingredient is an application of the
Harder-Narasimhan filtration of the Hodge bundle. In the case of many zeros
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we prove global torsion order bounds and we use conformal geometry to derive
bounds for ratios of moduli. We now describe these techniques in more detail.

Harder-Narasimhan filtrations. Consider an algebraically primitive Veech
surface (X,ω) with trace field F . One of the fundamental constraints on (X,ω),
established in [Möl06b], is that the Jacobian of X has real multiplication by an
order in F with ω an eigenform. This real multiplication in fact distinguishes
g eigenforms ω1 = ω, ω2, . . . , ωg (up to constant multiple). These other g − 1
eigenforms are in general very mysterious from the point of view of the flat
geometry of (X,ω); however, in §4, for Teichmüller curves in certain strata we
obtain some information on the locations of the zeros of the other eigenforms.

More precisely, we denote by ΩMg(n1, . . . , nk) the moduli space of genus g
surfaces X equipped with a holomorphic one-form ω having k distinct zeros of
order given by the ni. The minimal stratum ΩMg(2g−2) has as one connected
component the hyperelliptic component ΩMg(2g − 2)hyp, consisting entirely of
hyperelliptic curves. Here is one example of the type of control we obtain on
the zeros of the other eigenforms. Similar statements are proved in §4 for all
genus three strata except for the generic stratum ΩM3(1, 1, 1, 1).

Theorem 1.2. Suppose (X,ω) generates an algebraically primitive Teichmüller
curve C in ΩMg(2g − 2)hyp, with p ∈ X the unique zero of ω of order 2g − 2.
Then the eigenforms ωi, listed in an appropriate order, have a zero of order
2g − 2i at p.

The basic idea of the proof is to consider a canonical filtration of the Hodge
bundle over C. Every vector bundle over a projective variety has a canonical fil-
tration, the Harder-Narasimhan filtration. For Teichmüller curves in the strata
under consideration, these filtrations were computed by Yu and Zuo [YZ13] in
terms of the zero divisor of the family of one-forms generating the Teichmüller
curve in the canonical family of curves over C of. Alternatively the decompo-
sition of the Hodge bundle into eigenform bundles yields a second filtration.
Uniqueness of the Harder-Narasimhan filtration implies that these two filtra-
tions are in fact the same, and comparing them yields Theorem 1.2.

Finiteness in ΩM3(4). The real multiplication condition, together with The-
orem 1.2 gives very strong constraints on algebraically primitive Teichmüller
curves in ΩM3(4)hyp. Unfortunately, these conditions are difficult to apply, as
determining when the Jacobian of a given Riemann surface has real multiplica-
tion and understanding its eigenforms is generally very hard.

We bypass this difficulty by studying the cusps of Teichmüller curves. Veech
[Vee89] established that every Teichmüller curve has at least one cusp. Exit-
ing a cusp, the family of Riemann surfaces degenerates to a noded Riemann
surface equipped with a meromorphic one-form (a stable form). By algebraic
primitivity, this stable form has geometric genus zero, and because we are in
the minimal stratum, it is in fact irreducible. More concretely, we may regard
it as P1 with three pairs of distinct points (xi, yi), i = 1, 2, 3 each identified to
form a node. In the hyperelliptic stratum we have moreover yi = −xi.

The advantage of passing to the boundary is that our constraints become
completely explicit. More precisely, consider the cross-ratio

Ri = [xi+1, yi+1, xi+2, yi+2],
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with indices taken modulo three. We established in [BM12] that the real mul-
tiplication condition is equivalent to

Rb11 R
b2
2 R

b3
3 = 1 (1.1)

for certain nonzero integers bi. In §3, we show that in the case of ΩM3(4)hyp the
condition of Theorem 1.2 on the zeros of the second eigenform ω2 is equivalent
to

b1x1 + b2x2 + b3x3 = 0, (1.2)

where the bi are the same integers as above. A similar constraint is established
in the other component ΩM3(4)odd.

By a theorem of [BM12], to prove finiteness of Teichmüller curves in these
strata, it is enough to establish finiteness of cusps, thus these equations reduce
the problem to an explicit problem in number theory.

Unlikely intersections. The cross-ratios Ri can be regarded as a diagonal
embedding of a two-dimensional variety Y in the algebraic group G3

m×G3
a. Al-

lowing all possible coefficients, equations (1.1) and (1.2) can then be interpreted
as an intersection of the surface Y with a countable collection of codimension-
two subgroups. Our problem is then most naturally regarded in the context of
unlikely intersections in diophantine geometry. Unlikely intersections refer to
vast conjectures due to Zilber [Zil02] and Pink [Pin05] and partially motivated
by a theorem of Bombieri, Masser, and Zannier [BMZ99]. This last group of
authors considered the problem of intersecting a curve X ⊂ Gn

m with the infi-
nite union H ⊂ Gn

m of all proper algebraic subgroups of Gn
m and showed – as

long as X itself is not contained in the translate of a proper subgroup – that
X ∩H is a set of bounded height. By height we mean the absolute logarithmic
Weil height which we recall in §2.2. A non-empty intersection of a curve X
with a subgroup of codimension one is more appropriately called “just likely”,
in contrast to what is studied by Zilber and Pink’s conjectures, where the sub-
groups must have codimension at least two and the intersections are deemed
“unlikely”. Under this more stringent condition and when imposing an appro-
priate condition on X , one expects finiteness instead of merely bounded height.
However, boundedness of height in the “just likely” situation is often a gateway
to proving finiteness in the “unlikely” case.

Zilber and Pink’s conjectures are open in general. But several cases that
incorporate classical results such as the Mordell or Manin-Mumford Conjectures
are known. We provide a partial overview of state of this field in §2.1.

One aspect that sets our work apart from previous results is that it mixes
the additive group of a field Ga, which is unipotent, with the multiplicative
group Gm, which is not. The latter appears in the literature [BMZ99, Zil02] on
these conjectures but the former seems to lie outside the general framework of
the Zilber-Pink Conjectures. The following theorem is proved in §2. There we
also provide all the necessary definitions used in the theorem’s formulation.

Theorem 1.3. Let Y ⊂ Gn
m×Gn

a be an irreducible closed surface and let YQ,ta

denote the complement in Y of the union of all rational semi-torsion anomalous
subvarieties of Y (for a definition see §2.4). There is a constant c with the
following property. If P = (x1, . . . , xn, y1, . . . , yn) ∈ YQ,ta such that there is
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(b1, . . . , bn) ∈ Zn r {0} with

xb11 · · ·xbnn = 1 and b1y1 + · · ·+ bnyn = 0, (1.3)

then h(P ) ≤ c log(2[Q(P ) : Q]).

The equations (1.3) define an algebraic subgroup of Gn
m×Gn

a of codimension
two. The fact that the coefficients on the additive side are coupled to the expo-
nents on the multiplicative side is essential for the proof and for the application
to Theorem 1.1.

We emphasize that this height bound only applies to points in the subset
YQ,ta ⊂ Y which we define precisely in §2.4. This set arises by removing from
Y certain subvarieties that have anomalously large intersection with certain
translates of algebraic subgroups. It bears similarities to Bombieri, Masser, and
Zannier’s open anomalous locus X oa [BMZ07] of a subvariety of algebraic torus
X ⊂ Gn

m. Indeed, the second named author [Hab09] proved a height bound
on points in X oa that are contained in an algebraic subgroup of dimension at
most n − dimX . However, YQ,ta can have a delicate structure. We will see in
Example 2.11 that it need not in general be Zariski open in Y; its complement
in Y can be a countable infinite union of curves. In general, it is difficult to
determine the open anomalous locus. The analogous problem for a plane in
Gn
m is already a difficult problem which was solved by Bombieri, Masser, and

Zannier [BMZ08b]. For our application, YQ,ta will cause additional difficulties.
In §6.3, we compute YQ,ta for the two cases arising from the two components
of ΩM3(4). This is done via by amalgamating a theoretical analysis with the
use of computer algebra software [S+14].

A torus containment algorithm. At two places we rely on computer-
assistance to establish the non-existence of tori in a given subvariety of Gn

m.
In §5 we provide an algorithm that deals with that problem effectively. The
algorithm is designed so as to check only for tori whose character group is con-
tained in a specified subgroup of Zn. For the application in §9 we can restrict to
such a situation, and only with this restriction is the run-time of the algorithm
reasonable.

Multiple zeros. The proof of finiteness for strata with multiple zeros is quite
different and starts with the torsion condition of [Möl06a]. This states that if
(X,ω) is an algebraically primitive Veech surface, and p, q are distinct zeros of
ω, then the divisor p − q represents a torsion point of Jac(X). As for the real
multiplication condition, this torsion condition may be interpreted explicitly at
the boundary, and we couple this with other conditions to obtain finiteness of
cusps. We say that (X,ω) has torsion dividing N if the order of p − q divides
N for every two zeros p and q.

A fundamental difficulty is that the limiting stable forms arising from Teich-
müller curves in these strata may have thrice-punctured sphere components
(pairs of pants), and none of our conditions give any control on the one-form
restricted to these components.

For our approach to work, we need to know that controlling all irreducible
components of limiting stable curves, except for pants components, is enough
to conclude finiteness of Teichmüller curves. To formalize this, we say that a
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collection of Teichmüller curves is pantsless-finite if the collection of all non-
pants irreducible components of limiting stable forms is finite. In §7 and §8, we
prove:

Theorem 1.4 (Theorem 8.1). In any stratum of holomorphic one-forms, any
pantsless-finite collection of algebraically primitive Teichmüller curves is in fact
finite.

In §9 and §10, we then show that for each remaining stratum in genus three,
the set of algebraically primitive Teichmüller curves is pantsless-finite, using
Theorem 1.4 for the strata ΩM3(1, 1, 1, 1) and ΩM3(2, 1, 1) and the techniques
from [BM12] for the strata ΩM3(3, 1) and the complement of the hyperelliptic
locus in ΩM3(2, 2).

Torsion and moduli: the Abel metric. Its a simple observation that a
pantsless-finite collection of algebraically primitive Teichmüller curves has uni-
form bounds on its torsion orders (though proving these uniform bounds is in
fact the difficult step in establishing pantsless-finiteness, as we discuss below).
A Veech surface (X,ω) has a canonical flat metric |ω|. In §7, we study how this
flat metric is controlled by these torsion order bounds. More precisely, (X,ω)
has many periodic directions in which the surface decomposes as a union of
parallel flat cylinders whose moduli have rational ratios, and the complement of
these cylinders is a collection of parallel geodesic segments joining the zeros of
ω (called the spine of this periodic direction). The main ingredient in the proof
of Theorem 1.4 is new bounds on the moduli of these cylinders in terms of the
torsion orders.

For a graph Γ we recall (see for example [BM76]) that its blocks are the max-
imal subgraphs which cannot be disconnected by removing any single vertex.
Every graph has a canonical decomposition into blocks, with any two adjacent
blocks meeting in a single vertex. This notion applies in particular to the dual
graph of a periodic direction whose edges are cylinders and vertices are con-
nected components of the spine (equivalently, the dual graph of a corresponding
stable curve over a cusp of the Teichmüller curve). This induces a partition of
the cylinders in any given periodic direction into blocks. In §7, we show that
bounds for torsion orders yield bounds for ratios of moduli within any block.

Theorem 1.5 (Theorem 7.2). Let (X,ω) be an algebraically primitive Veech
surface, with torsion dividing N . Then for any block of cylinders C1, . . . , Cn of
some periodic direction of (X,ω), the number of possibilities for the projectivized
tuple (mod(C1) : . . . : mod(Cn)) is bounded in terms of N and n.

We emphasize that this theorem is only useful for strata with multiple zeros.
For strata with a single zero, torsion orders are bounded trivially, but each block
consists of one cylinder, so Theorem 1.5 gives no information.

This theorem generalizes [Möl08, Theorem 2.4], which establishes a special
case of this bound using properties of Néron models of the stable curves over the
cusps of the Teichmüller curve. Our proof here uses instead conformal geometry
and a new metric on (X,ω) coming from the torsion condition. The torsion con-
dition determines via Abel’s theorem a meromorphic function f whose divisor
(f) is supported on the zeros of ω (in fact there are many possible functions
f we can use here). Pulling back the flat metric dz/z on P1 via this map, we
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obtain a metric on (X,ω) with infinite cylinders at the zeros of ω, which we call
the Abel metric.

We show that for (X,ω) close to the boundary of moduli space, the finite
cylinders of (X,ω) have moduli close to corresponding cylinders in the Abel
metric. Using the torsion condition, we obtain constraints on the moduli of
these cylinders in the Abel metric, which then give corresponding constraints
on the original cylinders of (X,ω). Combining these constraints for all of the
possible choices of the initial function f , we obtain Theorem 1.5.

Geometry of cylinder widths. To complete the proof of Theorem 1.4, we
need to be able to compare moduli of cylinders in a periodic direction which
do not belong to the same block. An irreducible component of the limiting
stable curve which joins two blocks must have at least four punctures, so the
hypothesis of pantsless-finiteness means that we can control the geometry of a
component connecting two blocks. In particular, for two cylinders which lie in
different blocks but whose boundaries share a common connected component of
the spine, the ratio of the circumference of these cylinders is an algebraic number
λ which can be assumed to be known (in particular, all of its Galois conjugates
are bounded). We would like to use this control on ratios of circumferences to
bound the ratios of moduli of cylinders in these two blocks. Ordinarily knowing
only the widths or moduli of cylinders gives no information about their moduli or
widths, since their heights can be arbitrary. In §8, we see that on an algebraically
primitive Veech surface the widths and moduli are intimately connected.

More precisely, consider a periodic direction of an algebraically primitive
Veech surface (X,ω). The widths of cylinders are a collection of algebraic num-
bers (a priori only defined up to scale, but in §8, we define a nearly canonical
way to normalize them). Considering their different Galois conjugates, we can
regard these widths as a collection of vectors {v1, . . . , vn} ⊂ Rg. We group these
vectors according to the blocks of cylinders defined above, and call Bi ⊂ Rg the
span of the ith block.

Theorem 1.6 (Proposition 8.6 and Proposition 8.7). The Bi are pairwise or-
thogonal subspaces of Rg. In each Bi, the set of width vectors vj it contains are
determined by the moduli of the corresponding cylinders up to a similarity of
Bi. The norm of the width vectors in Bi is inversely proportional to the moduli
of the corresponding cylinders.

Combining Theorem 1.5 and Theorem 1.6 (for simplicity in the case of a
periodic direction with a single block), we see that given a bound on the torsion
orders of (X,ω), there are finitely many possibilities for the collection of width
vectors up to similarity of Rg.

Theorem 1.5 and Theorem 1.6 imply that for any pantsless-finite collection
of Teichmüller curves, there are uniform bounds for the ratios of widths and
moduli of cylinders in any periodic direction, as we can use the width-ratio
λ and Theorem 1.6 to control the scale of the moduli of adjacent blocks of
cylinders. From this, we conclude using the Smillie-Weiss “no small triangles”
condition from [SW10] that our collection of Teichmüller curves is in fact finite.

Bounding torsion orders in the generic stratum. In §9, we establish
finiteness of algebraically primitive Teichmüller curves in the generic stratum
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ΩM3(1, 1, 1, 1). The key quantity governing the geometry of Teichmüller curves
in the generic stratum is the torsion orders introduced above. Given an a priori
bound for torsion orders in this stratum, we show using height estimates that
the collection of algebraically primitive Teichmüller curves in this stratum is
pantsless-finite in the sense of §8. From Theorem 1.4, we obtain:

Theorem 1.7. Suppose that there is a uniform bound for the torsion orders of
algebraically primitive Teichmüller curves in the generic stratum ΩMg(1

2g−2).
Then there are only finitely many algebraically primitive Teichmüller curves in
this stratum.

It remains to establish these torsion bounds. Consider an irreducible com-
ponent of a cusp of a Teichmüller curve in this stratum which contains more
than one zero of the stable form. Marking the zeros and poles of this stable
form, we can regard it as a point in M0,n for some n. A choice of two zeros
and two poles determines a cross-ratio morphism M0,n → Gm. Choosing an
appropriate collection of cross-ratios, we obtain a morphism M0,n → GN

m, and
the torsion condition may be interpreted as saying that our stable form maps
to a torsion point of this torus. For example in the (most difficult) case of an
irreducible stable form, we obtain an embedding M0,10 → G9

m.
The problem is then to show that a subvariety of a torus meets only finitely

many torsion points. We appeal to Laurent’s theorem [Lau84] which says that
a subvariety of Gn

m contains only finitely many torsion points unless it contains
a torsion-translate of a subtorus, so we are lead to study translates of tori in
the seven-dimensional variety M0,10 ⊂ G9

m.
We then use the torus-containment algorithm from §5 to study tori in this

variety. As the algorithm is much too slow to try to classify all torus-translates
in a nine-dimensional torus, in §9.2, we give a significant reduction that says
that only subtori of one of three three-dimensional tori need to be considered.
Applying the algorithm, we see that there are no subtori of M0,10 which could
lead to Teichmüller curves with arbitrarily large torsion orders. Thus we obtain:

Theorem 1.8. There is a uniform bound for the torsion orders of algebraically
primitive Teichmüller curves in ΩM3(1, 1, 1, 1).

The final step using the torus-containment algorithm is heavily computer-
aided and was only completed in genus three. Finding uniform torsion order
bounds is all that remains to establish finiteness of algebraically primitive Teich-
müller curves for the generic stratum in arbitrary genus.

Combining these two theorems yields Theorem 1.1 in the case of the generic
stratum in genus three.

For the remaining strata with two or three zeros, we establish finiteness in
§10 using a mix of these techniques.

Classification of Teichmüller curves: State of the art. Teichmüller
curves with trace field Q all arise as branched covers of tori by [GJ00] and
are dense in every stratum. More generally, any Teichmüller curve gives rise
to many Teichmüller curves in higher genera by passing to branched covers.
Teichmüller curves that do not arise from this branched covering construction
are called primitive. The classification of primitive Teichmüller curves is an
important guiding problem.
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The first examples of primitive Teichmüller curves were constructed by Veech
[Vee89]. The constructions in [BM10] subsumes his examples as well as those
of Ward and provides all currently known examples of algebraically primitive
Teichmüller curves for g ≥ 6. Calta [Cal04] and McMullen [McM03] constructed
an infinite sequence of primitive Teichmüller curves in M2, the first infinite
sequence in any fixed genus. McMullen completed the classification of primitive
Teichmüller curves in genus two [McM06b] and showed via a Prym construction
[McM06a] that in genus three and four there are an infinite number of Teich-
müller curves which are primitive but not algebraically primitive.

The torsion and real multiplication conditions are strong restrictions on the
existence of algebraically primitive Teichmüller curves. After [McM06b], the
torsion condition was used in [Möl08] to show finiteness of algebraically prim-
itive Teichmüller curves in the hyperelliptic strata where ω has two zeros or
order g − 1. The real multiplication and torsion conditions were applied in
[BM12] to prove finiteness in the case of the stratum ΩM3(3, 1) and to give an
effective algorithm showing the non-existence of Teichmüller curves for given
discriminants. This used a classification of the stable forms in the boundary
of the eigenform locus, and introduced the cross-ratio equation (1.1) which is
essential in the present proof of finiteness in the minimal strata. At the time
of writing, the only known algebraically primitive Teichmüller curves in genus
three are the 7-gon and 14-gon constructed by Veech and the Kenyon-Smillie
example [KS00] in the stratum ΩM3(3, 1).

Independent of this work, Matheus and Wright showed in [MW15] that for
every fixed genus g which is an odd prime, there are only finitely many alge-
braically primitive Teichmüller curve generated by Veech surfaces with a single
zero. Moreover, Nguyen and Wright showed [NW14] that there are only finitely
many primitive Teichmüller curves in genus g = 3 generated by Veech surfaces
with a single zero in the hyperelliptic stratum. Their methods are very different
from ours, relying on the Teichmüller geodesic flow and recent work of Eskin-
Mirzakhani [EM] and Eskin-Mirzakhani-Mohammadi [EMM15] establishing a
an analogue of Ratner’s theorem for the SL2(R) action on strata of one-forms.

An outlook on higher genus. Many techniques developed here apply to
higher genus and may help to prove effective finiteness results for algebraically
primitive Teichmüller curves. In general, the expected dimension of the locus of
their cusps decreases with the genus. More specifically, we have isolated a techni-
cal condition in Proposition 9.3 that might be true for totally real number fields
of any degree and would yield finiteness of algebraically primitive Teichmüller
curves in the principal stratum of any genus. Our proof uses combinatorial ar-
guments and a computer search based on the specific goal of dealing with the
genus three case. At the other extreme, for the hyperelliptic minimal strata the
image of the relavant boundary strata under the cross-ratio map seems to be a
(g−1)-dimensional variety in an ambient algebraic torus of dimension g(g−1)/2.
By [BM14, Proposition 3.4] the cross-ratio equations cut out a torus of dimen-
sion at most g−1 so that for g ≥ 4 a height bound from just-likely intersections
in Gn

m (without relying on Gn
m ×Gn

a -versions) may give the desired finiteness
statement – if the hypothesis on non-existence of anomalous intersections holds.
For g ≥ 5 we are in the realm of unlikely intersections. This hypothesis can
in principle be checked algorithmically for any fixed genus, but obtaining an
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effective finiteness result for all genera along these lines requires an additional
idea. Again, the non-hyperelliptic minimal strata are more complicated from
this point of view. Combining the techniques sketched here for the extremal
cases to systematically cover all strata of intermediate dimension require yet
some further ideas.
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2 A theorem on height bounds

In this section, we discuss some necessary background in diophantine geometry
and establish the “unlikely intersections” result, Theorem 1.3.

2.1 Zilber’s Conjecture on Intersections with Tori

Zilber’s Conjecture on Intersections with Tori [Zil02] governs the locus where a
subvariety of Gn

m meets algebraic subgroups of sufficiently low dimension. Let
us state a variant of the conjecture found in [Zil02].

Conjecture 2.1. Let Y be an irreducible subvariety of Gn
m defined over C. Let

us suppose that the union⋃
H⊂Gn

m
dimY+dimH≤n−1

Y ∩H is Zariski dense in Y (2.1)

where H runs over algebraic subgroups with the prescribed restriction on the
dimension. Then Y is contained in a proper algebraic subgroup of Gn

m.

Zilber’s Conjecture is stated more generally for semi-abelian varieties and
Pink [Pin05] has a version for mixed Shimura varieties.

The algebraic subgroups of Gn
m can be characterized easily, they are in

natural bijection with subgroups of Zn, cf. Chapter 3.2 [BG06].
The heuristics behind this conjecture are supported by the following ba-

sic observation. Two subvarieties of Gn
m in general position whose dimensions

add up to something less than the dimension of the ambient group variety are
unlikely to intersect; however, non-empty intersections are certainly possible.
Unless we are in the trivial case Y = Gn

m, the union (2.1) is over a countable
infinite set of algebraic subgroups. The content of the conjecture is just that any
non-empty intersections that arise are contained in a sufficiently sparse subset
of Y unless Y is itself inside a proper algebraic subgroup of Gn

m.
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Although the conjecture above is open, many partial results are known. We
will now briefly mention several ones.

If Y is a hypersurface, i.e. dimY = n − 1, then the algebraic subgroups
in question are finite. So the union (2.1) is precisely the set of points on Y
whose coordinates are roots of unity. Describing the distribution of points of
finite order on subvarieties of Y is a special case of the classical Manin-Mumford
Conjecture. In general, the Manin-Mumford Conjecture states that a subvariety
of a semi-abelian variety can only contain a Zariski dense set of torsion points
if it is an irreducible component of an algebraic subgroup. The first proof in
this generality is due to Hindry. In the important case of abelian varieties the
Manin-Mumford Conjecture was proved earlier by Raynaud. Laurent’s Theorem
[Lau84] contains the Manin-Mumford Conjecture for Gn

m.
Conjecture 2.1 is known also if dimY = n − 2 due to work of Bombieri,

Masser, and Zannier [BMZ07].
In low dimension, Maurin [Mau08] proved the conjecture for curves defined

over Q. Bombieri, Masser, and Zannier [BMZ08a] later generalized this to
curves defined over C.

A promising line of attack of Conjecture 2.1 is via the theory of heights,
which we will review in the next section. It is this approach that motivates
our Theorem 1.3. In some circumstances it is possible to prove instances of
the conjecture by first studying the larger union over algebraic subgroups that
satisfy the weaker dimension inequality dimY + dimH ≤ n. It is no longer
appropriate to call non-empty intersections Y ∩ H unlikely and one cannot
expect ⋃

H⊂Gn
m

dimY+dimH≤n

Y ∩H

to be non-Zariski dense in Y. We say that such a non-empty intersection Y ∩H
is just likely. It is sometimes possible to show that the absolute logarithmic Weil
height is bounded from above on this union. In fact, we will use such a bound
which we state more precisely below in Theorem 2.2.

To ease notation we abbreviate

(Gn
m)

[m]
=

⋃
H⊂Gn

m
codimH≥m

H.

Two caveats are in order. First, in order to use the height in a meaningful
way we need to work with subvarieties Y defined over Q, the field of algebraic
numbers. Therefore, results on height bounds usually contain an additional
hypothesis on the field of definition. Second, it is in general false that the
elements of

(Gn
m)

[dimY] ∩ Y

have uniformly bounded height. Indeed, it is possible that Y has positive di-
mensional intersection with an algebraic subgroup of dimension dimY. As the
height is not bounded on a positive dimensional subvariety of Gn

m we must avoid
such intersections.

We will see in moment that there are more delicate obstructions to bounded-
ness of height. One must remove more as was pointed out by Bombieri, Masser,
and Zannier [BMZ99]. They proved the following height-theoretic result for an

11



irreducible algebraic curve C defined over Q and contained in Gn
m. A coset of

Gn
m will mean the translate of an algebraic subgroup of Gn

m. If C is not con-
tained in a proper coset, then a point in C that is contained in a proper algebraic
subgroup has height bounded in terms of C only. They also proved a converse
in the second remark after their Theorem 1. If C is contained in a proper coset,

then C ∩ (Gn
m)

[1]
does not have bounded height. Observe that C ∩ (Gn

m)
[1]

is
always infinite.

The second named author later in [Hab09] proved a qualitative refinement
of these height bounds for the intersection of a general subvariety Y ⊂ Gn

m

with algebraic subgroups of complementary dimension. An irreducible closed
subvariety Z ⊂ Y is called anomalous if there exists a coset K ⊂ Gn

m with
Z ⊂ K and

dimZ ≥ max{1,dimY + dimK − n+ 1}.

Bombieri, Masser, and Zannier [BMZ07] showed that the (possibly infinite)
union of all anomalous subvarieties is Zariski closed in Y. We write Yoa for its
complement in Y. The aforementioned result states that Yoa is Zariski open in
Y.

In the case of a curve C, we have Coa = C if and only if C is not contained
in a proper coset. Otherwise we have Coa = ∅. Thus Bombieri, Masser, and

Zannier’s original height bound for curves [BMZ99] states that Coa ∩ (Gn
m)

[1]

has bounded height.
The following bound is the main theorem of [Hab09].

Theorem 2.2. Let Y ⊂ Gn
m be an irreducible closed subvariety defined over Q.

There exists B ∈ R depending only on Y such that any point in Yoa∩(Gn
m)

[dimY]

has absolute logarithmic Weil height bounded by B.

After introducing more notation we will cite a quantitative version of The-
orem 2.2 for curves in Theorem 2.10.

The height bound can be used to recover some cases of Zilber’s Conjecture.
The second named author later made this result completely explicit [Hab]. The
height bound B is thus effective.

Before proceeding to the main result of this section we make, as promised, a
brief detour to define the height function mentioned above and several others.

2.2 On Heights

We refer to the Chapter 1.5 [BG06] or Parts B.1 and B.2 [HS00] for proofs of
many basic properties of the absolute logarithmic Weil height that we discuss
in this section.

Every non-trivial absolute value |·|v on a number field K is equivalent to one
of the following type. If |·|v is Archimedean, then there exists a field embedding
σ:K → C, uniquely defined up to complex conjugation, such that |x|v= |σ(x)|
for all x ∈ K, where |·| is the standard complex absolute value. In this case
we call v infinite and write v|∞. Depending on whether σ(K) ⊂ R or not we
define the local degree of v as dv = 1 or dv = 2. If |·|v is non-Archimedean, then
its restriction to Q is the p-adic absolute value for some rational prime p. For
fixed p, the set of extensions of the p-adic valuation to K is in bijection with
the set of prime ideals in the ring of algebraic integers in K that contain the
prime ideal pZ. In this case we call v finite and write v -∞ or v | p. The local
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degree here is dv = [Kv : Qp] where Kv is a completion of K with respect to
v. We write VK for the set of all absolute values |·|v on K as described above.
This set is sometimes called the set of places of K.

We note that if x ∈ K r {0}, then |x|v= 1 for all but finitely many v ∈ VK .
The choice of local degrees dv facilitates the product formula∏

v∈VK

|x|dvv = 1. (2.2)

Now we are ready to defined the absolute logarithmic Weil height, or height for
short, of a tuple x = (x1, . . . , xn) ∈ Kn as

h(x) =
1

[K : Q]

∑
v∈VK

dv log max{1, |x1|v, . . . , |xn|v} ≥ 0. (2.3)

The normalization constants dv/[K : Q] guarantee that h(x) does not change
when replacing K by another number field containing all xi. So we obtain a
well-defined function h: Q

n → [0,∞).
Northcott’s Theorem, Theorem 1.6.8 [BG06], states that a subset of Q

n

whose elements have uniformly bounded height and degree over Q is finite.
This basic result is an important tool for proving finiteness results in diophantine
geometry. We will apply it in the proof of Theorem 1.1.

In the special case n = 1 the following estimates will prove useful. If x, y ∈ Q
then both inequalities

h(xy) ≤ h(x) + h(y) and h(x+ y) ≤ h(x) + h(y) + log 2,

follow from corresponding local inequalities applied to the definition (2.3). The
height, taking no negative values, does not restrict to a group homomorphism
Qr{0} → R. However, the definition and the product formula yield homogenity

h(xk) = |k|h(x)

for any integer k if x 6= 0.
It is sometimes useful to work with the height of algebraic points in projective

space. If x = [x0 : · · · : xn] ∈ Pn is such a point with representatives x0, . . . , xn
in K, we set

h(x) =
1

[K : Q]

∑
v∈VK

dv log max{|x0|v, . . . , |xn|v}.

The product formula (2.2) guarantees that h(x) does not depend on the choice
of projective coordinates of x.

If f is a non-zero polynomial in algebraic coefficients, we set h(f) to be
the height of the point in projective space whose coordinates are the non-zero
coefficients of f .

We remark that different sources in the literature may employ different
norms at the Archimedean places of K. For example, instead of taking the
`∞-norm one can take the `2-norm at the infinite places. This leads to another
height function h2(·) on the algebraic points of Pn which differs from h(·) by a
bounded function.

We will make use of a result of Silverman to control the behavior of the
height function under rational maps between varieties.
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Theorem 2.3. Let X ⊂ Am and Y ⊂ An be irreducible quasi-affine varieties
defined over Q with dimX = dimY. Suppose that ϕ:X → Y is a dominant
morphism. There exist constants c1 > 0 and c2 that depend only on X ,Y and a
Zariski open and dense subset U ⊂ X such that

h(ϕ(P )) ≥ c1h(P )− c2 for all P ∈ U.

Moreover, this estimate holds true with

U = U0 = {P ∈ X : P is isolated in ϕ−1(ϕ(P ))},

which is Zariski open in X .

Proof. The first statement follows from Silverman’s Theorem 1 [Sil11].
The openness of U0 from the last statement follows from Exercise II.3.22(d)

[Har77]. By restricting to the irreducible components in the complement of the
open set provided by Silverman’s Theorem we may use Noetherian induction to
prove the height inequality on U0 with possibly worse constants. �

A reverse inequality, i.e.

h(ϕ(P )) ≤ c−1
1 h(P ) + c2 (2.4)

for any P ∈ X holds with possibly different constants. It requires neither ϕ
being dominant or dimX = dimY, and is more elementary, see e.g. [HS00,
Theorem B.2.5].

It is also possible to assign a height to an irreducible closed subvariety Y of
Pn defined over Q. The basic idea is to consider the Chow form of Y, which
is well-defined up-to scalar multiplication, as a point in some projective space.
The height of this point with then be the height h(Y) of Y. In this setting
it is common to use a norm at the Archimedean place which is related to the
Mahler measure of a polynomial. The details of this definition are presented in
Philippon’s paper [Phi95].

With this normalization, the height of a singleton {P} with P an algebraic
point of Pn is the height of P with the `2-norm at the Archimedean places.
Beware that the height of a projective variety is by no means an invariant of its
isomorphism class. It depends heavily on the embedding Y ⊂ Pn.

Zhang’s inequalities [Zha95] relate the height of Y ⊂ Pn, its degree, and the
points of small height on Y. In order to state them, we require the essential
minimum

µess(Y) = inf
{
x ≥ 0 : {P ∈ Y : h2(P ) ≤ x} is Zariski dense in Y

}
of Y. The set in the infimum is non-empty and so µess(Y) < +∞. In connection
with the Bogomolov Conjecture Zhang proved

µess(Y) ≤ h(Y)

degY
≤ (1 + dimY)µess(Y). (2.5)

The second inequality can be used to bound h(Y) from above if one can exhibit
a Zariski dense set of points on Y whose height is bounded from above by a
fixed value.
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The morphism (x1, . . . , xn) 7→ [1 : x1 : · · · : xn] allows us to consider Gn
m and

An as open subvarieties of Pn. The height of an irreducible closed subvariety
of Gn

m or An defined over Q is the height of its Zariski closure in Pn.
We recall that degY is the cardinality of the intersection of Y with a linear

subvariety of Pn in general position with codimension dimY. By taking the
Zariski closure in Pn as in the previous paragraph we may speak of the degree
of any irreducible closed subvariety of Gn

m or An.
If X is a second irreducible closed subvariety of Pn, then Bézout’s Theorem

states ∑
Z

degZ ≤ (degX )(degY)

where Z runs over all irreducible components Z of X ∩ Y. For a proof we refer
to Example 8.4.6 [Ful84].

We come to the arithmetic counterpart of this classical result. According
to Arakelov theory, h(Y) is the arithmetic counterpart of the geometric degree
degY.

Theorem 2.4 (Arithmetic Bézout Theorem). There exists a positive and effec-
tive constant c > 0 that depends only on n and satisfies the following property.
Let X and Y be irreducible closed subvarieties of Pn, both defined over Q, then∑

Z
h(Z) ≤ deg(X )h(Y) + deg(Y)h(X ) + cdeg(X ) deg(Y)

where Z runs over all irreducible components of X ∩ Y.

Proof. For a proof we refer to Philippon’s Theorem 3 [Phi95]. �

Not surprisingly, the height of a hypersurface is closely related to the height
of a defining equation. For our purposes it suffices to have the following estimate.

Proposition 2.5. There exists a positive and effective constant c > 0 that
depends only on n and satisfies the following property. Let f ∈ Q[X0, . . . , Xn]
be a homogeneous, irreducible polynomial and suppose that Y is its zero set in
Pn. Then h(Y) ≤ h(f) + cdeg f .

Proof. See page 347 of Philippon’s paper [Phi95] for a more precise statement.
�

We will freely apply Zhang’s inequalities and the Arithmetic Bézout Theorem
to subvarieties Gn

m and An, always keeping in mind the open immersions Gn
m →

Pn and An → Pn.

2.3 A Weak Height Bound

In this section, we will formulate and prove a height bound which is reminiscent
of the result on just likely intersections in Theorem 2.2. But instead of working
in the ambient group Gn

m, we work instead in Gn
m ×Gn

a . We will also restrict
to surfaces. The results of this section will be applied in the proof of Theorem
1.1. Our new height bound will only take a certain class of algebraic subgroups
into account. It will also no longer be uniform, as it will depend logarithmically
on the degree over Q of the point in question. However, the points in our
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application are known to have bounded degree over the rationals. Therefore,
their height and degree are bounded from above. Northcott’s Theorem will
imply that the number of points under consideration is finite.

Let us consider an irreducible, quasi-affine surface Y ⊂ Ak defined over Q
with two collections of functions. For 1 ≤ i ≤ n let Ri: A

k 99K Gm and let
`i: A

k 99K Ga be rational maps, defined on Zariski open and dense subsets of
Ak. We also suppose that their restrictions to Y (denoted by the same letter)
are regular. The main theorem of this section is a height bound for points on
Y that satisfy both a multiplicative relation among the Ri and a linear relation
among the `i, with the same coefficients. We write R:Y → Gn

m and `:Y → Gn
a

for the product maps.
In the theorem below, we will suppose that R:Y → Gn

m has finite fibers.
Then S = R(Y) ⊂ Gn

m is a surface. Here and below · refers to closure with
respect to the Zariski topology.

Theorem 2.6. Let us keep the assumptions introduced before. There is an
effective constant c > 0 depending only on Y, the `i, and the Ri with the
following property. Suppose y ∈ Y is such that R(y) ∈ Soa. If there is
(b1, . . . , bn) ∈ Zn r {0}

(i) with b1`1 + · · ·+ bn`n 6= 0 in the function field of Y,

(ii) such that y is contained in an irreducible curve Cb cut out on Y by

b1`1 + · · ·+ bn`n = 0

with R(Cb)
oa

= R(Cb),

(iii) and
R1(y)b1 · · ·Rn(y)bn = 1, (2.6)

then
h(y) ≤ c log(2[Q(y) : Q]).

Recall that the condition on R(Cb) in (ii) stipulates that the said curve is
not contained in a proper coset of Gn

m.
At the end of this section we will provide another formulation for this theo-

rem which is more in line with known results towards Zilber’s Conjecture. The
formulation at hand was chosen with our application to Teichmüller curves in
mind.

The theorem is effective in the sense that one can explicitly express c in
terms of Y.

The proof splits up into two cases.

1. In the first case we forget about the additive relation in (2.6) but assume
that there is an additional multiplicative relation. This will lead to a
bound for the height that is independent of [Q(y) : Q].

2. Second, we assume that there is precisely one multiplicative relation up-
to scalars. This time we need the additive equation in (2.6) and we will
obtain a height bound that depends on [Q(y) : Q].
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We remark that Theorem 1.1 uses Theorem 2.6 applied to n = 3. The latter
relies on height bound in Theorem 2.2. In this low dimension, SrSoa coincides
with the union of all positive dimensional cosets contained completely in S. It
turns out that the result of Bombieri-Zannier, cf. Appendix of [Sch00], can be
used instead of Theorem 2.2. One could also use Theorem 1 [Hab08] in the case
n = 3, s = 2, and m = 1 to obtain a completely explicit height bound while
avoiding the crude bound of [Hab]. For general n it seems that Theorem 2.2 is
indispensable.

Lemma 2.7. There exist effective constants c1, c2 depending only on Y with
c1 > 0 such that if y ∈ Y then

h(y) ≤ c1h(R(y)) + c2. (2.7)

Proof. This statement follows from Theorem 2.3 as R has finite fibers on Y.
One checks that readily that Silverman’s second proof is effective. �

We use |·| to denote the `∞-norm on any power of R. Let us recall the fol-
lowing basic result called Dirichlet’s Theorem on Simultaneous Approximation.

Lemma 2.8. Let θ ∈ Rn and suppose Q > 1 is an integer. There exist q ∈ Z
and p ∈ Zn with 1 ≤ q < Qn and |qθ − p|≤ 1/Q.

Proof. See Theorem 1A in Chapter II, [Sch80]. �

If r = (r1, . . . , rn) ∈ Gn
m is any point and b = (b1, . . . , bn) then we abbreviate

rb11 · · · rbnn by rb.

Lemma 2.9. There is an effective constant c > 0 depending only on n with

the following property. Let d ≥ 1 and suppose r ∈ (Gn
m)

[1]
is algebraic with

[Q(r) : Q] ≤ d. There exists b ∈ Zn with |b|≤ cd2n max{1, h(r)}n such that rb

is a root of unity.

Proof. Let Q > 1 be a sufficiently large integer to be fixed later on. Since r
is contained in a proper algebraic subgroup of Gn

m there is b′ ∈ Zn r {0} with
rb
′

= 1.
By Dirichlet’s Theorem, Lemma 2.8, there exists b ∈ Zn and an integer q

with 1 ≤ q < Qn such that |qb′/|b′|−b|≤ Q−1. We remark that b 6= 0 since
Q > 1. Moreover, |b|≤ q + Q−1 < Qn + 1 by the triangle inequality. Hence
|b|≤ Qn since |b| and Qn are integers.

With δ = |b′|b− qb′ ∈ Zn we have

r|b
′|b = rδ+qb

′
= rδ.

The height estimates mentioned above yield

|b′|h(z) ≤ |δ|(h(r1) + · · ·+ h(rn)) ≤ n|δ|h(r),

where z = rb. We divide by |b′| and find h(z) ≤ nQ−1h(r).
We note that z ∈ Q(r) r {0} and recall [Q(r) : Q] ≤ d. By Dobrowolski’s

Theorem [Dob79], which is effective, we have either h(z) = 0 or h(z) ≥ c′d−2

for some absolute constant c′ ∈ (0, 1]. Observe that we do not need the full
strength of Dobrowolski’s bound. The choice Q = [2nd2 max{1, h(r)}/c′] forces
z to be a root of unity. The lemma follows with c = (2n/c′)n. �
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We are now almost ready to prove our main result. It relies on the following
explicit height bound.

Theorem 2.10 ([Hab08]). Suppose C ⊂ Gn
m is an irreducible algebraic curve

defined over Q that is not contained in a coset of Gn
m. Any point in C ∩ (Gn

m)
[1]

has height at most
c(deg C)n−1(deg C + h(C))

where c > 0 is effective and depends only on n.

Proof of Theorem 2.6. Suppose y ∈ Y is as in the hypothesis and d = [Q(y) :
Q]. In particular, (2.6) holds for some b ∈ Zn r {0}. As discussed in the
introduction, we split up into two cases.

In the first case, suppose the point r = R(y) satisfies two independent mul-
tiplicative relations. Then Theorem 2.2 applies because r ∈ Soa by hypothesis.
Since R has finite fibers Lemma 2.7 implies that the height of y is bounded from
above solely in terms of Y. This is stronger than the conclusion of the theorem.

In the second case, we will assume that the coordinates of r satisfy precisely
one multiplicative relation up-to scalar multiple. Here we shall make use of the
additive relation in (2.6). By assumption, the group

{a ∈ Zn : ra = 1}

is free abelian of rank 1. It certainly contains b from the multiplicative relation
in (2.6). However, it also contains a positive multiple of a vector b′ ∈ Zn r {0}
coming from Lemma 2.9. Thus b and b′ are linearly dependent and hence the
additive relation (2.6) holds with b replaced by b′ = (b′1, . . . , b

′
n). By hypothesis

(i) our point y lies on an irreducible curve C ⊂ Y on which

b′1`1 + · · ·+ b′n`n (2.8)

vanishes identically with Coa = C.
Recall that the curve C is an irreducible component of the zero set of (2.8) on

Y. Each `i can be expressed by a quotient of polynomials mappings. From this
point of view, b′1`1 + · · · + b′n`n is a quotient of polynomials whose degrees are
bounded by a quantity that is independent of (b′1, . . . , b

′
n). So Bézout’s Theorem

implies that the degree of the Zariski closure of C in Ak is bounded from above
in terms of Y only. We observe that R(C) is an irreducible curve. As degR(C)
equals the generic number of intersection points of R(C) with a hyperplane, we
conclude, again using Bézout’s Theorem, that

degR(C)� 1, (2.9)

where here and below � signifies Vinogradov’s notation with a constant that
depends only on Y, the `i, and the Ri. These constants are effective.

We also require a bound for the height of the curve R(C). This we can
deduce with the help of Zhang’s inequalities (2.5). Indeed, the numerator of
(2.8) is a polynomial whose height is � log(2|b′|) by elementary height in-
equalities. Any irreducible component of its zero set has height � log(2|b′|)
by Proposition 2.5 and degree � 1. The Arithmetic Bézout Theorem implies
h(C) � log(2|b′|). Using the degree bound we deduced above and the first in-
equality in (2.5) we conclude that C contains a Zariski dense set of points P
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with h(P ) ≤ h2(P ) � log(2|b′|). The height bound (2.4) just below Silver-
man’s result yields h(R(P )) � log(2|b′|). So the second bound in (2.5) and
degR(C)� 1 give

h(R(C))� log|b′|. (2.10)

Now r = R(y) ∈ R(C) and r ∈ (Gn
m)

[1]
by the original multiplicative relation

(2.6). We insert (2.9) and (2.10) into Theorem 2.10 and use the upper bound
for |b′| to find

h(r)� log(2dmax{1, h(r)}).

Linear beats logarithmic, so h(r) � log(2d). Finally, we use Lemma 2.7
again to deduce h(y)� log(2d). This completes the proof. �

2.4 Intersecting with algebraic subgroups of Gn
m ×Gn

a

The unipotent group Gn
a is not covered by Conjecture 2.1 or Zilber’s more

general formulation for semi-abelian varieties. Indeed, a verbatim translation of
the statement of Conjecture 2.1 to Gn

a fails badly. Any point of Gn
a is contained

in a line passing through the origin, and is thus in a 1-dimensional algebraic
subgroup.

Motivated by Theorems 2.2 and 2.6 we will deduce a height bound for points
on a surface inside Gn

m×Gn
a which are contained in a restricted class of algebraic

subgroups of codimension 2. Our aim is to formulate a result that is comparable
to the more well-known case of the algebraic torus. The reader whose main
interest lies in proof of Theorem 1.1 may safely skip this section.

Any algebraic subgroup of Gn
m ×Gn

a splits into the product of an algebraic
subgroup of Gn

m and of Gn
a . We call the translate of an algebraic subgroup of

Gn
m ×Gn

a by a point in Gn
m × {0} a semi-torsion coset. We call it rational if

it is the translate of an algebraic subgroup of Gn
m ×Gn

a defined over Q by any
point of Gn

m × {0}. A rational semi-torsion coset need not be defined over Q,
but its associated algebraic subgroup of Gn

a is defined by linear equations with
rational coefficients.

Let Y be an irreducible subvariety of Gn
m ×Gn

a defined over C. We single
out an exceptional class of subvarieties of Y related to Bombieri, Masser, and
Zannier’s anomalous subvarieties [BMZ07].

We say that an irreducible closed subvariety Z of Y is rational semi-torsion
anomalous if it is contained in a rational semi-torsion coset K ⊂ Gn

m×Gn
a with

dimZ ≥ max{1,dimY + dimK − 2n+ 1}. (2.11)

We let YQ,ta denote the complement in Y of the union of all rational semi-
torsion anomalous subvarieties of Y.

Bombieri, Masser, and Zannier’s Yoa for Y ⊂ Gn
m is always Zariski open.

In the example below we show that this is not necessarily the case for YQ,ta if
Y ⊂ Gn

m ×Ga
m is a surface.

Example 2.11. Let us consider the case n = 2 and let Y be the irreducible
surface given by

x1y1 + (x1 + 1)y2 = 0,

x1y1 + x2y2 = 1
(2.12)
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where (x1, x2, y1, y2) ∈ G2
m ×G2

a. Observe that the projection of Y to G2
m is

dominant. We will try to understand some features of YQ,ta.
Let K be a rational semi-torsion anomalous subvariety of Y. Then a certain

number of additive and multiplicative relations hold on the coordinates of K
and the dimension of K cannot be below the threshold determined by (2.11).

Suppose first that a relation b1y1 + b2y2 = 0 holds on K where (b1, b2) ∈
Z2 r {0}. The second equality in (2.12) yields (y1, y2) 6= 0, and the first one
yields 0 = x1b2 − (x1 + 1)b1, so the projection of K to G2

m maps to one of
countably many algebraic curves. In particular, K is a curve and there are at
most countably many possibilities for K.

Second, let us assume that no linear relation as above holds on K. Then a
certain number of multiplicative relations xb11 x

b2
2 = λ hold on K. We cannot

have K = Y, as Y has dense image in G2
m. So there must be two multiplicative

relations with independent exponent vectors for K to be anomalous. In partic-
ular, x1 and x2 are constant on K. But for a fixed choice of (x1, x2) the two
linear equations (2.12) are linear in (y1, y2) and have at most one solution in
these unknowns. This contradicts dimK ≥ 1.

Now we know that any rational semi-torsion anomalous subvariety of Y is a
curve and that their cardinality is at most countable.

Finally, let us exhibit such curves. For a given ξ ∈ Q r {0} the equation
x1 = ξ cuts out an irreducible curve in Y. This equation and the one obtained by
substituting ξ for x1 in first line of (2.12) establishes that this curve is rational
semi-torsion anomalous.

Thus YrYQ,ta is a countable, infinite union of curves. In particular, YQ,ta is
not Zariski open in Y; it is also not open with respect to the Euclidean topology.

Above we introduced the notation xb for a point x ∈ Gn
m and b ∈ Zn. If

y = (y1, . . . , yn) ∈ Gn
a and b = (b1, . . . , bn) we set

〈y, b〉 = y1b1 + · · ·+ ynbn.

An algebraic subgroup G ⊂ Gn
m × Gn

a is called coupled if there exists a
subgroup Λ ⊂ Zn with

G =
{

(x, y) ∈ Gn
m ×Gn

a : xb = 1 and 〈y, b〉 = 0 for all b ∈ Λ
}
.

The dimension of G is 2(n− rank Λ).

We define (Gn
m ×Gn

a)
[s]

to be the union of all coupled algebraic subgroups
of Gn

m ×Gn
a whose codimension is at least s.

Using this notation we have the following variant of Theorem 2.6.

Theorem 2.12. Let Y ⊂ Gn
m ×Gn

a be an irreducible, closed algebraic surface
defined over Q. There exists a constant c > 0 with the following property. If

P ∈ YQ,ta ∩ (Gn
m ×Gn

a)
[2]

, then

h(P ) ≤ c log(2[Q(P ) : Q]).

Proof. The current theorem resembles Theorem 2.6 but it is not a direct con-
sequence. However, we will invoke Theorem 2.6 below. Indeed, we take Y as a
quasi-affine subvariety of Gn

m ×Gn
a ⊂ A2n. The rational maps R and ` are the

two projections Gn
m ×Gn

a → Gn
m and Gn

m ×Gn
a → Gn

a , respectively.

Say P = (x, y) ∈ YQ,ta ∩ (Gn
m ×Gn

a)
[2]

. We begin a study of various cases.
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Suppose first that R(Y) ⊂ Gn
m is a point. The existence of P implies that

Y meets a proper coupled subgroup. So R(Y) is in a proper algebraic subgroup
of Gn

m which means that Y is in the product of this subgroup with Gn
a . In this

case YQ,ta is empty, a contradiction.
So we have dimR(Y) ≥ 1. Let us assume that P is not isolated in its fiber

of R|Y . Here we can argue much as in the proof of Theorem 2.6. The point
P is contained in some irreducible component Dx of R|−1

Y (x) with dimDx ≥ 1.
But dimDx = 1 since R|Y is non-constant. Observe that Dx is an irreducible
component in the intersection of Y and the rational semi-torsion coset {x}×Gn

a .
We now split-up into 2 subcases.

Suppose first that R(Y) has dimension 1. Then R(Y) cannot be contained

in a proper coset of Gn
m as YQ,ta 6= ∅. So R(Y)∩(Gn

m)
[1]

has bounded height by
Theorem 1 of Bombieri, Masser, and Zannier [BMZ99]. As x lies in this inter-
section we have h(x)� 1; here and below the constant implied in Vinogradov’s
notation depends only on Y.

In the second subcase we suppose that R(Y) has dimension 2. The set of
points in Y that are contained in a positive dimensional fiber of R|Y is a Zariski
closed proper subset of Y, cf. Exercise II.3.22(d) [Har77] already used above.
Hence Dx is a member of a finite set of curves depending only on Y. So x, being
the image of Dx under R, is member of a finite set depending only on Y. In
particular, h(x)� 1 holds trivially.

In both subcases we have h(x)� 1. The Arithmetic Bézout Theorem yields
the height bound

h(Dx)� 1 and degDx � 1 (2.13)

the degree bound follows from the classical Bézout Theorem.
Let us abbreviate d = [Q(P ) : Q]. The coordinates of x are multiplicatively

dependent. But there cannot be 2 independent relations as Dx would other-
wise be contained in rational semi-torsion anomalous subvariety of Gn

m ×Gn
a .

Lemma 2.9 and h(x)� 1 implies 〈y, b〉 = 0 for some b ∈ Zn with |b|� d2n.
The vanishing locus of the linear form

y 7→ 〈y, b〉

determines a linear subvariety of Gn
m ×Gn

a with height � log(2|b|). The point
P = (x, y) is isolated in its intersection with Dx as P ∈ YQ,ta. The Arithmetic
Bézout Theorem and (2.13) yield h(P ) � log(2|b|). We combine this bound
with the upper bound for |b| to establish the theorem if P is not isolated in the
corresponding fiber of R|Y .

From now on we assume that P is isolated in R|−1
Y (x). The set of all such

points of Y is a Zariski open subset Y ′ of Y. The restriction R|Y′ has finite
fibers and hence the hypothesis leading up to Theorem 2.6 is fulfilled for Y ′
where the `i run over the n the projection morphisms to Ga. We write S for
the Zariski closure of R(Y ′); this is an irreducible surface.

Say b ∈ Zn r {0} with xb = 1 and 〈y, b〉 = 0. The conditions (i), (ii), and
(iii) in Theorem 2.6 are met; for the first two we need P ∈ YQ,ta. If x ∈ Soa

holds, then the height bound from the said theorem completes the proof.
So it remains to treat the case x 6∈ Soa. By definition there is a coset

K ⊂ Gn
m and an irreducible component Z of S ∩ K containing x with

dimZ ≥ max{1, 3 + dimK − n}. (2.14)
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This inequality implies dimK ≤ n− 1 because dimZ ≤ 2.
Observe that dimZ = 1. Indeed, otherwise Z = S would be contained in

K. Then Y would be contained in the rational semi-torsion coset K×Gn
a which

would contradict P ∈ YQ,ta.
Since Z is a curve we find

dimK ≤ n− 2 (2.15)

from (2.14).
Of course P = (x, y) ∈ R|−1

Y (Z). Let Z ′ be an irreducible component

R|−1
Y (Z) containing P with largest dimension. Now Z ′ is in the rational semi-

torsion coset K ×Gn
a already used above. If Z ′ has positive dimension, then

dimZ ′ ≥ 2+dimK×Gn
a−2n+1 because of (2.15). But then Z ′ is a rational semi-

torsion anomalous subvariety of Y. This is again a contradiction to P ∈ YQ,ta.
We conclude that Z ′ = {P}. This is an awkward situation as one would

expect that the pre-image of a curve under the dominant morphism R|Y :Y →
S between surfaces to be again a curve. So we can hope to extract useful
information. We are in characteristic 0, so by Lemma III.10.5 [Har77] there is
a Zariski open and non-empty set U ⊂ Y such that R|U :U → S is a smooth
morphism. This restriction is in particular open. It has the property that the
preimage of any irreducible curve in R(U) is a finite union of irreducible curves.
We claim that P does not lie in U . Indeed, otherwise P would be an isolated
point of a fiber of R|U . This contradicts smoothness of R|U as R(U) ∩ Z is an
irreducible curve containing R(P ).

The complement Y r U has dimension at most 1 and does not depend on
P . It contains P by the previous paragraph. After omitting the finitely many
isolated points in Y rU we may suppose that P is in a curve C ⊂ Y rU . Thus
C arises from a finite set depending only on Y.

The restriction R|C : C → Gn
m is non-constant because we already reduced to

the case where P is isolated in the fiber of R|Y . So R(C), the Zariski closure of
R(C) in Gn

m, is a curve. By Theorem 2.3 we have

h(P )� max{1, h(x)}, (2.16)

where the constant implicit in � depends only on C and thus only on Y.
If R(C) is not contained in a proper coset, then h(x)� 1 by Theorem 2.10 or

by Bombieri, Masser, and Zannier’s original height bound [BMZ99]. So (2.16)
yields h(P )� 1 and this is better than what the theorem claims.

But what if R(C) is contained in a proper coset of Gn
m? As we have already

pointed out, there is no hope that R(C) ∩ (Gn
m)

[1]
has bounded height. But we

know that R(C) is not contained in a coset of codimension at least two since
P ∈ YQ,ta. The projection of C to a suitable choice of n−1 coordinates of Gn−1

m

is a curve that is not in a proper coset. So if the coordinates of x happen to
satisfy two independent multiplicative relations, then these n − 1 coordinates
will be multiplicatively dependent and thus have bounded height by Theorem 1
in [BMZ99]. Using Theorem 2.3, applied now to the projection, we can bound
the height of the remaining coordinates. So h(x) � 1 and even h(P ) � 1 by
(2.16). Therefore, we may assume that the coordinates of x satisfies only one
multiplicative relation, up to scalars. From here we proceed in a similar fashion
as we have done several times before. We use Lemma 2.9 to deduce that b is
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linearly dependent to some b′ ∈ Zn r {0} with |b′|� d2n max{1, h(x)}n. We
certainly have 〈y, b〉 = 〈y, b′〉 = 0. The morphism (x′, y′) 7→ 〈y′, b′〉 does not
vanish identically on C because R(C) is already assumed to lie in a proper coset
and since P ∈ YQ,ta. So P is an isolated point of C ∩ {(x′, y′) : 〈y′, b′〉 = 0}. A
final application of the Arithmetic Bézout Theorem and (2.16) yield

h(P )� log(2|b′|)� log(2dmax{1, h(P )}). (2.17)

The inequality (2.17) marks the final subcase in this proof and so the theorem
is established. �

3 Background on Teichmüller curves

We recall here some necessary background on flat surfaces and the stratification
of ΩMg. We also recall the cross-ratio equation for the cusps of algebraically
primitive Teichmüller curves and the defining equation for the exponents ap-
pearing in this equation. These two equations were the motivation for the
height bound theorem (Theorem 2.6) in the previous section.

Flat surfaces. A flat surface is a pair (X,ω), where X is a closed Riemann
surface and ω a nonzero holomorphic one-form on X. The one-form ω gives X
a flat metric |ω| which has cone points of cone angle 2π(n+ 1) at zeros of order
n of ω. The metric |ω| is obtained by pulling back the metric |dz| on C by
local charts φ:U → C defined by integrating ω, defining an atlas on X \ Z(ω)
(where Z(ω) is the set of zeros of ω) whose transition functions are translations
of C. There is an action of SL2(R) on the moduli space of genus g flat surfaces
ΩMg, defined by postcomposing these charts with the standard linear action of
SL2(R) on C = R2.

Let Aff+(X,ω) be the group of locally affine homeomorphisms of (X,ω),
and let D: Aff+(X,ω) → SL2(R) the homomorphism sending an affine map to
its derivative. The Veech group of (X,ω) is the image DAff+(X,ω), denoted
by SL(X,ω). The group SL(X,ω) is always discrete in SL2(R). If it is a lattice,
we call (X,ω) a Veech surface. The SL2(R) orbit of a Veech surface is closed
in ΩMg and called a Teichmüller curve (we also refer to the projection of this
orbit to PΩMg or Mg as a Teichmüller curve).

A saddle connection on a flat surface (X,ω) is an embedded geodesic segment
connecting two zeros of ω. The geodesics for the metric |ω| of slope θ define a
foliation Fθ of (X,ω). This foliation Fθ is said to be periodic if every leaf of Fθ
is either closed (i.e. a circle) or a saddle connection. In this case, we call θ a
periodic direction. A periodic direction θ yields a decomposition of (X,ω) into
finitely many maximal cylinders foliated by closed geodesics of slope θ. We refer
to the length of the waist curve of the cylinder C as its width w(C). The ratio of
height over width is called the modulus m(C) = h(C)/w(C). The complement
of these cylinders is a finite collection of saddle connections.

We constantly use Veech’s dichotomy [Vee89] stating that if (X,ω) is a Veech
surface with either a closed geodesic or a saddle connection of slope θ, then the
foliation Fθ is periodic and the moduli of the cylinders in the direction θ are
commensurable.

Given a Veech surface (X,ω) generating a Teichmüller curve C ⊂ PΩMg,
there is a natural bijection between the cusps of C and the periodic directions on
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(X,ω), up to the action of SL(X,ω). The cusp associated to a periodic direction
θ is the limit of the Teichmüller geodesic given by applying to (X,ω) the one-
parameter subgroup of SL2(R) contracting the direction θ and expanding the
perpendicular direction. The stable form in PΩMg which is the limit of this
cusp is obtained by cutting each cylinder of slope θ along a closed geodesic
and gluing a half-infinite cylinder to each resulting boundary component (see
[Mas75]). These infinite cylinders are the poles of the resulting stable form, and
the two poles resulting from a single infinite cylinder are glued to form a node.

The spine of (X,ω) is the union of all horizontal saddle connections, whose
complement is a union of cylinders. The dual graph Γ is the graph whose vertices
correspond to components of the spine, and edges correspond to complementary
cylinders. Equivalently, Γ is the dual graph of the stable curve associated to
this periodic direction. Its vertices correspond to irreducible components, and
its edges correspond to nodes.

Strata of ΩMg. The moduli space of flat surfaces ΩMg is stratified according
to the number and multiplicities of zeros of ω. The stratum ΩMg(1

2g−2) pa-
rameterizing flat surfaces with only simple zeros is open and dense. It is called
the principal stratum.

Connected components of the strata were classified in [KZ03]. In genus three
all the strata but ΩM3(4) and ΩM3(2, 2) are connected. These two strata have
two connected components, distinguished by the parity of the spin structure
h0(X,div(ω)/2). We write ΩM3(4)hyp and ΩM3(4)odd for the hyperelliptic and
odd components respectively. The case of even spin parity coincides in genus
three with the hyperelliptic components, the component in which all the curves
are hyperelliptic. Note that also ΩM3(2, 2)odd contains hyperelliptic curves,
forming a divisor in this stratum. In this case, the hyperelliptic involution fixes
the zeros, while for a flat surface in ΩM3(2, 2)hyp the hyperelliptic involution
swaps the two zeros.

The family over a Teichmüller curve. Let f :X → C be the universal
family over a Teichmüller curve generated by a Veech surface (X,ω) (or possibly
the pullback to an unramified covering of C). We also denote by f :X → C
the corresponding extension to a family of stable curves. Again passing to an
unramified covering of C we may suppose that the zeros of ω define sections
sj :C → X and we let Dj = sj(C) denote their images. In a fiber X of f we
write zj for the zeros of ω, that is is for the intersection of X with Dj . We also
write just D for the section and z for the zero, if k = 1.

The eigenform locus and its degeneration. Let RMO ⊂Mg denote the
locus of Riemann surfaces that admit real multiplication by an order O in a
totally real number field F with [F : Q] = g. In the bundle of one-forms over
RMO there is the locus of eigenforms EO ⊂ ΩMg consisting of pairs (X,ω),
where [X] ∈ RMO and where ω is an eigenform for real multiplication. The
intersection of the closure of RMO in Mg with the boundary was described in
[BM12]. We gave a necessary and sufficient condition for a stable form to lie
in the boundary of RMO in genus three where there is no Schottky problem
involved. We summarize these results here.
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The irreducible stable curves in the boundary of RMO are trinodal curves,
rational curves with three pairs of points xi and yi, i = 1, 2, 3 identified. Coor-
dinates on the boundary component of trinodal curves in M3 are given by the
cross-ratios defined by

Rjk = [xj , yj , xk, yk]. (3.1)

where for z1, . . . z4 ∈ C,

[z1, z2, z3, z4] =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
.

We often use complementary index notation, writing Rk for Rij where {i, j, k} =
{1, 2, 3}.

In general, cusps of Hilbert modular varieties are determined by the ideal
class of a nonzero module I for the order O and an extension class E. In [BM12]
we called a triple (r1, r2, r3) ∈ F admissible, if {r1, r2, r3} is a basis for such an

ideal I and if
{
N(r1)
r1

, N(r2)
r2

, N(r3)
r3

}
is Q+-linear dependent.

The boundary components of RMO intersected with the locus of trinodal
curves are in bijection with projectivized admissible triples up to permutation
and sign change. On the component given by an admissible triple (r1, r2, r3),
the closure of RMO is cut out by the cross-ratio equation

Ra11 Ra22 Ra33 = ζE , (3.2)

where ζE is a root of unity determined by the extension class E (see [BM12] for
the precise definition, which is irrelevant in this paper) and where the exponents
ai are defined as follows.

Let (s1, s2, s3) be dual to (r1, r2, r3) with respect to the trace pairing on F ,
and let (b1, b2, b3) ∈ Z3 be such that (indices read mod 3)

1∑
i=1

bisi+1si+2 = 0,

as stated in [BM12, Proof of Theorem 8.5]. The existence of such bi and the
fact that bi 6= 0 for all i is a consequence of admissibility, since admissibility
implies rationality in the sense of [BM12, Section 7]. We let (a1, a2, a3) be a
tuple proportional to (b1, b2, b3) that is relatively prime. This only determines
the ai up to sign. A more precise description of the ai including the sign can
be found in [BM12], but that choice of sign is not relevant in this paper. The
defining condition for the cross-ratio exponents can equivalently be stated as

3∑
i=1

bi/si = 0. (3.3)

Applications of algebraic primitivity. By [Möl06b] an algebraically prim-
itive Teichmüller curve lies in the real multiplication locus RMO for some or-
der O in the trace field F . Consequently, cusps of Teichmüller curves, if they
correspond to an irreducible stable curve, have an associated admissible triple
(r1, r2, r3), which is a basis of F over Q, and the corresponding stable curve
satisfies the cross-ratio equation (3.2), with exponents defined by (3.3). We
constantly use the fact from [BM12] that this triple is, up to a suitable rescal-
ing and permutation of indices, the triple of widths of cylinders in a periodic
direction that has this associated cusp.
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4 Harder-Narasimhan filtrations

In this section, we recall the notion of a Harder-Narasimhan filtration of a vector
bundle, and following Yu-Zho [YZ13, YZ], we describe the Harder-Narasimhan
filtration of the Hodge bundle for most strata in genus three. We apply this in
Proposition 4.3 to obtain information on the zeros of the other eigenforms of
Veech surfaces.

Let V be a vector bundle on a compact curve C. The slope of a vector bundle
is defined as µ(V) = deg(V)/rank(V). A bundle is called semistable if it contains
no subbundle of strictly larger slope. A filtration

0 = V0 ⊂ V1 ⊂ V2 · · · ⊂ Vg = V

is called a Harder-Narasimhan filtration if the successive quotients Vi/Vi−1 are
semi-stable and the slopes are strictly decreasing, i.e.

µi := µ(Vi/Vi−1) > µi+1 := µ(Vi+1/Vi).

The Harder-Narasimhan filtration is the unique filtration with these properties
(see e.g. [HL10]).

We now study the Harder-Narasimhan filtration in the case of a family
f :X → C over a Teichmüller curve in any nonprincipal stratum in genus threem
with the Hodge bundle V = f∗ωX/C over C. Here ωX/C denotes the relative du-
alizing sheaf of f , whose sections are fibrewise stable differentials.

Proposition 4.1 ([YZ13]). For C a Teichmüller curve in any nonprincipal
stratum in genus three, the Harder-Narasimhan filtrations of f∗ωX/C are given
by the direct image sheaves

ΩM3(4)hyp : f∗ωX/C(−4D1) ⊂ f∗ωX/C(−2D1) ⊂ f∗ωX/C .
ΩM3(4)odd : f∗ωX/C(−4D1) ⊂ f∗ωX/C(−D1) ⊂ f∗ωX/C .
ΩM3(3, 1) : f∗ωX/C(−3D1 −D2) ⊂ f∗ωX/C(−D1) ⊂ f∗ωX/C .
ΩM3(2, 2)hyp : f∗ωX/C(−2D1 − 2D2) ⊂ f∗ωX/C(−D1) ⊂ f∗ωX/C .
ΩM3(2, 2)odd f∗ωX/C(−2D1 − 2D2) ⊂ f∗ωX/C .

ΩM3(2, 1, 1) : f∗ωX/C(−2D1 −D2 −D3) ⊂ f∗ωX/C(−D1) ⊂ f∗ωX/C .

For a Teichmuller curre that is a family of hyperelliptic curves in the stratum
ΩM3(2, 2)odd the bundle f∗ωX/C/f∗ωX/C(−2D1 − 2D2) is the direct sum of

the two line bundles f∗ωX/C(−2Di)/f∗ωX/C(−2D1 − 2D2) ∼= f∗ωX/C(−4Di),
i = 1, 2, of the same slope. That is,

f∗ωX/C = f∗ωX/C(−2D1 − 2D2)⊕ f∗ωX/C(−4D1)⊕ f∗ωX/C(−4D2).

In each case the bottom term V1 is the maximal Higgs subbundle, its fibres
are the generating one-form of the Teichmüller curve and

degV1 = 1
2 deg Ω1

C
(∂C),

where ∂C = C \ C. In the strata ΩM3(2, 1, 1) and ΩM3(3, 1) the filtration is
split as well, i.e. a direct sum of line bundles, see [YZ13, Section 5.3].

The first case is a special case of the following the more general statement
for the strata ΩMg(2g − 2)hyp.
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Proposition 4.2. For a Teichmüller curve generated by a Veech surface in the
stratum ΩMg(2g − 2)hyp the bundle Vj = f∗ωX/C(−(2g − 2j)D) is a vector

bundle of rank j. The quotient line bundles Vj/Vj−1 have degree

deg(Vj/Vj−1) =
2g + 1− 2j

2g − 1
deg(L). (4.1)

In particular, the filtration by the Vj is the HN-filtration of f∗ωX/C .

Proof. We reproduce the argument of [YZ13] for convenience. For all fibres X
of f the dimensions of the following cohomology spaces are the same, namely
for j odd h0(X,OX(jz)) = (j+ 1)/2 and for j even h0(X,OX(jz)) = (j+ 2)/2.
Consequently, the direct image sheaves f∗OX (jD) and R1f∗OX (jD) are vector
bundles.

Suppose first that j is odd. Since every section of f∗OX (jD) is also a section
of f∗OX ((j − 1)D), these bundles are then isomorphic.

The long exact sequence associated to

0→ OX ((j − 1)D)→ OX (jD)→ OD(jD)→ 0

is
0→ f∗OX ((j − 1)D)→ f∗OX (jD)→ f∗OjD(jD)

→ R1f∗OX ((j − 1)D)→ R1f∗OX (jD)→ 0.

Since f |D is an isomorphism, the middle term is a line bundle. Its degree is

deg f∗OjD(jD) = jD2 =
j

2g − 1
degL

by [Möl11, Lemma 4.11]. Here L = V1 ⊂ f∗ωX/C is the (“maximal Higgs”) line
bundle whose fibers are the generating one-forms of the Teichmüller curve.

Now supposes j is even. By Serre duality and the same argument as in the
odd case, the last map of the long exact sequence is an isomorphism. Hence the
degree of f∗OX ((j − 1)D) and f∗OX (jD) differs by degOD(jD).

To obtain (4.1) from degOD(jD), note that note that

f∗ωX/C((2j − 2g + 2)D) = L ⊗ f∗OX (2jD).

The last statement is always true for a filtration, whose successive quotients
are line bundles with strictly decreasing degrees. �

Proof of Proposition 4.1. In all the cases the direct images are vector bundles,
since the dimensions of their fibers are constant by Riemann-Roch and by defi-
nition of the parity of the spin structure. The degrees of the successive quotients
can be computed by the same method as in the last section. The values appear
in [YZ13, Table 1] (rescaled dividing by degV1) and the degrees are decreasing.
Consequently the filtation is the Harder-Narasimhan filtration.

We provide full details in the case ΩM3(2, 2)odd and prove the last state-
ment of the proposition. Note that by the parity of the spin structure implies
f∗ωX/C(−2D1 − 2D2) = f∗ωX/C(−D1 −D2). By [YZ13], if

h0(OX(

n∑
i=1

dizi)) = h0(OX(

n∑
i=1

(di − ai)zi)) +

n∑
i=1

ai
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then

f∗OX(

n∑
i=1

aiDi)/f∗OX(

n∑
i=1

(ai − di)Di) ∼= ⊕ni=1f∗ODi(aiDi).

In this stratum we apply this to the case a1 = a2 = 2 and d1 = d2 = 1. Since the
self-intersection number of Di only depends on the order of the corresponding
zero zi we obtain that the rank two second step of the filtration is a direct sum
of two line bundles of the same slope.

In the hyperelliptic case the bundles f∗ωX/C(−2Di) are of rank two for

i = 1, 2, each of the being the direct sum of f∗ωX/C(−4Di) and f∗ωX/C(−2D1−
2D2). By Riemann-Roch and the preceding remark on the self-intersection
number of Di we conclude deg f∗ωX/C(4D1) = deg f∗ωX/C(4D2) and all the
claims follows. �

Consequences for the algebraically primitive case. Suppose from now
on that (X,ω) is algebraically primitive. Then

f∗ωX/C = ⊕gj=1Lj ,

where the Lj are the bundles generated by the eigenforms for real multipli-
cation by the trace field F . We may enumerate them such that deg(Lj) is
non-increasing with j. We let ω(j) ∈ H0(X,Ω1

X) be a one-form on the generat-

ing Veech surface X that spans Lj . More generally, we write ω
(j)
c for a generator

of Lj in the fiber over c ∈ C. For g = 3, we also label the bundles and their
generators with field embeddings ω = ω(1), ωσ = ω(2) and ωτ = ω(3).

Proposition 4.3. In each of the strata ΩM3(4)hyp, ΩM3(4)odd, ΩM3(3, 1),
ΩM3(2, 1, 1), and ΩM3(2, 2)hyp the second step of the HN-filtration consists of
the first two eigenform bundles, i.e.

L1 ⊕ L2 = V2 ⊂ V3 = f∗ωX/C .

Consequently, L2 is generated for all c ∈ C by a one-form ω
(2)
c with a zero at

D1. This zero is necessarily a double zero in the case ΩM3(4)hyp.

This is based on the following principle.

Lemma 4.4. If V = ⊕gj=1Lj is a direct sum of line bundles, ordered with
non-increasing degrees, and if the successive quotients Vj/Vj−1 of the Harder-
Narasimhan filtration are line bundles, then Vi = ⊕ij=1Lj .

Proof. Since V1 is the unique line subbundle of V of maximal degree, only one of
the projection maps V1 → V → Lj is non-zero, by the non-increasing ordering
necessarily for j = 1. By maximality of the degree, this map is an isomorphism.
We may consequently consider V/V1 and proceed inductively. �

Proof of Proposition 4.3. This follows from Lemma 4.4 and Proposition 4.1 �

Proof of Theorem 1.2. This is a direct consequence of Lemma 4.4 together with
Proposition 4.2. �
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The fixed part in genus three. As a final application of the Harder-
Narasimhan filtration, we discuss the fixed part of the family of Jacobians over
a Teichmüller curve, which is one source of zero Lyapunov exponents of the
Kontsevich-Zorich cocycle.

Let h : Jac(X/C) → C be the family of Jacobian varieties over a Teich-
müller curve. The family h is said to have a fixed part of dimension d, if there
is an abelian variety A of dimension d and an inclusion A × C → Jac(X/C)
of the constant family with fiber A into the family of Jacobians. It was shown
in [Möl11], that the only Teichmüller curve in genus three with a fixed part of
rank two is the family y4 = x(x− 1)(x− t), generated by a square tiled surface
in the stratum ΩM3(1, 1, 1, 1). Studying the fixed part of Teichmüller curves is
motivated from dynamics, since a Teichmüller curve with a Forni-subspace of
rank 2d has a fixed part of dimension d, see [Aul] for definitions and background.

Proposition 4.5. There does not exist a Teichmüller curve C generated by a
genus three Veech surface in a stratum other than ΩM3(1, 1, 1, 1) with a positive-
dimensional fixed part.

Proof. By the preceding remark we may restrict to a one-dimensional fixed part.
The variation of Hodge structures over C decomposes into rank-two summands
R1f∗C = L ⊕ U ⊕M, where L is maximal Higgs, U is the unitary summand
stemming from the fixed part and M is the rest. The (1, 0)-pieces of these
summands form a decomposition of f∗ωX/C into line bundles with deg(M1,0) >

0 = deg(U(1,0)). For all but the stratum ΩM3(2, 2)odd the claim follows from
Lemma 4.4 and the fact that the lowest degree quotient of the filtration in
Proposition 4.1 does not have degree zero, as calculated in [YZ13, Table 1].

In the remaining case, the inequality of degrees in the non-maximal Higgs
part implies that the Harder-Narasimhan filtration has three terms, contradict-
ing Proposition 4.1, which says that the filtration has only two terms. �

5 Tori contained in subvarieties of Gn
m

At two occasions in this paper, for the principal stratum ΩM3(1, 1, 1, 1) and for
the stratum ΩM3(4)odd, we are facing the task of enumerating torus translates
in an algebraic subvariety Y of Gn

m. In this section we describe an algorithm
that we have implemented in both cases to check that all the tori contained in
the subvariety are irrelevant for the finiteness statements we are aiming for.

When we apply this algorithm in §9, we will actually need only to find
torus-translates contained in Y which are parallel to a subtorus of a fixed torus
T ⊂ G9

m of large codimension. This is a useful reduction, since the running
time of the algorithm increases exponentially in n and is only useful in practice
for very small dimensions.

To this end, given a rank r subgroup M ⊂ Qn, determining a subtorus
TM ⊂ Gn

m, let VM ⊂ Gn
m denote the subvariety of a ∈ Gn

m such that aTM ⊂ Y .
We wish to enumerate those codimension-one subspaces N ⊂ M such that the
VN potentially strictly contains VM . Applying this procedure inductively then
produces a list of subspaces N ⊂ M and varieties VN which account for all of
the torus-translates contained in Y .

Consider a r-by-n matrix E whose rows vectors span M . A coefficient vector
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a ∈ Gn
m determines a parametrization fE,a: Gr

m → aTM given by

fE,a(t) = (a1t
E1 , . . . , ast

Es),

where the Ei are the column vectors of E. Suppose first that Y is defined by
the single polynomial h(z) =

∑
bIz

I in the variables z1, . . . , zn with coefficients
in a number field. The vanishing of the composition

h ◦ fE,a(t) =
∑
I

bIa
ItE·I

is then equivalent to the vanishing of the system of rational functions

pJ(a) =
∑
E·I=J

bIa
I (5.1)

obtained by partitioning the coefficients according to the images of the exponent
vectors I ∈ Supp(h) under E, or equivalently according to their images under
the orthogonal projection to M . We take the numerator of each pJ , yielding an
ideal in Q[a1, . . . as]

1.
Now suppose Y is defined by an ideal I = (h1, . . . , hs). Applying this con-

struction to each hi, the collection of resulting polynomials defines an ideal
IM ⊂ Q[a1, . . . , as] which cuts out the desired variety VM . We call IM the
coefficient ideal of I.

Now, for a generic subspace N ⊂M , the partition of each Supp(hi) induced
by orthogonal projection to N will be unchanged, so VN = VM . If v, w ∈
Supp(hi) are identified by projection to N , but not by projection to M , then
N must be the orthogonal complement of pM (v−w) in M . Enumerating all N
arising in this way then yields all N for which VN potentially strictly contains
VM .

Applying this algorithm inductively to the list of subspaces obtained in each
dimension, we obtain a list of subspaces N ⊂ M together with varieties VN ,
which together account for all torus-translates contained in Y .

The complete algorithm builds in this way the possible subspaces N with
1 ≤ rank(N) ≤ r from the difference of the projections of monomials onto any
subspace of larger rank that is already in the list of candidate subspaces. In the
next step it assembles the ideals defining VN , as summarized in Algorithm 1.

6 Finiteness in the minimal strata

The aim of this section is to prove the finiteness result Theorem 1.1 in the cases
when the torsion condition is void (i.e. in the strata ΩM3(4)hyp and ΩM3(4)odd)
or of limited use, as in the hyperelliptic locus of the stratum ΩM3(2, 2)odd where
it is automatically satisfied when both the points are Weierstrass points.

In all three cases we study the degenerate fibers of the universal family
f :X → C over (a cover of) an algebraically primitive Teichmüller curve. We

1Although we are only interested in solutions in Gn
m, it is computationally convenient

to work over the polynomial ring and later discard components contained in the coordinate
hyperplanes
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Data: List of polynomials h1, . . . , hs ∈ Q[z1, . . . , zn], a matrix M ∈ Zr×n

Result: Pairs (N,V ) of matrices N and subvarieties V ⊂ Gn
m

/* Build the set subspaces N that may occur recursively */

Subspaces = {M};
for S ∈ Subspaces do

for i = 1 to s do
ProjectionList ← OrthProjection(Supp(hi), S);
for (j, k) ∈ {1, . . . , |ProjectionList|} do

v ← ProjectionList[j]− ProjectionList[k];
AddTo (Subspaces, OrthComplement (v,S));

end

end

end
/* Check subspaces for the existence of a torus translate */

TorusTranslates = {};
for N ∈ Subspaces do

IN ← 〈〉;
for i = 1 to s do

foreach j ∈ OrthProjection(Supp(hi),N) do
IN = IN + Extract (hi, j) ; /* Extracts pj */

/* Pi,j as in (5.1) */

end

end
if IN 6= 〈1〉 ; /* Discard if IN is the unit ideal */

then
AddTo (TorusTranslates,(N ,V (IN )))

end

end
return TorusTranslates

Algorithm 1: Torus containment
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first make explicit the conditions arising from real multiplication and the Harder-
Narasimhan filtration, which puts us in the situation considered in Theorem 2.6.
We then check that the hypothesis of Theorem 2.6 are met.

The case ΩM3(4)hyp is quickly dealt with and shows all the essential features.
The case ΩM3(4)odd requires a long detour to check the hypothesis (i) and (ii)
of Theorem 2.6. Note for comparison that in [MW15] the odd stratum is of no
more complexity than the hyperelliptic.

The case of the hyperelliptic locus in ΩM3(2, 2)odd is quite different, as the
Harder-Narasimhan filtration has a rank-two piece. The information this yields
seems less useful, and unfortunately our methods fail completely for this locus.
To handle this case, we instead appeal to the techniques of [MW15].

6.1 The stratum ΩM3(4)hyp

Let X∞ be a degenerate fiber of f :X → C. It is necessarily irreducible, since
the generating form ω has a single zero. It is geometric genus zero by real
multiplication. Hence X∞ is a trinodal curve. We let P1 with coordinate z
be the normalization of X∞. We may choose the coordinate z such that the
hyperelliptic involution is z 7→ −z and that the zero section D specializes to z =
0. The three pairs of points on the normalization of the trinodal curve are thus
xi and yi = −xi, i = 1, 2, 3. This normalization still leaves one parameter for
scaling the xi multiplicatively. Due to this choice of z the generating eigenform
specializes to

ω∞ =

3∑
i=1

(
ri

z − xi
− ri
z + xi

)
dz =

Cz4∏3
i=1(z2 − x2

i )
dz. (6.1)

The condition that ω has a four-fold zero amounts to the equations

3∑
i=1

rixi+1xi+2 = 0 (6.2)

3∑
i=1

rixi(x
2
i+1 + x2

i+2) = 0, (6.3)

where indices are to be read mod 3.
Let ωσ be one of the two Galois conjugate eigenforms, the one generating

the eigenform bundle of second largest degree. From Proposition 4.3 we deduce
the following information.

Corollary 6.1. The form ωσ has a double zero along D. In particular

ωσ∞ =

3∑
i=1

(
rσi

z − xi
− rσi
z + xi

)
dz =

C1z
4 + C2z

2∏3
i=1(z2 − x2

i )
dz, (6.4)

which can also be expressed by the condition

3∑
i=1

rσi xi+1xi+2 = 0. (6.5)

32



Note that for the third embedding, denoted by τ , the analogous condition∑3
i=1 r

τ
i xi+1xi+2 = 0 should not hold since f∗ωX/C(−D) has just rank two.

Indeed this relation does not hold for the degenerate fiber of the 7-gon. The
values are given in [BM12, Example 14.4].

We may normalize to r3 = 1 and to x3 = 1.

Corollary 6.2. The points xi scaled such that x3 = 1 lie in the Galois closure
of the trace field F . Moreover, the tuple 1/xi is proportional to the Galois
conjugate of the dual basis (s1, s2, s3) of (r1, r2, r3). In particular, the xi are
real.

Proof. We can rewrite (6.2) and (6.5) as
∑3
i=1 ri/xi = 0 and

∑3
i=1 r

σ
i /xi = 0.

This implies the second statement and the first follows.
Alternatively, we can deduce from (6.2) and (6.5) the equality

(r1 − rσ1 )x2 + (r2 − rσ2 )x1 = 0, (6.6)

i.e. the ratio x1/x2 ∈ F . Plugging this information back into (6.2) implies the
first statement. �

Proposition 6.3. In A2 with coordinates (x1, x2) we define

Y = A2 r {(x1, x2) : x1x2(x1 ± 1)(x2 ± 1)(x1 ± x2) = 0}.

If we define R:Y → G3
m by

R(x1, x2) =

(
x2 − 1

x2 + 1
,

1− x1

1 + x1
,
x1 − x2

x1 + x2

)
.

and `(x1, x2) = (x1, x2, 1), then the boundary points of Teichmüller curves in
the normalization of (6.1) and x3 = 1 are points y = (x1, x2) ∈ Y with [Q(y) :
Q] ≤ 3 which satisfy (2.6) for some b = (b1, b2, b3) ∈ (Z r {0})3.

Proof. By definition of a stable curve no two poles coincide. Moreover on the
degenerate fibers of a Teichmüller curve zeros of the generating one-form are
disjoint from the poles (see e.g. [Möl13]). This implies that the boundary point
has coordinates in Y.

The xi lie in Fσ by Corollary 6.2, and the degree bound follows.
Since yi = −xi the cross-ratios can be simplified to

Rij =

(
xi + xj
xi − xj

)2

. (6.7)

so that R−2 = (R23, R13, R12). Since the xi are real, the root of unity on the
right of (3.2) is ±1. Possibly multiplying the bi by 2, we can take it to be 1.

By the corollary preceding the proposition, (1/x1, 1/x2, 1/x3) is proprotional
to a Galois conjugate of (s1, s2, s3). Let a = (a1, a2, a3) be the cross-ratio
exponents, as defined along with (3.2). Since the ai are integers, (3.3) is restated

as
∑3
i=1 aixi = 0. If we define bi = 2ai, then both conditions in (2.6) hold as a

consequence of (3.2) and (3.3). �
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We next check that Y, R and ` match the hypothesis of (i) and (ii) of
Theorem 2.6. The map R is in fact injective and the closure of its image S =
R(Y ) ⊂ G3

m is defined by the cubic

r1r2r3 + r1 + r2 + r3 ∈ Q[r1, r2, r3].

The following lemma is the first instance of the problem discussed in Sec-
tion 5. In this case we give the complete discussion without computer assistance.

We recall that S r Soa is the union of all positive dimensional cosets that
are contained in S.

Lemma 6.4. The complement S r Soa is the union of the 6 lines obtained by
permuting the coordinates of

{(1,−1)} ×Gm.

Proof. Let (r1, r2, r3) ∈ S be in a positive dimensional coset contained entirely
in S. Then there exist e1, e2, e3 ∈ Z, not all zero, with

r1r2r3t
e1+e2+e3 + r1t

e1 + r2t
e2 + r3t

e3 = 0 (6.8)

for all t ∈ Gm. There cannot be any exponent in this equation which appears
by itself, so without loss of generality (permuting the coordinates if necessary)
e1 + e2 + e3 = e1 and e2 = e3, from which we obtain e2 = e3 = 0. Then (6.8)
implies r1r2r3 + r1 = 0 and r2 + r3 = 0, so r2 = ±1 and r3 = ∓1, leading to the
two lines inside S:

{(t, 1,−1); t ∈ Gm} and {(t,−1, 1); t ∈ Gm} �

The next lemma checks the hypothesis on the image of Cb, needed for The-
orem 2.6 (ii). Recall that Cb ⊂ Y is the curve cut out by the linear equation∑
bi`i = 0. In our case, it this is more explicitly b1x1 + b2x2 + b3 = 0.

Lemma 6.5. Suppose b = (b1, b2, b3) ∈ (C∗)3. Then R(Cb) is not contained in
the translate of a proper algebraic subgroup of G3

m.

Proof. If the contrary holds then there exists (a1, a2, a3) ∈ Z3 r {0} with(
x2 − 1

x2 + 1

)a1 (1− x1

1 + x1

)a2 (x1 − x2

x1 + x2

)a3
, (6.9)

constant on Cb. We evaluate the order of this function at certain points of Cb to
derive a contradiction. Without loss of generality we assume a1 ≥ 0.

Suppose for the moment that a1 > 0. The first factor of (6.9) has a pole
when x2 = −1. Therefore, x2 = −1 must imply x1 = ±1 and we have

b1 − b2 + b3 = 0 or − b1 − b2 + b3 = 0. (6.10)

Now (6.9) vanishes at x2 = 1, so x1 = ±1 as well. As before we find

b1 + b2 + b3 = 0 or − b1 + b2 + b3 = 0. (6.11)

We immediately observe that any pair of linear equations, one coming from
(6.10) and the other from (6.11), is linearly independent. Moreover, a common
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zero of any of these four systems satisfies b1b2b3 = 0. This contradicts our
hypothesis.

We must also treat the case a1 = 0. Then a2 6= 0, since (x1−x2)/(x1 +x2) is
non-constant. This time we consider the points on Cb with x1 = 1 and x1 = −1.
In either case we must have x2 = 1 or x2 = −1. We find the same linear
equations as above, but paired up differently. Again, any solution of any pair
must have a vanishing coordinate. �

Proof of Theorem 1.1, case ΩM3(4)hyp. By Lemma 6.4 the image of any y ∈ Y
lies in Soa. All the hypothesis of Theorem 2.6 are satisfied, so that the height
of any pair (x1, x2) possibly arising from a cusp of an algebraically primitive
Teichmüller curve in this stratum is bounded. From the degree bound in Propo-
sition 6.3 and Northcott’s theorem, we deduce that the number of such pairs is
finite. By [BM12, Proposition 13.10], there are only finitely many algebraically
primitive Teichmüller curves in the stratum ΩM3(4)hyp. �

6.2 The stratum ΩM3(4)odd

Let now X∞ be a degenerate fiber of a family f : X → C over an algebraically
primitive Teichmüller curve generated by a Veech surface (X,ω) in ΩM3(4)odd.
Let P1 with coordinate z be the normalization of X∞. It turns out to be
convenient to normalize the zero to be at z = ∞ (as opposed to the previous
section where we had z = 0), so that the stable form on the limit curve is

ω∞ =

3∑
i=1

(
ri

z − xi
− ri
z − yi

)
dz =

C∏3
i=1(z − xi)(z − yi)

dz. (6.12)

We may suppose that y3 = −x3, leaving still a global scalar multiplication as
degree of freedom and further down we will moreover let x3 = 1, hence y3 = −1.

The surface Y. We parameterize stable forms by points (x1, y1, x2, y2) ∈ A4.
For the form defined by the fraction on the right of (6.12) to be stable, we need

1

(xi − yi)
∏
i 6=j(xi − xj)(xi − yj)

= − 1

(yi − xi)
∏
i 6=j(yi − xj)(yi − yj)

for i = 1, 2, 3. Checking it for all but one i is sufficient by the residue theorem.
This conditions are equivalent to the vanishing of the two polynomials

P1 = (y1 − x2)(y1 − y2)(y2
1 − 1)− (x1 − x2)(x1 − y2)(x2

1 − 1) (6.13)

P2 = (y2 − x1)(y2 − y1)(y2
2 − 1)− (x2 − x1)(x2 − y1)(x2

2 − 1). (6.14)

The stability conditions also contain the hyperelliptic locus xi = −yi dealt
with above and we want to get rid of this locus.2

Lemma 6.6. The polynomials

f1 = x1x2 + y1x2 − x2
2 + x1y2 + y1y2 − y2

2 + 2
f2 = x2

1 + y2
1 − x2

2 − y2
2

}
(6.15)

2Starting here, several lemmas are based heavily on computations made using sage. The
code required in the proof of Lemmas 6.6, 6.8, 6.11, 6.12, 6.13, 6.14, 6.16 can be found in
g3fin ch6.sage.
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generate a prime ideal I of Q[x1, y1, x2, y2]. The set of common zeros of I
is a geometrically irreducible affine variety Y ⊂ A4 of dimension 2 on which
P1 and P2 vanish. Moreover, a point at which P1 and P2 vanish but at which
(x1 − y1)(y1 − y2)(x1 − y2)(x2 − y2)(x1 + y1) does not, lies on Y.

Proof. Assisted by a computer algebra system one verifies that f1 and f2 gen-
erate a prime ideal of Q[x1, y1, x2, y2], i.e. that Y is irreducible over Q. In a
similar manner we check that P1,2 ∈ I and, using the Jacobian criterion, we
find that

(x1, y1, x2, y2) = (1,−1, 1,−1)

is a smooth point of Y. So it lies on precisely one geometric component of Y.
This component is defined over Q as the said point is rational. Therefore, Y is
geometrically irreducible. �

We define

Y = Y r


3∏

i,j=1;i6=j

(xi − xj)(yi − yj)
3∏

i,j=1

(xi − yj) = 0

 . (6.16)

As a consequence of the definition of a stable form, the forms ω∞ normalized
as in (6.12) have coordinates in Y.

Using the Harder-Narasimhan filtration and the function `. Let ωσ

be one of the two Galois conjugate eigenform, generating the eigenform bundle
of second largest degree. From Proposition 4.3 we deduce

ωσ∞ =

3∑
i=1

(
rσi

z − xi
− rσi
z − yi

)
dz =

P3(z)∏3
i=1(z − xi)(z − yi)

dz, (6.17)

where P3(z) is some polynomial of degree (less or equal to) three. This condition
is equivalent to

3∑
i=1

rσi (xi − yi) = 0.

The same argument as above gives that the tuple of (xi − yi)−1
is up to scale

a dual basis to (rτ1 , r
τ
2 , r

τ
3 ). With the normalization x3 = 1 and y3 = −1, this

implies that the set (xi − yi), i = 1, 2, 3, lies in the Galois closure of the trace
field F , in particular is its real.

In this stratum the tuple (b1, b2, b3) is proportional to the tuple of cross-ratio
exponents if and only if

3∑
i=1

bi
1

xi − yi
= 0.

Here we let R = (R1, R2, R3) be the three cross-ratios as defined in (3.1).
For a given boundary point of an algebraically primitive Teichmüller curve we
take c = ord(ζE), the multiplicative order of the root of unity. If a = (a1, a2, a3)
is the tuple of cross-ratio exponents, we let b = (b1, b2, b3) = ca. This discussion
is then summarized in the following statement.
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Proposition 6.7. With `i = 1/(xi−yi), boundary points on algebraically prim-
itive Teichmüller curve in the stratum ΩM3(4)odd correspond, in the normal-
ization of (6.12), to points in y ∈ Y with [Q(y) : Q] ≤ 72 that satisfy (2.6) for
some b = (b1, b2, b3) ∈ (Z r {0})3.

Proof. After the preceding discussion, we only need to justify the field degree
bound. For a given triple of ri ∈ F , with the normalization x3 = 1 and y3 = −1
the numerator of (6.12) gives 4 equations for the unknowns x1, x2, y2, y3 of total
degree 1, 2, 3 and 4 respectively. Period coordinates imply that a stable form
with a 4-fold zero is locally uniquely determined by its residues. Consequently,
the set of solution to this system of equations is finite and each solution is of
degree at worst 24 over F . �

Determining Soa for S = R(Y). We next start checking that Y, R and `
match the hypothesis (i) and (ii) of Theorem 2.6. The map R is in fact two-to-
one on Y [BM12, Corollary 8.4]. With the help of a computer algebra system

we find that the closure of its image S = R(Y) ⊂ G3
m is cut out by the equation
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.

The polynomial h has total degree 14 and 199 non-zero terms. It is symmetric
under permutation of coordinates.

Lemma 6.8. For the vanishing locus S of h, we have

Soa = S r {(t, 1, 1), (1, t, 1), (1, 1, t); t ∈ Gm}.
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Proof. We observe first that S itself is no coset. Indeed, h(1, 1, 1) = 0 and a
computation shows that h is irreducible over Q. But a coset that is irreducible
over the rationals and contains the unit element is an absolutely irreducible
algebraic subgroup of G3

m. If this were true for the zero set of h, then h would
consist of 2 monomials. This is obviously not the case.

Any anomalous subvariety of S must be a 1-dimensional coset contained
completely in S; we recall that anomalous subvarieties were defined on page 12.
It is thus the image of

t 7→ (u1t
e1 , u2t

e2 , u3t
e3)

where u1, u2, u3 ∈ Gm and E = (e1, e2, e3) ∈ Z3 r {0} are fixed.
This is the situation where the algorithm of Section 5 applies. The expo-

nents here are unconstrained, M is the identity matrix. However, since we are
interested in torus translates with ui 6= 0 we may discard immediately subspaces
defined by a matrix M ′ where a part of the partition induced by projecting the
support of h onto M ′ consists of a single element.

Therefore, any λ in Supp(h) must have a friend, that is there has to exist
λ′ ∈ Supp(h) with λ 6= λ′ and

〈λ− λ′, E〉 = 0.

For convenience, we fix λ1 = (6, 6, 2) ∈ Supp(h) and the possible E contained
in the subspaces 〈λ1 − λ′1〉⊥ for λ′1 ∈ Supp(h) r {λ1}.

Tier 1: The list of possible torus translates is reduced to the consideration
of one-dimensional subspaces by the following fact about h that is proven by a
(computer-assisted) check of all possibilities.

For any λ′1 ∈ Supp(h) r {λ1} there exists λ2 ∈ Supp(h) such that

λ1 − λ′1 and λ2 − λ′2

are linearly independent for all λ′2 ∈ Supp(h) r {λ2}. In other words, given a
potential friend λ′1 of λ1, there is some λ2 in the support of h whose potential
friends set-up a system of linear equations

〈λ1 − λ′1, E〉 = 〈λ2 − λ′2, E〉 = 0

that has a unique solution E up-to scalar multiplication.
Any E coming from an anomalous curve in X must be a solution of one of

these systems. In particular, only finitely many E are possible. But we can use
sage to create a list of possibilities for E. In total there are 8796 and we will
not reproduce them here. This is well beyond the 3 possibilities that appear
in the conclusion of this lemma. In the next tier we will reduce the number of
possibilities dramatically.

Tier 2: Given one of the 8796 candidates E from tier 1 we use sage to
check that any element in the support of f has a friend with respect to E. As
f has 199 non-zero terms this seems quite a strong restriction. However, 51 of
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candidates pass this test. They are{
(1, 2, 1) , (4,−1,−1) , (1, 8,−1) , (1,−8, 1) , (1,−1, 8) , (1, 1, 6) ,

(2, 1, 1) , (0, 1, 0) , (8,−1,−1) , (6, 1, 1) , (1,−6, 1) , (1, 0, 0) , (1, 1, 2) ,

(6, 1,−1) , (6,−1,−1) , (1, 1, 4) , (1,−6,−1) , (1,−1, 4) , (1, 2,−1) ,

(1,−8,−1) , (1,−1,−6) , (1,−1,−8) , (1,−1,−4) , (1, 8, 1) , (4,−1, 1) ,

(1,−4,−1) , (1,−1, 2) , (1, 4,−1) , (1, 1,−4) , (1,−2,−1) , (2,−1, 1) ,

(8, 1, 1) , (2,−1,−1) , (8,−1, 1) , (1, 1,−6) , (1, 1,−2) , (1, 6,−1) , (4, 1, 1) ,

(1, 1,−8) , (1, 4, 1) , (1,−1, 6) , (0, 0, 1) , (1, 6, 1) , (2, 1,−1) , (4, 1,−1) ,

(1,−4, 1) , (1,−2, 1) , (6,−1, 1) , (8, 1,−1) , (1, 1, 8) , (1,−1,−2)
}
.

Tier 3: In the final tier we will reduce the 51 candidates to 3 using the
second part of the algorithm of Section 5. A candidate (e1, e2, e3) leads to
a coset contained in the zero set of h only if the following property is true.
The polynomial h(u1t

e1 , u2t
e2 , u3t

e3), where u1, u2, u3 are independents and the
coefficient ring is C[t], vanishes at some complex point G3

m. This is a strong
restriction because each power of t yields a polynomial in complex coefficients
and all of these need to vanish at the same point. In a matter of seconds, sage
eliminates 48 of the 51 candidates above; indeed, the said polynomials yield the
unit ideal in C[u±1

1 , u±1
2 , u±1

3 ].
The 3 remaining candidates are

(1, 0, 0), (0, 1, 0), (0, 0, 1).

Here, sage tells us that we must have

u2 = u3 = 1, u1 = u3 = 1, or u1 = u2 = 1

respectively. Not only are these three curves anomalous but they are even
torsion anomalous.

Conversely, we easily find

h(t, 1, 1) = h(1, t, 1) = h(1, 1, t) = 0

and so the candidates are indeed torsion anomalous curves. �

The curve Cc. We now study the locus cut out by the equation
∑
i bi`i = 0.

Recall that the bi are non-zero. We divide by b3 and let c1 and c2 be new
independent variables that take the role of ci = bi/b3. Chasing denominators
and if c = (c̃1, c̃2) = (b1/b3, b2/b3) we write Cc for the algebraic subset of A4 cut
out in Y by

2c̃1(x2 − y2) + 2c̃2(x1 − y1) + (x1 − y1)(x2 − y2) ∈ Q[x1, y1, x2, y2]. (6.18)

Indeed, it will be useful to consider c1 and c2 as independent variables and let
c̃1 and c̃2 denote their specializations to the coordinates of a given c ∈ Q2. We
set

f = 2c1(x2 − y2) + 2c2(x1 − y1) + (x1 − y1)(x2 − y2) ∈ Q[c1, c2, x1, y1, x2, y2].
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Although Cc is defined by polynomials in rational coefficients it is sometimes
useful to think of it as an algebraic set over C. For any scheme C over Spec Q
we write C ⊗C for its base change to Spec C.

It is not difficult to show that Cc is an algebraic curve. We state this result
in the next lemma, which is proved further down and which justifies the title of
this subsection.

Lemma 6.9. Say c ∈ Q2 has non-zero coordinates. Then Cc 6= ∅. Let C be an
irreducible component of Cc ⊗C.

(i) Say i ∈ {1, 2}. The functions xi± 1, yi± 1, x1− y2, x2− y1, x2−x1, and
y2 − y1 are non-zero elements of the function field of C.

(ii) The component C is a curve.

Much of this section deals with the more intricate question of the irreducibil-
ity of Cc. In fact, we believe that Cc is irreducible for all c ∈ (Q r {0})2. We
are only able to prove a weaker statement which is ultimately sufficient for our
needs.

The irreducibility of Cc is merely an ingredient in the study of multiplicative
relations among the 3 cross-ratio maps

R1 = R[23] =
(x2 − 1)(y2 + 1)

(x2 + 1)(y2 − 1)
,

R2 = R[13] =
(x1 − 1)(y1 + 1)

(x1 + 1)(y1 − 1)
,

R3 = R[12] =
(x2 − x1)(y1 − y2)

(x1 − y2)(x2 − y1)

(6.19)

which are non-zero rational maps on irreducible components of Cc ⊗C by the
previous lemma. The following proposition is the main technical result of this
section. It will be crucial in verifying the hypothesis of Theorem 2.6 in order to
obtain a height bound.

Proposition 6.10. There is a finite subset Σ ⊂ Q2 with the following property.
Suppose c ∈ Q2 has non-zero coordinates and that C is an irreducible component
of Cc ⊗C.

(i) If c 6∈ Σ then R1, R2, R3 are multiplicatively independent on C.

(ii) If c ∈ Σ and if (b1, b2, b3) ∈ Z3 r {0} with Rb11 R
b2
2 R

b3
3 a constant, then

(b1, b2, b3) 6∈ (c̃1, c̃2, 1)Q.

The proofs of both the lemma and the proposition will require some prepa-
ration as well as computational support from sage.

It will prove convenient to introduce

t =
y1 + 1

x1 + 1
. (6.20)

Using this new variable and the residue condition (6.13) we have y1−y2
x1−y2 =
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x2−x1

x2−y1
x2
1−1

y21−1
= x2−x1

x2−y1
x1−1
y1−1 t

−1. In terms of t we have

R1 =
(x2 − 1)(y2 + 1)

(x2 + 1)(y2 − 1)
,

R2 =
x1 − 1

y1 − 1
t,

R3 =

(
x2 − x1

x2 − y1

)2
x1 − 1

y1 − 1
t−1.

(6.21)

For brevity we set B = Q[c±1
1 , c±1

2 , x1, y1, x2, y2]. If c ∈ (Q r {0})2 we
specialize an element g ∈ B to g̃ ∈ Q[x1, y1, x2, y2] by substituting c1, c2 by the
coordinates of c.

Lemma 6.11. Let c ∈ Q2 satisfy

c̃1c̃2(c̃1 + c̃2 + 1)(−c̃1 + c̃2 + 1)(c̃1 − c̃2 + 1)(−c̃1 − c̃2 + 1) 6= 0 (6.22)

and suppose that Cc is non-empty. Then Cc ⊗C is smooth and irreducible. In
particular, Cc is irreducible.

Proof. We may consider A4 as a Zariski open subset of P4 using the open
immersion (x1, y1, x2, y2) 7→ [x1 : y1 : x2 : y2 : 1]. Recall that Y ⊂ A4 is

geometrically irreducible, cf. Lemma 6.6. We let Y denote the Zariski closure
of Y in P4 and consider it as an irreducible projective variety over Spec C.

Homogenizing the polynomial f̃ given in (6.18) yields a hypersurfaceH of P4.
A direct calculation by hand and using the fact that c has non-zero coordinates
shows that f is absolutely irreducible. Thus H is geometrically irreducible.

Assisted by computer algebra one can show that (6.22) is enough to en-
sure that Cc ⊗ C is smooth. This is done by first homogenizing the defining
equations (6.15) and f and treating c1 and c2 as independent varieties. The
Jacobian criterion in connection with elimination restricts the possibilities for c
in presence of a non-smooth point. For c satisfying (6.22) the only restriction
is the vanishing to a certain degree 12 polynomial q in integer coefficients. The
homogenization of this polynomial is

c12
1 − 3c10

1 c
2
2 + 6c81c

4
2 − 7c61c

6
2 + 6c41c

8
2 − 3c21c

10
2 + c12

2 − 3c10
1 c

2
3 − 51c81c

2
2c

2
3 (6.23)

+ 78c61c
4
2c

2
3 + 78c41c

6
2c

2
3 − 51c21c

8
2c

2
3 − 3c10

2 c
2
3 + 6c81c

4
3 + 78c61c

2
2c

4
3 + 414c41c

4
2c

4
3

+ 78c21c
6
2c

4
3 + 6c82c

4
3 − 7c61c

6
3 + 78c41c

2
2c

6
3 + 78c21c

4
2c

6
3 − 7c62c

6
3 + 6c41c

8
3 − 51c21c

2
2c

8
3

+ 6c42c
8
3 − 3c21c

10
3 − 3c22c

10
3 + c12

3 .

If q were to have a rational zero, then its homogenization would have a non-
trivial integral zero with coprime coefficients. Even a human can check that
(6.23) has no non-trivial zeros modulo 2. Therefore, q does not vanish at the
given c.3

3Over Q(
√
−3) the polynomial (6.23) factors into

(c61−3c21c
4
2+c62−3c41c

2
3−21c21c

2
2c

2
3−3c22c

4
3+c63)+3(c2−c3)(c2+c3)(−c1+c2)(c1−c3)(c1+c3)(c1+c2)ω

times its conjugate where ω = (
√
−3 + 1)/2. Using this presentation it is not hard to see that

(6.23) has only finitely many zeros in P3(R).
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We have actually verified that all points of Y ∩ H are smooth for c as in

the hypothesis. Fulton and Hansen’s Corollary 1 [FH79] implies that Y ∩ H is
connected. A variety that is connected and smooth must be irreducible. Since

Cc ⊗C is Zariski open in Y ∩ H it is either empty or irreducible. In the latter
case Cc is irreducible. �

Let us define
J = IB + fB = (f1, f2, f)

which is an ideal of B.
We observe that the ring automorphisms

(c1, c2, x1, y1, x2, y2) 7→ (c2, c1, x2, y2, x1, y1) (6.24)

and
(c1, c2, x1, y1, x2, y2) 7→ (−c1,−c2, y1, x1, y2, x2) (6.25)

map the ideal J = (f1, f2, f) ⊂ B = Q[c±1
1 , c±1

2 , x1, y1, x2, y2] to itself. Indeed,
(6.24) maps f1 to f1− f2, f2 to −f2, and fixes f . Moreover, (6.25) leaves f1, f2,
and f invariant.

The following lemmas subsumes elimination-theoretic properties of J that
are necessary for our application. The elements can be found by computer
algebra assisted elimination of variables. The computer assisted computations
are usually done in the polynomial ring Q[c1, c2, x1, y1, x2, y2], where c1,2 are
not units. For example, we find that B/J is an integral domain since J is a
prime ideal.

Lemma 6.12. For i, j ∈ {1, 2} there exist fxiyj ∈ J∩Q[c1, c2, xi, yj ] that satisfy

fxiyi = x6
i + O(x5

i ), fxiyi = y6
i + O(y5

i ),
fxiyi(xi,±1) = x6

i + O(x5
i ), fxiyi(±1, yi) = y6

i + O(y5
i ),

fx1y2(x1, x1) = x8
1 + O(x7

1), fx2y1(x2, x2) = x8
2 + O(x7

2)

and

fx2y1(1, 1) = −64c1c2(−c1 + c2 + 1), (6.26)

fx2y2(1, 1) = 64c22. (6.27)

Proof. We verify that fx1y1 exists and satisfies the first two equalities. The
symmetry (6.24) implies the existence of fx2y2 and the first two equalities.

The same reasoning applies to the third and forth equalities. Moreover, the
sixth equality follows from the fifth one by the same symmetry as before.

We verify final two inequalities directly. �

Lemma 6.13. There exist polynomials fx1x2
∈ J ∩Q[c1, c2, x1, x2] and fy1y2 ∈

J ∩Q[c1, c2, y1, y2] that satisfy

fx1x2
= −2(x2 + c2)2x6

1 +O(x5
1),

fx1x2
= −2(x1 + c1)2x6

2 +O(x5
2),

fy1y2 = −2(y2 − c2)2y6
1 +O(y5

1),

fy1y2 = −2(y1 − c1)2y6
2 +O(y5

2),

fx1x2(x1, x1) = x8
1 +O(x7

1),

fy1y2(y1, y1) = y8
1 +O(y7

1),

fx1x2
(1, 1) = 64c1c2(c1 + c2 + 1). (6.28)
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Proof. As in the previous lemma we use symmetry, here (6.25), to reduce the
statements on fy1y2 to the corresponding statements on fx1x2

. We then check
the claims on fx1x2 directly. �

We recall the variable t introduced near (6.20). Using the ideal

K = JB[t] + ((x1 + 1)t− (y1 + 1))B[t] ⊂ B[t]

we will eliminate all variables but c1, c2, x2, and t. We observe that B[t]/K
equals (B/J)[(y1 + 1)/(x1 + 1)] inside the field of fractions of B/J . Using com-
puter algebra we can verify that c1 is a member of the ideal in Q[c1, c2, x1, y1, x2, y2]
generated by f1, f2, f, x1 + 1, y1 + 1. So we can write 1 as a B-linear combina-
tion of these generators. After dividing by x1 + 1 we see that B[t]/K equals the
localization of B/J at x1 + 1.

Note that the scheme Cc, whose irreducible components we want to show are
curves, is just the specialization of B[t]/K to the corresponding value of c.

If g ∈ B[t] and c ∈ (Q r {0})2 then as usual g̃ denotes the specialization of
g in Q[x1, y1, x2, y2, t].

Lemma 6.14. The following hold true.

(i) The intersection K ∩Q[c±1
1 , c±1

2 , x2, t] is generated as an ideal by fx2t ∈
Q[c1, c2, x2, t] which is an irreducible element of Q[c1, c2, x2, t] with degt fx2t =
6,

fx2t(1, t) = 32c31t
2
(
(−c1 + c2 + 1)t2 − (c1 + c2 + 1)

)
, and

fx2t(−1, t) = 32c1(t2 − (c1 + c2 + 1)t+ c2)·
· (c2t2 + (c1 − c2 − 1)t+ 1)((c1 + c2 − 1)t2 + c1 − c2 + 1).

(6.29)

(ii) Say ϕ : Q[c1, c2, x2, t]→ Q[c1, x2, t] is the ring homomorphism that maps
c2 to ±c1 + 1 and c1, x2, t to themselves. Then ϕ(fx2t) is absolutely irre-
ducible as an element of C(c1)[x2, t].

(iii) If c ∈ Q2 has non-zero coordinates, then Cc is non-empty. If we assume
further that Cc is irreducible, the projection of Cc to A2 by taking the coor-

dinates x2 and t is Zariski dense in the curve cut out by f̃x2t. Moreover,

f̃x2t is irreducible in Q[x2, t].

Proof. The existence of fx2t and an explicit presentation follows from computer
algebra assisted elimination. We will not reproduce this polynomial here as
it has 453 non-zero terms and total degree 12. In this way we also check the
properties (6.29) and that fx2t is irreducible as an element of Q[c1, c2, x2, t].
This settles part (i) and we move to part (ii).

Using computer algebra it is possible to check that a given polynomial is
irreducible over a given number field. We find that ϕ(fx2t) is irreducible as an
element of Q(

√
3)[c1, x2, t]. It is irreducible as an element of Q(

√
3, c1)[x2, t] as

it depends on t. To deduce geometric irreducibility, we apply the following trick.
Let g ∈ Q(

√
3, c1)[x2, t, u] denote the homogenization of ϕ(fx2t) with respect

to x2 and t and where u is the new projective variable. Then g is irreducible
in Q(

√
3, c1)[c2, t, u]. Next we claim that it is irreducible in L[c2, t, u] where L

is an algebraic closure of Q(c1). Indeed, we remark that g(1/
√

3, 1, 1) = 0 and
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∂
∂x2

g(1/
√

3, 1, 1) 6= 0. In other words, [1/
√

3 : 1 : 1] is contained in precisely

one geometric component of the vanishing locus in P2 of g. If h were reducible
over L, then some element of the Galois group of L/Q(

√
3, c1) would map said

component to some other component. But this is impossible as the Galois group
leaves [1/

√
3 : 1 : 1] invariant. So g is irreducible in L[x2, t, u]. It follows that

ϕ(fx2t) is irreducible in L[x2, t]. So this polynomial must be irreducible over
any base field containing Q(

√
3, c1) as L is algebraically closed. This yields part

(ii) and we now prove part (iii).
The natural ring homomorphism Q[c±1

1 , c±1
2 , x2, t]/(fx2t)→ B[t]/K is injec-

tive by (i). Thus so is

Q[c±1
1 , c±1

2 , x2, t, (t
2 + 1)−1]/(fx2t)→ B[t, (t2 + 1)−1]/K (6.30)

as localizing is an exact functor. Therefore, the corresponding morphism of
affine schemes π : Z → W is dominant.

Using computer algebra we may verify that the classes of (t2 + 1)x1, (t
2 +

1)y1, and y2 in the quotient ring B[t]/K are integral over Q[c1, c2, x2, t]. In-
deed, to check this for (t2 + 1)x1 we first produce a list of generators of the
ideal (f1, f2, f, (x1 + 1)t − (y1 + 1)) ⊂ Q[c1, c2, x1, y1, x2, y2, t] intersected with
Q[c1, c2, x1, x2, t]. For each member of this list we extract the leading term as a
polynomial in the variable x1. Next we show that these leading terms generate
an ideal containing t2 + 1. A similar procedure yields our claims for (t2 + 1)y1

and y2.
Thus any element on right of (6.30) is integral over the ring on the left. In

other words, π is a finite morphism. Finite morphisms are closed and since π is
dominant we conclude that π is surjective.

After doing a base change we may view π as a family of maps πc : Zc →Wc

parameterized by c ∈ (Q r {0})2. Surjectivity is stable under base change, so
each πc is surjective. The targetWc of the map πc is the affine scheme attached

to Q[x2, t, (t
2 + 1)−1]/(f̃x2t). It is non-empty since f̃x2t ∈ Q[x2, t, (t

2 + 1)−1] is
not a unit; indeed, taking fx2t(±1, t) from (i) into account we find that x2 must

appear in f̃x2t.
Now Zc is homeomorphic to an open subspace of Cc, obtained by specializa-

tion to c of a localization at 1/(x1 + 1) and t2 + 1. Surjectivity of πc : Zc →Wc

implies Zc 6= ∅. We conclude that Cc 6= ∅, so Cc is irreducible by hypothe-
sis and therefore Zc is irreducible too. Thus Wc, being the continuous image
of Zc, is also irreducible. This is equivalent to the fact that the nilradical of

Q[x2, t, (t
2 + 1)−1]/(f̃x2t) is a prime ideal. As Q[x2, t, (t

2 + 1)−1] is a facto-

rial domain we conclude that f̃x2t is the power of an irreducible element of
Q[x2, t, (t

2 + 1)−1].

Next we show that up-to association, f̃x2t has at most one prime divisor in
Q[x2, t]. Otherwise it would be divisible by t2 + 1. Then the right-hand sides
of both equations in (6.29) would be divisible by t2 + 1 leaving us with the
contradictory

−c̃1 + c̃2 + 1 = −(c̃1 + c̃2 + 1) and c̃1 + c̃2 − 1 = c̃1 − c̃2 + 1.

So f̃x2t is the e-th power of an element in Q[x2, t]. We must now prove that

e = 1. By specialization we see that f̃x2t(±1, t) are e-th powers in Q[t]. If e > 1
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then the first equation in the conclusion of part (i) implies (−c̃1 + c̃2 + 1)(c̃1 +
c̃2 + 1) = 0. If c̃1 = c̃2 + 1, then the second one simplifies to

64c̃1(t2 − 2c̃1t+ c̃1 − 1)((c̃1 − 1)t2 + 1)2

by (6.29). The only rational value c̃1 for which the displayed expression is an
e-th power with e > 1 is 0, which we excluded. If c̃1 = −c̃2− 1, then the second
equation in (6.29) simplifies to

64c̃1(−t2 + c̃1 + 1)2((c̃1 + 1)t2 − 2c̃1t− 1).

By a similar argument as before and using c̃1 6= 0, this yields e = 1, as desired.
�

Let C be an irreducible component of Cc ⊗C. This is an irreducible variety
over Spec C. By abuse of notation x1,2 and y1,2 as elements of C(C), the function
field of C.

Lemma 6.15. Suppose c ∈ Q2 has non-zero coordinates and let C be an irre-
ducible component of Cc ⊗C.

(i) The functions x1, y1, x2 and y2 are non-constant when considered as ele-
ments of C(C).

(ii) Let v be a valuation of C(C) that is constant on C. Then xi is regular at
v if and only if yi is regular at v.

Proof. Since C is a component of the intersection of a surface with a hypersurface
we have dim C ≥ 1. So at least one among x1, y1, x2, and y2 is non-constant, as
these elements generate the function field of C. By the first equality in Lemma

6.12 we see that f̃xiyi is non-zero. So xi is constant if and only if yi is constant.
Therefore, x1 or x2 is non-constant

If we are in the first case and if x2 or y2 are constant, then x2 and y2 are
constant. So x2 = −c̃2 by the first equality and y2 = c̃2 by the third equality
of Lemma 6.13. So x2 − y2 = −2c̃2. Now f̃(x1, y1, x2, y2) = 0 as an element
of C(C) and (6.18) implies c̃1c̃2 = 0, a contradiction. By using the second and
fourth inequality of Lemma 6.13 we arrive at a similar contradiction if x2 is
non-constant and x1 is constant.

Thus all 4 functions are non-constant and part (i) follows.
Part (ii) follows from the first two equalities of Lemma 6.12. Indeed, xi is

integral over Q[yi] and vice versa. �

Proof of Lemma 6.9. Lemma 6.14(iii) implies that Cc is non-empty. By Lemma
6.15(i) the coordinates x1, y1, x2, y2 are non-constant on C. We have xi ± 1 6= 0
by the fourth equality of Lemma 6.12 and yi± 1 6= 0 by the third equality. The
statements x1− y2 6= 0 and x2− y1 6= 0 are a consequence of the fifth and sixth
equalities. Finally, x2 − x1 6= 0 and y2 − y1 6= 0 by the fifth and sixth equalities
of Lemma 6.13. We conclude part (i).

We now compute the dimension of C. By the first equality in Lemma 6.12

we see f̃xiyi 6= 0. So xi, yi are algebraically dependent over C. Now x1 and
x2 are also algebraically dependent due to the first equality in Lemma 6.13.
Hence x1, y1, x2, y2 are pairwise algebraically dependent. Therefore, C(C)/C
has transcendence degree 1 and thus C is a curve. �
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The coset condition. We write deg f for the degree of an element f 6= 0 of
the function field of an irreducible component of Cc ⊗C. We recall some facts,
to be used further down, which we call basic degree properties. If g lies in the
same function field, then it is well-known that

deg (f + g) ≤ deg f + deg g and deg fg ≤ deg f + deg g

assuming the relevant quantities are well-defined. If n ∈ Z, then

deg fn = |n|deg f. (6.31)

Finally,
deg f = 0 or deg f ≥ 1

and the first case happens if and only if f is constant.
In the proof of the next lemma we use degZ to denote the degree of the

Zariski closure of the affine variety Z in Pn ⊃ An.

Lemma 6.16. Say c ∈ Q2 has non-zero coordinates and let C be an irreducible
component of Cc ⊗C. We consider R1, R2, and R3 presented in (6.19) as non-
zero elements of the function field C(C).

(i) We have degR2 ≤ 32 and degR3 ≤ 64.

(ii) Say ±c̃1 − c̃2 + 1 = 0 with |c̃1|≥ 1/2 and suppose there is a multiple

(b1, b2, b3) ∈ Z3 r {0} of (c̃1, c̃2, 1) with Rb11 R
b2
2 R

b3
3 a constant. Then f̃x2t

is irreducible in Q[x2, t].

Proof. We recall that R is two-to-one on Y. So at least one among R1, R2, R3 is
non-constant. The quadratic polynomials f1 and f2 from (6.15) are irreducible.
Their set of common zeros is Y by Lemma 6.6. By Bézout’s Theorem we find
degY ≤ 4. The curve C is then an irreducible component of the intersection
of Y with a hypersurface of degree 2. Thus deg C ≤ 8. Hence each coordinate
function x1, y1, x2, y2 on C has degree at most 8.

We apply the basic degree properties and (6.19) to bound degR2 ≤ 32 and
degR3 ≤ 64. This yields part (i).

To prove (ii) let (b1, b2, b3) ∈ Z3 be a non-zero multiple of (c̃1, c̃2, 1) with

Rb11 R
b2
2 R

b3
3 a constant. (6.32)

We observe that b1b2b3 6= 0. Let Q > 1 be an integer to be specified later on. By
Lemma 2.8 with n = 1 and θ = 1/c̃1 there are integers p and q with 1 ≤ q < Q
and ∣∣∣∣q 1

c̃1
− p
∣∣∣∣ ≤ 1

Q
. (6.33)

Without loss of generality, p and q are coprime. The fact that Rb11 R
b2
2 R

b3
3 is

constant implies

|b1|deg (Rq1R
±q+p
2 Rp3) = deg (R

b1(±q+p)−b2q
2 Rb1p−b3q3 ).

We use basic degree properties and the bounds from (i) to estimate

deg (Rq1R
±q+p
2 Rp3) ≤ 32

∣∣∣∣±q + p− b2
b1
q

∣∣∣∣+ 64

∣∣∣∣p− b3
b1
q

∣∣∣∣ = 96

∣∣∣∣q 1

c̃1
− p
∣∣∣∣ ≤ 96

Q
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since c̃1 = b1/b3 and ±b1 − b2 + b3 = 0.
We fix Q = 97, then

Rq1R
±q+p
2 Rp3 must be a constant. (6.34)

We recall |c̃1|≥ 1/2 and use (6.33) again to bound |p|≤ 2q + 1/Q < 2q + 1.
Hence |p|≤ 2q.

We know from Lemma 6.8 that there are exactly 3 cosets of dimension 1
in the cross-ratio domain S. As b1b2b3 6= 0 there is up-to scalars at most
one multiplicative relation among the Ri. So (6.34) implies that the vectors
(c̃1, c̃2, 1) and (q,±q + p, p) are linearly dependent. In particular, p 6= 0 and
p 6= ∓q.

Using sage we run over all coprime integers p, q with 1 ≤ q ≤ Q − 1 = 96,
1 ≤ |p|≤ 2q, and p 6= ∓q to verify that fx2t is irreducible as an element of

Q[x2, t] when specializing c to (q/p, 1 ± q/p) As our f̃x2t is among these we
conclude part (ii). �

Lemma 6.17. Let c ∈ Q2 have non-zero coefficients with (c̃1+c̃2+1)(−c̃1+c̃2+

1) 6= 0 and suppose that f̃x2t is irreducible in Q[x2, t]. Let C be an irreducible
component of Cc ⊗ C and (b1, b2, b3) ∈ Z3 with Rb11 R

b3
2 R

b3
3 a constant in the

function field of C. If |b2|≤ |b1| then b1 = b2 = b3 = 0.

Proof. We will repeatedly use Lemma 6.9 and write K = C(C) for the function

field of C. First, let us fix an irreducible factor p ∈ C[x2, t] of f̃x2t that vanishes

when taken as a function on C. As f̃x2t has rational coefficients we may suppose
that the coefficients of p are in a finite extension of Q. Let us suppose that
(b1, b2, b3) ∈ Z3 is as in the hypothesis.

We consider F , the function field of the plane curve defined by the vanishing
locus of p, as a subfield of K containing x2 and t. So K/F is a finite extension
of function fields.

By (6.29) of Lemma 6.14 and the hypothesis on c we see that f̃x2t(1, t) has

a non-zero root. As f̃x2t is a product of conjugates of p over Q up-to a factor
in Q∗ we conclude that p(1, t) also has a non-zero root t0 ∈ C. So there is a
valuation v of F , constant on C, that corresponds to the point (1, t0) on the
vanishing locus of f . In other words, v(x2 − 1) > 0 and v(t) = 0. We extend v
to K ⊃ F and remark

b1v(R1) + b2v(R2) + b3v(R3) = 0 (6.35)

We also have v(x2) = v(x2 + 1) = 0 by the ultrametric triangle inequality.
Moreover, y2 is regular at v by Lemma 6.15(ii). By (6.27) and c̃2 6= 0 we must
have v(y2 − 1) = 0. Using these facts together with (6.19) yields

v(R1) = v(x2−1) +v(y2 + 1)−v(x2 + 1)−v(y2−1) = v(x2−1) +v(y2 + 1) > 0.

We proceed to show that R2 and R3 have valuation 0. This will imply b1 = 0
and then b2 = 0, since |b2|≤ |b1|.

If v(x1) < 0 or v(y1) < 0 then both are negative according to Lemma 6.15(ii).
In this case v(R2) = v(R3) = 0 is an immediate consequence of the ultrametric
triangle inequality and (6.19). So we may assume that x1 and y1 are regular at
v.
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Since x2 specializes to 1 at v we may use (6.26) and (6.28) to deduce v(y1−
1) = 0 and v(x1 − 1) = 0, respectively. The expression for R2 in (6.21) yields

v(R2) = v(t). (6.36)

So v(R2) = 0 by the construction of v.
Next we use R3 as given in (6.21). As x2 specializes to 1 but x1 and y1 do

not, we have v((x2 − x1)/(x2 − y1)) = 0. Therefore,

v(R3) = v(t−1) (6.37)

and so v(R3) = 0.
We have established b1 = b2 = 0. To conclude that b3 also vanishes we

proceed similarly. By (6.29) we find f̃x2t(1, 0) = 0 and thus p(1, 0) = 0. We
again fix a valuation w of F with w(x2 − 1) > 0. But this time we impose
w(t) > 0.

As above we first conclude that y2 is regular with respect to w.
But what if w(x1) < 0 or w(y1) < 0? The expression f2 from (6.15) is

identically 0 on C, so w(x2
1 + y2

1) = w(x2
2 + y2

2) ≥ 0. The ultrametric triangle
inequality implies w(x1) = w(y1) < 0. We recall (6.20) to find w(t) = w(y1 +
1) − w(x1 + 1) = 0 and this contradicts our choice of t. Hence w(x1) ≥ 0 and
w(y1) ≥ 0.

To complete the proof we use again (6.26) and (6.28) and conclude w(y1 −
1) = w(x1 − 1) = 0. As above we have w(R3) = w(t−1) 6= 0. So b3 = 0 because
(6.35) holds with v replaced by w. �

Proof of Proposition 6.10. Suppose (b1, b2, b3) ∈ Z3 such that Rb11 R
b2
2 R

b3
3 is con-

stant on an irreducible component C of Cc ⊗C.
Swapping c̃1 with c̃2 corresponds to swapping (x1, y1) with (x2, y2) by (6.24).

This has the effect of swapping R1 with R2 and thus swapping b1 with b2. So
without loss of generality we may suppose |b2|≤ |b1|.

Multiplying c by −1 corresponds to swapping (x1, x2) with (y1, y2) by (6.25).
This induces the transformation (R1, R2, R3) 7→ (R−1

1 , R−1
2 , R3) and replaces

(b1, b2, b3) by (−b1,−b2, b3). We also observe that

(c1 + c2 + 1)(−c1 + c2 + 1)− (c1 − c2 + 1)(−c1 − c2 + 1) = 4c2.

So
(c̃1 + c̃2 + 1)(−c̃1 + c̃2 + 1) 6= 0 (6.38)

or (c̃1 − c̃2 + 1)(−c̃1 − c̃2 + 1) 6= 0. Hence after possibly replacing c by −c we
may suppose that (6.38) holds.

If we suppose that f̃x2t is irreducible in Q[x2, t], then Lemma 6.17 applies
and we conclude b1 = b2 = b3 = 0, as is desired in (i).

So say f̃x2t is not irreducible in Q[x2, t]. Then ±c̃1 − c̃2 + 1 = 0 by Lemmas

6.11 and 6.14(iii). Now f̃x2t equals the specialization ϕ̃(fx2t) with ϕ as in
Lemma 6.14(ii). But this lemma implies that ϕ(fx2t) is absolutely irreducible
when considered as a polynomial in x2 and t and coefficients in C(c1).

We can thus apply a variant of the Bertini-Noether Theorem, cf. Proposition
VIII.7 [Lan62]. It states that ϕ(fx2t) remains irreducible in C[x2, t] for all
but at most finitely many complex specializations of c1. Therefore, our c̃1 is
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contained in a finite set Σ of exceptions which is accounted for by part (ii) of
the proposition’s conclusion. The reference in Lang’s book provides an effective
way to determine this exceptional set provided one has access to an effective
version of the Nullstellensatz of which there are many variants.

Let us suppose, as in (ii), that c is among such an exception and that
(b1, b2, b3) ∈ Z3 r {0} is a multiple of (c̃1, c̃2, 1). Then |c̃2|≤ |c̃1| since |b2|≤ |b1|
and so c̃2 = ±c̃1 + 1 implies |c̃1|≥ 1/2. The conclusion of Lemma 6.16(ii) con-

tradicts the fact that f̃x2t is not irreducible. Therefore, (c̃1, c̃2, 1) and (b1, b2, b3)
are linearly independent. This completes the proof. �

Proof of Theorem 1.1, case ΩM3(4)odd. By Lemma 6.8 the image of Y lies in
Soa, hence condition (i) of Theorem 2.6 is met. By Proposition 6.10 either
condition (ii) of Theorem 2.6 is met (for c 6∈ Σ) or we are led to one of finitely
many curves coming from the c in Σ. In this case, let (c1, c2, c3) ∈ Z3 r {0} be
a primitive multiple of (c̃1, c̃2, 1); it is not a multiple of a hypothetical vector
(b1, b2, b3) as in Proposition 6.10(ii). Now R1(y)c1R2(y)c2R3(y)c3 is a root of
unity and this relation is not constant on the whole curve. So R(y) has bounded
height, use for example Theorem 2.3. In any case, together with the degree
bound in Proposition 6.7, Northcott’s theorem shows that the number of points
that could appear as cusps of an algebraically primitive Teichmüller curve in
the stratum ΩM3(4)odd is finite. By [BM12, Proposition 13.10] there are only
finitely many Teichmüller curves in the stratum ΩM3(4)hyp. �

6.3 The hyperelliptic locus in ΩM3(2, 2)odd

In this section we rely on the methods of [MW15].

Proof of Theorem 1.1. Suppose there was an infinite sequence of algebraically
primitive Teichmüller curves in this locus. We claim that there is no linear
manifold M strictly contained in the hyperelliptic locus in ΩM3(2, 2)odd and
containing an algebraically primitive Teichmüller curve. This is the analog of
Theorem 1.5 in [MW15].

In order to prove the claim we rely on [Wri14, Theorem 1.5]. Since in this
stratum there are no relative periods, the theorem reads dim(M)·degQ(k(M)) ≤
6, where k(M) is the affine field of definition. Since M properly contains a Teich-
müller curve, dim(M) > 2. Since k(M) is contained in F , the only possibility
is k(M) = Q. This can only happen if M equal the hyperelliptic locus in
ΩM3(2, 2)odd by the argument given in [Wri14, Corollary 8.1]. This contradic-
tion completes the proof.

Next we claim that in this locus there exists a square-tiled surface, whose
monodromy representation on the complement of 〈ω, ω〉 is Zariski-dense in the
4-dimensional symplectic group. This is the analog of Theorem 1.3 in [MW15],
which does not directly apply, since we are in a codimension one subvariety of
a stratum. Given this claim, we can apply Theorem 1.2 and Theorem 1.4 in
loc. cit to conclude.

There are several methods to prove Zariski-density. This is shown using Lie
algebra calculations in [MW15]. Here, alternatively, we invoke a criterion of
Prasad and Rapinchuk ([PR14, Theorem 9.10]): If the representation contains
two matrices M1 and M2 that do not commute, with M2 of infinite order and
the Galois group of the characteristic polynomial of M1 is as large as possible
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Figure 1: A square-tiled surface in the hyperelliptic locus of ΩM3(2, 2)odd

for a symplectic matrix, i.e. here the dihedral group with 8 elements, then the
representation is Zariski dense or a product of SL2(C)×SL2(C). Consequently,
if we give three pairwise non-commuting elements of infinite order, one having
the required Galois group and such that the common 1-eigenspaces of their
second exterior power representation is just one-dimensional (generated by the
symplectic form), then we have shown Zariski-density in Sp4(C).

We use the square-tiled surface given in Figure 1 with side gluings horizon-
tally by the permutation (1)(2)(3456)(7) and vertically by (123)(4)(57)(6). The
representation of the Veech group elements ( 1 4

0 1 ) resp. ( 1 0
6 1 ) resp.

(
13 −6
24 −11

)
on

the complement of 〈ω, ω〉 in H1(X,Q) is given in the basis

{4a1 − a2,−a2 + 4a3,−b1 + b2,−2b2 + b3}

by

A =

(
1 0 −1 0
0 1 0 −1
0 0 1 0
0 0 0 1

)
resp. B =

(
1 0 0 0
0 1 0 0
−9 3 1 0
−2 6 0 1

)
resp. C =

(
11/2 −3/2 3/2 0
−3/2 3/2 −1/2 0
−15 5 −4 0
−6 2 −2 1

)
.

Let M1 = AB. Its characteristic polynomial is x4 − 25x3 + 144x2 − 25x + 1
and has the required Galois group. With M2 = B and M3 = C the remaining
conditions are easily checked. �

7 Torsion and moduli

In this and the subsequent section we prove the pantsless-finiteness Theorem 1.4.
We give an outline of the strategy in Section 8. Here we focus on the modulus
bound in Theorem 7.2 below. To motivate this, recall the following theorem
from [Möl06a] gives strong constraints on the possible algebraically primitive
Veech surfaces with multiple zeros. Recall that the Abel-Jacobi map is a ho-
momorphism Div0(X) → Jac(X). A torsion divisor on X is one whose image
under the Abel-Jacobi map is a torsion point of Jac(X).

Theorem 7.1 ([Möl06a]). If (X,ω) is an algebraically primitive Veech surface
with zeros p and q, then p− q is a torsion divisor.
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We say that (X,ω) has torsion dividing N , if for any pair of zeros p and q
of ω, the order of p− q divides N .

In this section, we show that this torsion condition gives strong control over
the moduli of the cylinders of (X,ω) in any periodic direction. More precisely,
consider a periodic direction of (X,ω), and let Γ be its dual graph. The blocks
of Γ are the maximal subgraphs of Γ which cannot be disconnected by removing
a single vertex. As the edges of Γ correspond to cylinders in our direction,
this gives a partition of this set of cylinders, which we will also call blocks of
cylinders.

Theorem 7.2. Let (X,ω) be an algebraically primitive Veech surface, with tor-
sion dividing N . Then for any block of cylinders C1, . . . , Cn of some periodic
direction of (X,ω), we have the height bound

h[mod(C1) : . . . : mod(Cn)] ≤ (n− 1) logN + log(n− 1)! .

In particular, there are only finitely many choices up to scale for the tuple of
moduli in any block of cylinders.

Remark. Note that if ω has only one zero, the torsion condition is trivial.
Likewise, the conclusion of Theorem 7.2 is trivial, as in this case the dual graph
has only one vertex, so each block consists of a single cylinder.

Notation and definitions. We establish some basic notation and definitions
which we will use throughout this section.

Given a hyperbolic Riemann surface X, we write ρX for its Poincaré metric,
the unique conformal metric of constant curvature −1. We write `X(γ) for the
length of a closed curve γ, and `X([γ]) for the length of the shortest curve in
the homotopy class [γ].

Recall that a Riemann surface A is an annulus if π1(A) ∼= Z. Every hy-
perbolic annulus is conformally equivalent to a unique (up to scale) round an-
nulus, a planar domain bounded by concentric circles. The modulus of A is
mod(A) = 1

2π log(R), where R > 1 is determined by A ∼= {z : 1 < |z|< R}. If
A has a flat, conformal metric with geodesic boundary, then mod(A) = h/w,
where h and w are its height and width respectively.

Suppose γ ⊂ X is a simple closed geodesic, and let X̃ → X be the corre-
sponding annular cover. The hyperbolic length of γ is related to the modulus
of X̃ by

`X(γ) =
π

mod(X̃)
. (7.1)

We recall the notion of a flat family of stable curves (in the analytic cate-
gory). A family of stable curves over a Riemann surface C is a two-dimensional
analytic space X together with a holomorphic function f :X → C whose fibers
are stable curves, that is, connected one-dimensional analytic spaces whose only
singularities are nodes, and with each component of the complement of the nodes
a hyperbolic Riemann surface. We require the fibers to be finite type Riemann
surfaces, although this hypothesis is not always necessary (for example, in The-
orem 7.3 below).

A model of a family of nonsingular curves degenerating to a node is given
by the family πk:Vk → ∆, where

Vk = {(x, y, t) ∈ ∆3 : xy = tk},
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and πk(x, y, t) = t. Roughly speaking, the family f :X → C is flat if near every
singularity of a fiber of f , there is a change of coordinates where the family is
πk:Vk → ∆. We refer to [HK14] for a more precise definition.

Given a family of stable curves f :X → C, for t ∈ C, we will write Xt for the
fiber f−1(t). A subscript t will denote the restriction of various objects to Xt,
for example if ω is a section of the relative dualizing sheaf ωX/C , then ωt is the
restriction to Xt. Recall that a holomorphic section of ωX/C is allowed to have
simple poles with opposite residues at the nodes of the fibers of f . Consequently,
a node p in a fiber appears in the polar divisor of a meromorphic section ωX/C
if and only if the one-form has pole order ≥ 2 at p.

If p is a node of a fiber Xt0 for every t close to t0, there is a homotopy class
of a simple closed curve [γt] which degenerate to p as t→ t0, and such that the
monodromy around t0 preserves each homotopy class [γt]. We call these curves
γt the vanishing curves of p.

Tall cylinders. Consider a family of flat surfaces (Xt, ωt) which is degener-
ating to a stable curve as t → 0, where the period of ωt around a vanishing
curve γt is real and independent of t. The following theorem makes precise the
intuition that as t → 0, the surfaces (Xt, ωt) are developing cylinders of large
modulus in this homotopy class.

Theorem 7.3. Consider a proper flat family of stable curves f :X → C with p
a node of a singular fiber Xt0 . Let ω be a meromorphic section of ωX/C such
that

1. the point p is not contained in any zero or polar divisor of (ω), and

2. the periods
∫
γt
ωt around the vanishing curves of p are a non-zero real

constant.

Then for t sufficiently close to t0, there is on (Xt, ωt) a unique maximal, hori-
zontal, flat cylinder Ct homotopic to γt.

Moreover, we have as t→ t0,

mod(Ct) ∼
π

`Xt
([γt])

.

Remark. Similar statements have appeared in the literature, see for example
[Mas75], [Bai07] or [Raf07].

If ω is a one-form defined on a neighborhood of 0 in C, with a simple pole
at 0 of residue 1/2πi, it is well-known that there is a change of coordinates φ
such that φ∗ω = 1

2πi
dz
z . It follows that in the flat metric ω, a neighborhood of 0

is an infinite cylinder circumference 1. The proof of Theorem 7.3 will be based
on the following relative version of this change of coordinates, giving a standard
form for a section of ωX/C near an isolated node, where the family is modeled
by πk:Vk → ∆.

Lemma 7.4. Let ω be a holomorphic section of ωVk/∆ such that for each van-
ishing curve γt, we have ∫

γt

ωt = 1.
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Then there is a holomorphic change of coordinates Φ in a neighborhood of 0 in
Vk, which fixes 0 and commutes with the projection πk, such that

Φ∗
(

1

2πi

dx

x

)
= ω. (7.2)

Proof. The form ω may be written as the restriction to the fibers of

ω =
1

2πi

(
dx

x
+ f dx+ g dy

)
.

for some holomorphic functions f and g on ∆3.
Consider now the first order PDE

xux − yuy = xf − yg + h(xy, t), (7.3)

where h(s, t) is a to-be-determined holomorphic function defined near 0. We
claim that there is a unique choice of h so that (7.3) has a holomorphic solution
u(x, y, t) defined near 0. To see this, consider the Taylor series representations,

f =
∑

aijlx
iyjtl, g =

∑
bijlx

iyjtl, and u =
∑

cijlx
iyjtl.

We define h by

h(s, t) = −
∑
i,k

(ai−1,i,l − bi,i−1,l)s
itl,

so that xf − yg + h(xy, t) has no xiyitl terms. We then obtain a solution to
(7.3) by taking for i 6= j,

ci,j,l =
ai−1,j,l − bi,j−1,l

i− j
,

and making an arbitrary choice if i = j.
Now suppose u(x, y, t) is a solution to (7.3), and define

α = xeu, β = ye−u, and Φ = (α, β).

If xy = tk, then αβ = xy = tk, whence Φ preserves the variety V (xy − tk).
We now compute,

Φ∗
(
dx

x

)
= d(logα) =

dx

x
+ ux dx+ uy dy. (7.4)

The equality xy = tk implies

y dx+ x dy = 0. (7.5)

(interpreting equality of forms as equality of the restrictions to the fibers). Com-
bining (7.3) with (7.5) implies ux dx+uy dy = f dx+g dy+h(xy, t), which when
combined with (7.4) yields

1

2πi
Φ∗
(
dx

x

)
= ω +

1

2πi
h(tk, t)

dx

x
.

Since ω has by assumption unit periods on the vanishing curves, as does 1
2πi

dx
x ,

we must have h(tk, t) ≡ 0, so Φ is the desired change of coordinates. �
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The previous lemma tells us that our flat family of curves is developing
flat cylinders Ct of growing modulus. We now need a way to show that the
hyperbolic length of the core curve of Ct in its intrinsic hyperbolic metric is
nearly as small as its length as a curve on X. We will now show that it is
enough for the boundary of Ct to lie in the “thick part” of X.

Recall that the injectivity radius of X at x is the length of the shortest
essential loop through x. Given a curve γ on X, the γ-injectivity radius of X
at x is the length of the shortest essential loop through x which is homotopic
to γ. The ε-thick part (resp. (γ, ε)-thick part) of X is the locus of points with
injectivity radius (resp. γ-injectivity radius) at least ε. We denote by Thickε(X)
and Thickγ,ε(X) the ε-thick and (γ, ε)-thick parts respectively.

Lemma 7.5. Let Xn be a sequence of hyperbolic Riemann surfaces, each con-
taining an essential annulus An, with αn ⊂ An the unique primitive ρAn-
geodesic, and γn ⊂ Xn the homotopic simple closed ρXn-geodesic. Suppose
that ∂An ⊂ Thickγn,ε(X), and `An

(αn)→ 0. Then `Xn
(γn)/`An

(αn)→ 1.

Proof. Consider a single essential annulus A ⊂ X. Passing to the annular cover
determined by the homotopy class of A, we may take X to be a hyperbolic
annulus with ∂A ⊂ Thickε(X). We write `A and `X for the lengths of the
lengths of the corresponding simple closed geodesics in their respective Poincaré
metrics, which are related to their respective moduli by (7.1).

If mod(X) is sufficiently large compared to 1/ε, then Thickε(X) is the union
of two round annuli (that is, bounded by concentric circles) T1, T2 of modulus

mod(Ti) =
1

`X
sin−1

(
`X
ε

)
.

(This is a straightforward calculation in the band model of the hyperbolic plane.)
If `A is sufficiently small, then A is not contained in the thick part, and it follows
that X = A ∪ T1 ∪ T2. Let B = A \ (T1 ∪ T2). We then have

mod(A) ≤ mod(X) = mod(B) + mod(T1) + mod(T2) ≤ mod(A) + 2 mod(T1),

where the inequalities follow from monotonicity of moduli. That is, A ⊂ B
implies mod(A) ≤ mod(B) (see for example [McM94]). In terms of lengths,

1

`A
≤ 1

`X
≤ 2

`X
sin−1

(
`X
ε

)
+

1

`A
.

Letting `A → 0 with ε fixed, the claim follows. �

Proof of Theorem 7.3. Passing to an open subset of C, we may take our family
of curves to be of the form f :X → ∆, with f0 the only singular fiber. The
homotopy class [γt] of the vanishing curve is then well-defined for every t 6= 0.
We define a function ι:X → R, by taking ι(x) to be the γt-injectivity radius of
Xt at x. We may define ι even on the singular fiber by taking it to be 0 at the
node p, and ι ≡ ∞ on an irreducible component of X0 which does not contain p.

Let X ′ denote be the complement of the nodes of X . The vertical hyperbolic
metric ρXt

is continuous as a function on T ∗X ′/∆, as is shown in [HK14] or

[Wol90]. It follows that ι is continuous on X .
Applying Lemma 7.4, we may take a compact neighborhood S of p whose

intersection with each fiber Xt is either empty or a flat annulus C ′t which is
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contained in a unique maximal flat annulus Ct. As ∂S is compact, ι is bounded
below on ∂S, so each ∂C ′t is contained in Thickγt,ε(Xt) for some ε > 0. Applying
Lemma 7.5, we obtain mod(C ′) ∼ π/`Xt

([γt]) as t→ 0. As

mod(C ′t) ≤ mod(Ct) ≤
π

`Xt
([γt])

,

the same holds for mod(Ct). �

The Abel metric. Let X be a Riemann surface and D =
∑
nizi a degree-

zero divisor whose Abel-Jacobi image in Jac(X) is 0. By Abel’s theorem, there
is a meromorphic function hD:X → P1 with (hD) = D. Let τD = 1

2πih
∗
D(dz/z),

a meromorphic one-form having integral periods and a simple pole at each zj
with residue nj/2πi. We will often simply write τ when we do not wish to
emphasize the divisor D.

We call the associated flat metric |τ | the Abel metric associated to D. The
horizontal direction of τ is periodic, as it comes from pulling back the flat metric
on a cylinder. In this metric, a neighborhood of each zi is a half-infinite cylinder
of width ni.

Now fix an algebraically primitive Veech surface with periodic horizontal
direction. We identify the punctured unit disk ∆∗ with the quotient of the
hyperbolic plane by the corresponding parabolic element of the Veech group.
Given t ∈ ∆∗, we write (Xt, ωt) for the corresponding flat surface with ωt
normalized so that the horizontal direction is periodic with periods independent
of t. Let f :X → ∆∗ be the associated universal curve, and f :X → ∆ the proper
flat family of stable curves. The forms ωt yield a section ω of ωX/∆.

We also need the to consider the Abel metric varying is such families. Pos-
sibly passing to a cover of ∆∗, we may take the zeros of ω to be sections of the
universal curve over ∆ with image Zi. Let Z = Z1 ∪ . . . ∪ Zn ⊂ X denote the
curve of zeros of ω.

We denote by Div0(Z) the group of divisors of degree 0 supported on D. Let
K be the kernel of the Abel-Jacobi map Div0(Z) → Jac(X/∆∗), a finite index
subgroup by the torsion condition.

A divisor D =
∑
niZi ∈ K yields a meromorphic section τD of ωX/∆∗ which

has a simple pole along each Zj with residue nj/2πi. The restriction to each
Xt is the Abel metric defined above, which we denote τD,t or just τt. Since τ
arose from Abel’s theorem, which only applies to smooth curves, a priori τ isn’t
defined on the central fiber of X . We show now that τ can be extended over
the central fiber with no additional poles.

Lemma 7.6. The form τ extends to a meromorphic section of ωX/∆ which has

a simple pole along each Zj of constant residue nj/2πi and no other poles.

Proof. We use the fact that the fiberwise maps hD:X → P1 can be extended
using the compactness of the space of admissible covers (see [HM82, HM98] for

background on this notion) to a map h: X̃ → P over ∆, where P is a family of
trees of projective lines, smooth over ∆∗. Since the branch points are marked
in the space of admissible covers, the images of zeros and poles of hD give two
sections S0, S∞: ∆ → P which are disjoint from the nodes. Since P is a flat
family of curves of arithmetic genus zero, there is a unique meromorphic section
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σ of ωP/∆ having only simple poles of residue ±1/2πi along S0 and S∞. Pulling

back σ by h gives an extension τ̃ of τ over X̃ .
As the branch points are marked in the space of admissible covers, the central

fiber of X̃ may have extra components which become unstable when the branch
points are forgotten. Blowing down these components recovers the original
family X with the desired extension of τ . �

Dual graphs with weights. The dual graphs of the (Xt, ωt) may be canon-
ically identified as the monodromy of the family over ∆∗ is composed of Dehn
twists in the cylinders. We denote the dual graph of each by Γ, and write E and
V for the set of vertices and edges. Given an edge e of Γ, we denote by Ce(ωt)
the corresponding cylinder of ωt and let [γe] ⊂ Xt \Z(ωt) denote the homotopy
class of a core curve of Ce(ωt), oriented so that its period is positive.

We give each edge of Γ an orientation as follows. The bottom and top
boundary components of Ce(ωt) correspond to vertices v1 and v2 of Γ. If v1 6= v2,
give e the orientation pointing from v1 to v2. Otherwise choose an arbitrary
orientation.

We provide the edges of the graph Γ with two kinds of weights. First, let
(me)e∈E be the tuple of moduli of the cylinders of some (Xt, ωt). As the me

have rational ratios, we may scale them uniquely so that they are relatively
prime positive integers.

The second kind of weights depends on a divisor D ∈ K. Given e ∈ Γ, let

we(D) =
1

2πi

∫
γe

τD,t.

Equivalently, we(D) is the winding number of hD(γe) around 0. Note that the
torsion map h is determined by D up to post-composition with a scalar and
that consequently we is well-defined as a function on K.

Proposition 7.7. If we 6= 0, then for t sufficiently large, (Xt \ Zt, τt) has a
unique maximal horizontal cylinder Ct(τt) homotopic to γe. Moreover, as t→ 0,
we have

mod(Ct(ωt)) ∼ mod(Ct(τt)). (7.6)

If we = 0, then there is no such cylinder for any t > 0.

Proof. If we 6= 0, then the cylinder is provided by Theorem 7.3, and the moduli
are asymptotic as both are asymptotic to the hyperbolic length of γt.

If we = 0, then there can be no such cylinder as a closed geodesic on a
translation surface never has zero period. �

Corollary 7.8. Given z1, z2 distinct zeros of ω, let D = N(z1− z2) ∈ K. Then
for each edge e of Γ, we have we(D) ∈ [−N,N ] ∩ Z.

Proof. If we 6= 0, then for large t the surface (Xt \ Zt, τt) has a flat cylinder C
in the homotopy class γe. Under the meromorphic function fD:Xt → P1, the
cylinder C is a degree we(D) covering of a flat cylinder C ′ ⊂ C∗. As the degree
of f is N , we must have |we(D)|≤ N . �

Since the cylinders of τt have nearly the same modulus as the corresponding
cylinders of ωt, we are able to use the geometry of τt to obtain the following
strong restriction on the moduli.
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Proposition 7.9. Suppose that γ is a closed circuit of Γ which crosses the
edges ei1 , . . . , ein . Let σi = ±1 depending on whether γ crosses ei respecting its
orientation. Then ∑

i

σiweimei = 0. (7.7)

Proof. Take a closed disk 0 ∈ ∆
′ ⊂ ∆ such that for each edge e with we(D) 6= 0,

the cylinder Ce(τt) exists, and let X ′ → ∆
′

be the restriction of our family of

curves to ∆
′
. If we(D) 6= 0, let Ce ⊂ X

′
be the open set consisting of the

cylinders Ce(τt). We let J be the complement of these Ce.
Since J is compact, the vertical metric |τ | is continuous on the complement

of the nodes, and τ has no poles at the nodes remaining in J , there is a uniform
constant C such that every connected component of J has at most diameter C.

For each t ∈ ∆
′
, we choose a lift of γ to a closed curve γ̃ on Xt as follows.

For each eik with nonzero weight, let γ̃k be a segment joining the boundary
circles of Ce(τt) with the orientation indicated by γ. For eik with zero weight,
we let γ̃k be the empty curve. This gives a broken curve whose endpoints lie in
J . We obtain a closed curve by adding at most n arcs contained in J , each with
length at most C.

For each e with nonzero weight, we define he(t) to be the height of the
corresponding cylinder in the τ -metric, taken with the same sign as we(D).
In the ω-metric, the corresponding cylinder has modulus cme log|t| for some
non-zero constant c, so by (7.6), we have

he(t) ∼ c log|t|we(D)me.

Now since τt has integral periods, the form Im τ is exact and all of its periods
are 0. In particular, for some contribution Dt bounded by |Dt|≤ nC stemming
from the part of the path in J , we obtain in the limit as t→ 0

0 = (log|t|)−1

∫
γ̃

Im τt = (log|t|)−1
∑
i

σihei(t) + (log|t|)−1Dt → c
∑
i

σiweimei ,

implying (7.7). �

The vertices of Γ determine a partition of the zeros of each ωt, assigning to
each vertex the set Sv of zeros which lie on the corresponding component of the
spine of ωt. We define for each vertex v and divisor D =

∑
nizi the weight

cv(D) =
∑
zi∈Sv

ni.

For each v, let vin and vout be the set of incoming and outgoing edges.

Proposition 7.10. For each vertex v of Γ,

cv(D) =
∑
w∈vin

we(D)−
∑

w∈vout

we(D) (7.8)

Proof. On the component of X0 corresponding to v, the form τ0 has simple
poles at each of the zi of residue ni. The nodes of this component correspond to
the edges of Γ adjacent to v, and the residues of τ0 there are the weights we(D),
with the sign determined by the orientation of e. Since the sum of residues is
zero, equation (7.8) follows. �
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Div0(Z)⊗Q

0 H1(Γ,Q) H1(Γ, V,Q) H̃0(V,Q) 0

0 H0(V,Q)/H0(Γ,Q) H1(Γ, V,Q) H1(Γ,Q) 0

w̃
ρ

∂

φm

δ j

Figure 2: Graph homology interacting with the weights

Electrical networks. Propositions 7.9 and 7.10 have a physical interpretation
in terms of electrical networks. We regard the graph Γ as an electrical network
whose edges have resistances me, with incoming or outgoing current cv at each
vertex v, and with current we across any edge. Then (7.8) reflects Kirchhoff’s
current law “what goes in must go out”, and (7.7) is Kirchhoff’s voltage law,
that the potential drop around any closed loop is zero. So our we and me indeed
satisfy all the axioms of an electrical network.

In this language, our task in the remainder of the section is the following:
Given a natural number N and an electrical network on a graph Γ with just one
block and with the property that passing a current of N through any two vertices
results in integral currents bounded by N along any edge (Corollary 7.8), show
that there is a finite number (depending on N) of possibilities for the resistances.
Note that if there are multiple blocks, it is physically obvious that there can be
no such finiteness statement, as scaling all of the resistances in a given block by
a constant multiple does not affect any of the currents.

The idea of studying Riemann surfaces through electrical networks has ap-
peared elsewhere. See for example [Dil01].

Torsion determines moduli. Equation (7.7), (7.8) and Corollary 7.8 to-
gether put strong constraints on the moduli me, which we will now show de-
termines these moduli in every block up to finitely many choices. It will be
convenient to work both in graph homology and cohomology.

The setup is summarized in Figure 2. There, ∂:H1(Γ, V ) → H̃0(V ) and
j:H1(Γ, V ) → H1(Γ) are the connecting homomorphisms from the respective

long exact sequences and H̃0(V ) denotes the kernel of the natural homomor-
phism H0(V )→ H0(Γ). The rest of the notation is set up below.

We highlight the relevance of the block decomposition, using the lower line of
the diagram. Consider the group Gm(Q)|E|, acting diagonally on H1(Γ, V ; Q)
by (qe)e∈E · [e∗0] = qe0 [e∗0]. Let B ⊂ Gm(Q)|E| be the subgroup of (qe)e∈E for
which qe = qf whenever the edges e and f lie in the same block of Γ.

Lemma 7.11. B is exactly the subgroup of Gm(Q)|E| which stabilizes Im(δ).

Proof. That B stabilizes Ker(j) is clear, since any circuit γ can be written as a
sum of circuits, each contained in only one block.

For the converse, suppose q = (qe)e∈E stabilizes Im(δ). Given a vertex v,
we have δv =

∑
e∈E(v)[e

∗], where the sum is over the edges incident to v, with
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the outward-pointing orientation. As q stabilizes Im(δ), the cocycle

q · δv =
∑

e∈E(V )

qe[e
∗]

lies in the kernel of j. Suppose that e1 and e2 are two edges incident to v which
lie in the same block B. As B is 2-connected, by Menger’s theorem (see [BM76])
there is a circuit γ ⊂ B which passes through e1 and e2 but through no other
edge incident to v. As (q · δv)(γ) = 0, we obtain qe1 = qe2 . Applying this
repeatedly, it follows that qe1 = qe2 whenever e1 and e2 lie in the same block,
so q ∈ B. �

Our knowledge about the electrical network will be encoded in two weight
homomorphisms. First, The tuple of moduli m = (me)e∈E determines a group
homomorphism φm:H1(Γ, V ) → H1(Γ, V ) defined by φm([e]) = me[e

∗], where
[e∗] is the corresponding cocycle killing the other edges.

Second, for each D ∈ K, the weights we(D) define a relative homology class

w̃(D) =
∑
e

we(D)[e] ∈ H1(Γ, V ),

with V the vertex set of Γ, using the previously chosen orientation of the edges
of Γ. The map w̃:K → H1(Γ, Q) is a group homomorphism, since for any two
divisors, we have τD1+D2

= τD1
+τD2

and since the we(D) are periods of τD. As
K ⊂ Div0(Z) is a subgroup of finite index, there is an induced homomorphism
w̃: Div0(Z)⊗Q→ H1(Γ, V ; Q) denoted by the same letter, abusing notation

In this notation, the two Kirchhoff laws can be restated as follows.

Proposition 7.12. In the language of the two weight homomorphisms, Kirch-
hoff’s laws (7.7) and (7.8) imply

Im(φm ◦ w̃) = Ker(j). (7.9)

The main theorem of this section now follows directly form the last two
observations.

Proof of Theorem 7.2. Consider a divisor D = N(z1 − z2) ∈ K. By Corol-
lary 7.8, we have we(D) ∈ [−N,N ] ∩ Z for each edge e. In particular, given N
there are only finitely many possibilities for the splitting w̃, so we may take w̃
to be fixed.

Now any possible tuple of moduli m satisfies Im(φm ◦ w̃) = Ker(j) = Im(δ)
by Proposition 7.12. Consequently, since w̃ is fixed, φm1 ◦ φ−1

m2
preserves Im(δ)

and thus φm1 ◦φ−1
m2
∈ B by Lemma 7.11. This means exactly that in each block

the mi are determined up to scaling.
To make this effective, consider a tuple (m1, . . . ,mn) of moduli from a single

block B of Γ. Given D as above together with a circuit γ ⊂ B, we obtain a linear
function f in the mi expressing the condition that φm(w̃(D))(γ) = 0. Each such
f has integral coefficients of absolute value at mostN , so h(f) ≤ log(N). Among
such linear equations, we may choose f1, . . . , fn−1 which determine (mi) up to
scale. From Cramer’s rule, one may deduce that

h(m1 : . . . : mn) ≤ (n− 1) logN + log(n− 1)! �
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Proof of Proposition 7.12. The assignment D 7→ cD(v) is a group homomor-

phism ρ: Div0(Z)→ H̃0(V ) since ∂ ◦ w̃ = ρ by (7.8) in Proposition 7.10.
The first inclusion of the claim, that j ◦φm ◦w = 0, means that φm ◦w kills

every cycle of Γ. This is exactly the content of (7.7) in Proposition 7.9.
On the other hand, since ∂ ◦w̃ = ρ, we have Ker(w̃) ⊂ Ker(ρ). Consequently

dim Ker(w̃) ≤ |Z|−|V |, and dim Im(w̃) ≥ |V |−1. Then since φm is injective,
dim Im(φm ◦ w̃) ≥ |V |−1 = dim Ker(j). Since Im(φm ◦ w̃) ⊂ Ker(j), they must
be equal. �

8 A general finiteness criterion

We say that two stable forms are pantsless-equivalent if the underlying stable
curves are isomorphic by a map which identifies the one-forms on any irreducible
component which is not a pair of pants. A collection of Teichmüller curves in
a stratum S is pantsless-finite if among their cusps there are only finitely many
pantsless-equivalence classes of stable forms.

In this section, we prove:

Theorem 8.1. In a fixed stratum S, any pantsless-finite collection of alge-
braically primitive Teichmüller curves is finite.

Theorem 8.1 is an easy consequence of the methods in [BM12] if the Teich-
müller curves in the collection are generated by Veech surfaces with just one
zero (and thus have only irreducible degenerations). All the results on torsion
orders are of course void in this case – and the final proof works without them.

We give a short outline to the proof of Theorem 8.1, compare also to the
outline of proof of Theorem 1.4 given in the introduction. In Proposition 8.2
we show that in a pantsless-finite collection the torsion order of the difference
of any two sections Di is bounded, despite having no control about the pants
components. We can then invoke Theorem 7.2 to control the ratio of moduli
within any block of any periodic direction on any Teichmüller curve in the col-
lection. Moreover, within any such block, the moduli and the width of cylinders
(considered in Rg via the different field embeddings and up to orthogonal trans-
formations) determine each other (Proposition 8.7). In any two adjacent blocks,
we can moreover universally bound the ratio of moduli of cylinders belonging
to these blocks (Proposition 8.8), since the node connecting two blocks does not
correspond to a pair of pants. Altogether, this constrains the geometry of the
flat surfaces involved so that we can conclude that they have no small trian-
gles and thus use a finiteness result of Smillie-Weiss for such a collection of flat
surfaces.

The cusps control the torsion orders. We begin by showing that the
torsion orders of an algebraically primitive Teichmüller curve may be recovered
using only the limiting stable forms at its cusps. For pantsless-finite collections,
this gives uniform bounds.

Proposition 8.2. For any pantsless-finite collection of algebraically primitive
Teichmüller curves, there is a uniform bound on the torsion orders of D1 −D2

for any two zero-sections Di.
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Half of the argument is isolated in the following lemma for later use. The
converse statement implicitly appears also in [Möl08] at the end of Section 2.
We refer to [HM98] for the notion of admissible coverings.

Lemma 8.3. Let f :X → C be a family of curves, smooth over C ⊂ C. Let
s1, s2:C → X be two sections with image D1, D2, whose difference D1 −D2 is
N -torsion in the family of Jacobians Jac(X/C). Then for each fiber X of f there
exists an admissible cover h from X to a tree of projective lines of degree N .

Let X∞ be a singular fiber of f and suppose that both sections pass through
the smooth locus of same component Y of X∞. Then there exists a map h:Y →
P1 of degree N with h−1({0}) = D1∩X∞, with h−1({∞}) = D2∩X∞ and such
that h is constant on the intersection of any connected component of X∞ \ Y
with Y .

Conversely, suppose that s1, s2 are two sections, whose difference is torsion
and suppose that there is a component Y and a map h of degree N , as above.
Then s1 − s2 is N -torsion.

Remark. The essential point of the converse statement is that the torsion order
does not drop when limiting to a singular fiber.

Proof. For smooth fibers, an admissible cover is just a morphism h:X → P1,
and the existence of such a morphism follows from the definition of the Jacobian
and Abel’s theorem. The space of admissible covers is compact, so such an
admissible cover of degree N exists also for an appropriate semistable model of
the singular fiber X∞ and the target of the admissible covering h is a tree of
projective lines by definition of an admissible cover. Since the N preimages of 0
and the N preimages of∞ lie in the smooth locus of Y by hypothesis, the map h
has to be a constant (different from zero and from ∞) over each component of
the tree different from h(Y ). These are the constant that h takes the connected
components of X∞ \ Y and hence on their closures.

For the converse statement we claim that in a neighborhood U of a singular
fiber with D1 and D2 limiting to the same component, D1−D2 defines a section
of the relative Picard scheme Pic0(X/U). This scheme parameterizes line bun-
dles on f−1(X ) that are of total degree zero, when restricted to any fiber, up to
bundles pulled back from the base 0. In fact, any section can be extended to the
Néron model of the family of Jacobians, by the universal property of the Néron
model ([BLR90, Theorem 9.5.4 b)]). Since s1 and s2 pass through the same
component Y of X∞, their difference maps to the connected component of the
identity of the Néron model, which is Pic0(X/U) ([BLR90, Definition 1.2.1]).

The existence of the map h shows that the bundle OX∞(N(D1−D2)|X∞) is
isomorphic to the trivial bundle, i.e. (D1−D2)|X∞ is of order N in Pic0(X/U).
Since the torsion order is constant in families, as the torsion subgroup is a
countable locally constant subgroup scheme of the group scheme Pic0(X/U),
this implies the claim. �

Proof of Proposition 8.2. Suppose s1 and s2 are zero sections of the universal
curve of some Teichmüller curve in a pantsless-finite collection of Teichmüller
curves. If in some smooth fiber there is a saddle connection joining s1 to s2,
then rotating the form so that this direction is horizontal and following the
Teichmüller geodesic flow to the boundary, we obtain a singular fiber where s1

and s2 intersect the same irreducible component (Y, η). Since η has more than
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one zero, Y is not a pair of pants, so by assumption, there are only finitely many
possibilities for (Y, η). By Lemma 8.3, there are only finitely many possibilities
for the order of s1−s2, since it is determined by Y . In particular, N(s1−s2) = 0
for some N depending only on S.

It is possible that two zeros z, z′ of a translation surface are not joined by
a saddle connection; however, taking any curve joining z to z′, the shortest
curve in its homotopy class is a union of saddle connections (see [FLP79]).
Taking z = z1, z2, . . . , zn = z′, to be the successive endpoints of these saddle
connections, we obtain z − z′ =

∑
(zi − zi+1) with N(zi − zi+1) = 0 for each i,

so N(z − z′) = 0. �

The key step in this proof is the Néron model argument showing that in
certain cases the torsion order of a degenerating family can be recovered from the
limiting stable form. This step may also be established by a more simpleminded
flat argument which we briefly summarize here.

Consider two zeros p and q of a flat surface (X,ω) joined by a path γ, the
torsion order of p − q in Jac(X) is the smallest natural number N such that
there exists a cycle δ ∈ H1(X; Z) satisfying

N

∫
γ

η =

∫
δ

η (8.1)

for every holomorphic one-form η on X. In general, the torsion order is not
visible from the flat structure of (X,ω), since it requires knowledge of every
holomorphic one-form on X. We define the virtual torsion order of p− q to be
the smallest natural number M such that

M

∫
γ

ω =

∫
ε

ω (8.2)

for some ε ∈ H1(X; Z). While a priori, the virtual torsion order only divides
the actual torsion order, for algebraically primitive Veech surfaces we can say
more.

Proposition 8.4. If p and q are distinct zeros of an algebraically primitive
Veech surface (X,ω), then the virtual torsion order of p − q agrees with the
actual torsion order.

Proof. Let N and M denote the torsion order and virtual torsion order re-
spectively, and choose integral cycles δ and ε as in (8.1) and (8.2). The cycle
δ ∈ H1(X; Z) must be primitive, or else (8.1) would be satisfied for smaller N .

From (8.1) (choosing η = ω) and (8.2), we obtain N
M

∫
ε
ω =

∫
δ
ω. Since the

period map Pω:H1(X; Z)→ C is injective in the algebraically primitive case, it
follows that N

M ε = δ. If N > M , this contradicts the primitivity of δ, so N = M
as desired. �

Now suppose we have an algebraically primitive Veech surface (X,ω) with
a horizontal saddle connection joining zeros p and q, and let (X∞, ω∞) be the
corresponding limiting stable form. By Proposition 8.4, the corresponding tor-
sion order may be computed knowing only the lengths of the horizontal saddle
connections of (X,ω). Since these saddle connections persist on (X∞, ω∞) and
have the same length, this torsion order is determined by the relative periods
of (X∞, ω∞) alone. This “flat” argument may be substituted for the reference
to Lemma 8.3 in the proof of Proposition 8.2.
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Geometry of cylinder widths. Given an algebraically primitive Veech sur-
face (X,ω) with periodic horizontal direction, the widths (r1, . . . , rn) and heights
(s1, . . . , sn) of its cylinders may be regarded as vectors in Rg via the g embed-
dings of the trace field F . We now show that the geometry of this set of vectors
nearly determines – and is determined by – the tuple of moduli (mi) of the
cylinders. This will give us more control over the moduli than provided by
Theorem 7.2.

Applying the Teichmüller flow to (X,ω) scales the widths (ri) by a constant
multiple, so generally they should be regarded as a point of Pg−1(F ); however,
there is an almost canonical choice for their scale.

We say that (X,ω) is normalized if its cylinder heights and widths satisfy
the following properties:

• each ri and sj either belong to F , or for some real quadratic extension
K = F (α), they belong to W = Ker TrK/F (using in either case an implicit
real embedding);

• si/ri ∈ Q+ for each i; and

• for every pair of oriented closed curves α, β on X, with α horizontal, we
have

α · β =

〈∫
α

ω, Im

∫
β

ω

〉
, (8.3)

where α · β is the intersection pairing on homology, and

〈x, y〉 = TrF/Q(xy).

Note that xy ∈ F whenever x, y ∈ W . To see this, let σ be the Galois
involution ofK/F , thenW is the−1-eigenspace of σ, so σ fixes the product
xy.

Proposition 8.5. There is a diagonal matrix D ∈ GL+
2 (R) such that D ·(X,ω)

is normalized. Such a D is unique up to multiplication by
(
c 0
0 c−1

)
for any c ∈ R

with c2 ∈ Q.

Proof. Since (X,ω) is an eigenform for real multiplication, H1(X; Q) is equipped
with the structure of an F vector space. We let M ⊂ H1(X; Q) be the subspace
spanned by the horizontal cylinders of (X,ω), and N = H1(X; Q)/M . As real
multiplication preserves the span of short curves, M and N are F vector spaces
(see for example [BM12, Proposition 5.5]). As ω:M → R and Imω:N → R
are F -linear and spanned by the ri and sj respectively, we may suppose they
belong to F after applying an appropriate diagonal element.

We now claim we may choose uniquely a diagonal matrix
(
µ 0
0 1

)
so that

(8.3) holds. To see this, note that both pairings in (8.3) are bilinear pairings
M × N → Q compatible with the F vector space structure in the sense that
(λ ·x, y) = (x, λy). The space of such pairings is a one-dimensional vector space
over F , so a unique such µ exists.

Making this normalization, we still have the freedom to apply a diagonal
matrix

(
α 0
0 α−1

)
. Even if α 6∈ F , the trace pairing in (8.3) is still defined and

independent of α as (αx)(α−1y) = xy ∈ F . We take α =
√
s1/r1. Note that as

(X,ω) is Veech, the moduli of its cylinders have rational ratios, so

α−1si
αri

=
r1si
ris1

=
mod(Ci)

mod(C1)
∈ Q+,
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which is the second required property of our normalization. Finally note that
the αri and α−1si either lie in F or W ⊂ K = F (α) depending on whether or
not s1/r1 has a square root in F .

Uniqueness follows, since applying
(
c 0
0 c−1

)
to (X,ω) preserves the rationality

condition if and only if c2 ∈ Q. �

Taking such a normalization, let ι1, . . . , ιg be the g real embeddings of F ,
and if we have taken an extension K, extend each ιi to the real embedding of
K for which ιi(α) > 0. For x ∈ F or K, we write x(i) for ιi(x) and θ for the
associated embedding of F or W in Rg. The vectors θ(ri) are then a basis of
Rg. While our normalization was not unique, a different choice of normalization
only changes this basis by a constant multiple since c2 ∈ Q, so the shape of this
basis of Rg does not depend on any choices.

Remark. Proposition 8.5 is a generalization of some basic observations from
[BM12] in the case where (X,ω) has g horizontal cylinders, namely that (X,ω)
may be normalized so that the heights of the cylinders are dual to the widths
with respect to the trace pairing, and the vectors θ(ri) are orthogonal in Rg.

In the sequel, it will not matter whether we have passed for a quadratic
extension of F or not, so we will simply write W for either F or Ker TrK/F .

Now suppose that (X,ω) is normalized as above. Let Γ be the corresponding
dual graph. We orient the edges of Γ as in §7. Assign to each edge e of Γ the
residue weight re ∈W to be the width of the corresponding cylinder of (X,ω),
as well as the modulus weight me = se/re ∈ Q, the modulus of this cylinder. At
each vertex of Γ, the sum of the incoming (residue) weights equals the sum of
the outgoing weights (we called such an object a W -weighted graph in [BM12]),
so we may define

ρr =
∑
e

re[e] ∈ H1(Γ;W ) and σr =
∑
e

mere[e
∗] ∈ H1(Γ;W ). (8.4)

Since the re span W , ρ defines an isomorphism ρ∗r:H1(Γ; Q) → W . From
this point of view, we may interpret (8.3) as saying for all x ∈ H1(Γ; Q) and
y ∈ H1(Γ; Q),

(x, y) = 〈σ∗r(x), ρ∗r(y)〉, (8.5)

where the right pairing is the trace pairing on W defined above and the left
is the canonical pairing between homology and cohomology. Since ρ∗r is an
isomorphism, it follows that σ∗r is an isomorphism as well.

Now let Γ = Γ1∪. . .∪Γk be its decomposition into blocks, and define Bi ⊂W
to be the span of the vectors re with e in Γi.

Proposition 8.6. The subspaces B1, . . . , Bk span W and are orthogonal.

Proof. First, since H1(Γ; Q) = ⊕H1(Γi; Q), ρ∗r is an isomorphism, and Bi is
the image of ρ∗r restricted to H1(Γi; Q), we see that the Bi span W .

Now let e be an edge in Γi and s ∈ Bj for i 6= j. We claim that s = σ∗r(γ)
for some γ ∈ H1(Γj ; Q). Assuming this claim, we obtain

〈re, s〉 = ([e∗], γ) = 0,

since γi and e are in different blocks.
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To see the claim, note that σ∗rH1(Γj ; Q) ⊂ Bj , since the me are rational. As
they have the same dimension, these spaces are in fact equal, so we may find
the desired γ. �

We label the edges of Γ as e1, . . . , en, with edge ei having weight ri and
modulus mi. Define Q to be the matrix of traces

(Qij) = (〈ri, rj〉),

which determines the collection of vectors θ(ri) up to orthogonal rotation of Rg.

Proposition 8.7. The matrix of traces Q is determined by the moduli m1, . . . ,mn

and the graph γ0. Moreover, Q is inversely proportional to the mi in that if the
mi are multiplied by some q ∈ Q, the matrix Q is divided by q.

Moreover, h(Q) ≤ C1h(m1, . . . ,mn) + C2 for constants C1 and C2 which
depend only on the graph Γ.

The above statements remain true with Γ and Q replaced by a single block
Γ0 and the matrix of traces Q0 associated to only this block. In other words, the
traces Q0 associated to a single block Γ0 depend only on the moduli within the
same block.

Proof. Choose a spanning tree T ⊂ Γ, and reorder the edges so that e1, . . . , em
belong to Γ \ T and em+1, . . . , en belong to T .

Suppose we are given r1, . . . , rm ∈ W . There is then a unique choice of
rm+1, . . . , rn such that ∂

∑
ri[ei] = 0. Namely, let ∂:H1(Γ;V ) → H̃0(Γ;V )

(where V is the set of vertices of Γ) be given by the block matrix (A,B) (using
the basis [ei] of H1(Γ;W )). Since T is a spanning tree, the (n−m)× (n−m)
matrix B is invertible. Let K = (kij) = −B−1A and L = ( IK ) . Then given
r1, . . . , rm in W , we set

ri =

n∑
j=1

lijrj .

With r = (r1, . . . , rn), this is the unique vector extending (r1, . . . , rm) such that
∂ρr = 0.

Let M be the diagonal matrix with entries m1, . . . ,mn on the diagonal.
For 1 ≤ i ≤ m, let γi ∈ H1(Γ) be the unique circuit which crosses ei

once, positively oriented, then completes the circuit by the unique path in T
joining the endpoints. We write γi =

∑
i nijej , and let N = (nij). Finally, let

P = NML. This matrix P has been constructed so that if si = σr(γi) are the

periods of the γi, R is the m× g matrix defined by (Rij) = (r
(j)
i ), and S is the

matrix defined by (Sij) = (s
(j)
i ), then S = PR.

Now, for 1 ≤ i, j ≤ m, each ([e∗i ], γj) = δij . Then by (8.5), we have 〈ri, sj〉 =
δij , which means that SRt = I, so RRt = P−1. The full matrix of traces is
then

Q =

(
P−1 P−1Lt

LP−1 LP−1Lt

)
,

which depends only on Γ and the mi, as desired.
To prove the height bound, we use the inequalities,

h(MN) ≤ h(M) + h(N) + log n,

h(M−1) ≤ (n− 1)h(M) + log(n− 1)! ,
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where in either case n is the number of columns of M . Since, A,B, and N
consists only of zeros and ones, they have height 0, and the bound for h(Q)
follows.

Now consider a block Γ0. The intersection of T with Γ0 is a spanning tree
T0 for Γ0. For any edge of Γ0, the unique path in T joining its endpoints in fact
remains in T0. The above proof then works just as well to recover the matrix of
traces Q0, using only the moduli within the block Γ0. �

Remark. Keeping careful track of constants, one obtains the explicit bound,

h(Q) ≤ (e−v)h(m1, . . . ,me)+(e−v) log e2(v−e)! + log(e−v)! (v−1)!2 (e−v+1)2,

where v and e are the number of vertices and edges of Γ.

Taken together, Theorem 7.2 and Propositions 8.6 and 8.7 gives strong con-
straints for the geometry of the cylinder widths vi = θ(ri) in a normalized
periodic direction in terms of a given N which is a multiple of the torsion orders
of (X,ω). By Proposition 8.6, the vi lie in orthogonal blocks Bi ⊂ Rg corre-
sponding to the partition of the dual graph Γ into blocks. For each block Γi of
Γ, the torsion order N determines its vector of moduli [m1 : . . . : mki ] up to
finitely many choices by Theorem 7.2. Proposition 8.7 then tells us that this
vector of moduli determines the vectors vj in Bi up to scaling and orthogonal
rotation.

While Theorem 7.2 tells that a bound for torsion orders gives the tuple of
moduli of a periodic direction up to scaling in each block, these torsion orders
don’t give any information about the scale of these tuples of moduli in different
blocks. Proposition 8.7 allows us to control this scale using knowledge of the
residues of the stable form where two blocks intersect.

Proposition 8.8. Given a pantsless-finite collection of algebraically primitive
Teichmüller curves, there is a constant M such that for any periodic direction
of a surface in this collection, the ratio of moduli of any two cylinders is at
most M .

Proof. By Proposition 8.2, the torsion orders of any curve in this collection
divides some constant N .

Let (X,ω) be a Veech surface with periodic horizontal direction which lies on
one of the Teichmüller curves in our collection, let Γ be its dual graph, and let
B,B′ ⊂ Γ be adjacent blocks containing edges e1, . . . , ek and e′1, . . . , e

′
l, ordered

so that e1 and e′1 meet at the common separating vertex v.
We take (X,ω) to be normalized as above, which means in particular that

the horizontal cylinders have rational moduli. We write qm1, . . . , qmk and
q′m′1, . . . , q

′m′l for the moduli of the cylinders corresponding to ei and e′i, with
q, q′ ∈ Q chosen so that the tuples of mi and m′i are both relatively prime
integers. We let ri and r′i denote the corresponding cylinder widths.

By Theorem 7.2, the mi and m′i are determined up to finitely many choices
by N , so we may take them to be fixed. It then suffices to bound q′/q.

Since Γ has no separating edges, there must be at least four edges incident
to v, so the corresponding component of the limiting stable form is not pants,
so it is known up to finitely many choices. In particular, we may take λ = r1/r

′
1

to be fixed. It follows that

Tr(r2
1) = Tr(λ2r′1

2
) ≤ ‖λ2‖∞Tr(r′1

2
), (8.6)
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where ‖λ‖∞= maxi|λ(i)|.
By Proposition 8.7, we have

Tr(r2
1) =

t

q
and Tr(r′1

2
) =

t′

q′
, (8.7)

where t ∈ Q is determined by the corresponding moduli mi and graph B, and
likewise for t′. Combining (8.6) and (8.7), we obtain

q′

q
≤ ‖λ2‖∞

t′

t
. �

Remark. This Proposition should be compared to Theorem 7.2, saying that
there are only finitely many tuples of moduli in each block. Here if we consider
all blocks, instead of a finiteness statement, we only get a real bound for the
ratios of moduli. More precisely, the above argument works only at places of Q
which split completely in F .

Proposition 8.9. Given a pantsless-finite collection of algebraically primitive
Teichmüller curves, there is a constant K such that for any periodic direction
of a surface in this collection, the ratio of widths of any two cylinders or saddle
connections is at most K.

Proof. Consider a surface (X,ω) on one of these Teichmüller curves, and let C1

and C2 be adjacent horizontal cylinders, in the sense that their boundaries share
a saddle connection. Suppose that one of the cylinders, say C1, has distinct zeros
of ω on its upper and lower boundaries (which is true if C1 does not correspond
to a loop in the dual graph Γ). We claim that there is a universal constant L1

such that w(C2) ≤ L1w(C1).
To see this, first shear the surface so that a vertical saddle connection γ joins

the zeros in ∂C1. Let δ be a parallel geodesic which crosses C1 and C2. Since
the surface is Veech, δ is closed. These curves limit to curves on a stable curve
at infinity which is not pants, since it contains more than one zero. By pantsless
finiteness, `(δ) ≤ C`(γ) for a universal constant C. We then have,

mod(C2)w(C2) = h(C2) ≤ `(δ) ≤ C`(γ) = Ch(C1) = C mod(C1)w(C1).

Since the ratios of moduli are bounded by M from Proposition 8.8, we obtain
w(C2) ≤MCw(C1).

If one of the cylinders, say C1, actually corresponds to a loop, then its
adjacent vertex is a component of the limiting stable curve which is not pants.
Pantsless finiteness then implies that there exists a universal constant L2 such
that w(C2) ≤ L2w(C1) and w(C1) ≤ L2w(C2).

Now consider the graph whose vertices are horizontal cylinders of (X,ω)
and whose edges are cylinders that share a saddle connection. Given any two
vertices C,C ′ of this graph, we may find a path C = C1, . . . , Cm = C ′, since the
surface X is connected. We can find such a path of length at most the number
of horizontal saddle connections, a constant n depending only on the stratum.
Using the previous bounds we conclude that w(Cm) ≤ max{L1, L2}n−1w(C1).

Since any saddle connection has a nearby closed geodesic, it follows that ra-
tios of lengths of saddle connections are bounded as well uniformly from above
and from below. In fact, there are two cases. Either this nearby saddle connec-
tion belongs to a pants and then the length is actually the width of a cylinder
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and thus has been taken care of. Or this nearby saddle connection belongs
to a non-pants component and then the boundedness follows from pantsless
finiteness. �

Recall from [SW10] that a triangle in (X,ω) is the image of a triangle in the
plane under an affine map to (X,ω) which sends the vertices to zeros of ω, and
which is injective except possibly at the vertices. They showed that (X,ω) is
Veech if the set of areas of its triangles is bounded away from 0.

Let S1 be the locus of unit area forms in our stratum, and NST(α) ⊂ S1

to be the set of such surfaces which have no triangles of area less than α. Our
proof of finiteness will use the following theorem.

Theorem 8.10 ([SW10]). The set NST(α) consists of finitely many Teichmüller
curves.

Remark. Smillie and Weiss actually proved a much stronger finiteness theorem
that we do not need, namely that the union of these NST(α) over all strata in
any genus is finite.

Proof of Theorem 8.1. Let (X,ω) be a surface in our collection of Teichmüller
curves, normalized to have unit area, and let T ⊂ (X,ω) be a triangle. We may
rotate ω so that the base of T is horizontal, hence this horizontal direction is
periodic. Then apply a diagonal matrix so that (X,ω) has a horizontal cylinder
of unit width. By Propositions 8.8 and 8.9, all horizontal cylinders have moduli
and widths bounded above and below, as do the horizontal saddle connections.
Their heights are then bounded as well. Since T has to cross some horizontal
cylinder, it follows that the area of T is uniformly bounded below, and by
Theorem 8.10, our collection of Teichmüller curves is finite. �

9 Bounding torsion and the principal stratum

In this section, we aim to apply the finiteness criterion, Theorem 8.1, to obtain
finiteness for the principal stratum in genus three and prepare the grounds for
the discussion of the remaining strata in the next section. In order to verify
the pantsless-finite hypothesis, we will use the torsion condition together with
a priori bounds on the torsion orders and height bounds from diophantine
geometry to control the possible stable forms arising as cusps of Teichmüller
curves generated by forms with many zeros.

More precisely, given an irreducible component (X∞, ω∞) of the stable form
over a cusp of an algebraically primitive Teichmüller curve, if ω∞ has multiple
zeros, then the torsion condition may be interpreted as saying that certain cross-
ratios involving these zeros and the cusps of X∞ are roots of unity. Torsion order
bounds, height bounds and information about the degrees of the residues of ω∞
often allow us to conclude that there are only finitely many possibilities for
(X∞, ω∞). To formalize this, we introduce now the notion of a form which is
determined by torsion.

We say that a meromorphic one-form on P1 is a form of type (n;m1, . . . ,mk)
if it has n poles, all of which are simple, and k zeros of orders m1, . . . ,mk. We
denote the poles x1, . . . , xn and the zeros z1, . . . , zk. For example, a pair of
pants is a form of type (3; 1).
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Definition 9.1. A one-form on P1 of type (n;m1, . . . ,mk) is determined by
torsion if for every N ∈ N and every g ∈ N there are only a finite number
of forms ω of this type, up to the action of Aut(P1) and constant multiple,
that satisfy the following condition. There exists a partition of {1, . . . , n} into
subsets Sj , j ∈ J , none of which consists of a single element, such that

i) for each part Sj of the partition
∑
i∈Sj

Resxi
(ω) = 0,

ii) the ratios of residues Resxi
(ω)/Resx1

(ω) for i = 1, . . . , n are elements of a
totally real number field of degree g whose Q-span has dimension n− |J |,
and

iii) for all a 6= b the cross-ratio [za, zb, xi1 , xi2 ] is a root of unity of order
dividing N whenever there exists a part Sj containing both i1 and i2.

These conditions are motivated by the constraints imposed on a component
of a limiting stable form of a Teichmüller curve.

Proposition 9.2. Suppose (X∞, ω∞) is a stable form lying over a boundary
point of an algebraically primitive Teichmüller curve, and Y is an irreducible
component of X∞. Then there is a partition of the nodes of Y satisfying the
above conditions.

Proof. Consider the dual graph Γ ofX∞ with edges labeled by the corresponding
residues of ω∞ as in §8, and consider the vertex v corresponding to Y . We
partition the set of edges E(v) incident to v according to the component of
Γ \ {v} in which they lie. As X∞ has no separating edges, each part of this
partition has at least two elements.

Condition i) is then a consequence of the residue theorem. The condition
iii) rephrases that the difference between any two zeros is a torsion section with
torsion order divisible by N , as stated in Lemma 8.3.

To obtain ii), consider the set S of edges of Γ obtained by deleting from
E(v) one edge from each component of Γ \ {v}. We wish to show that the
corresponding residues are linearly independent over Q. Recall from §8 that
assigning the residues of ω∞ to the edges of Γ determines a homology class

ρr =
∑
e

re[e] ∈ H1(Γ;F )

(after normalizing the form by dividing by Resx1
(ω∞) so that the residues belong

to the trace field F ). The induced map ρ∗r:H1(Γ; Q) → F is an isomorphism,
so it suffices to show that the cohomology classes {[e∗] : e ∈ S} are linearly
independent. This follows from the fact that for each e ∈ S there is a circuit of
Γ which crosses e and no other edges in S. �

Forms with sufficiently many zeros are determined by torsion. We state
below the relevant results, which we will prove in §9.1 and §9.2.

Proposition 9.3. A form of type (n;m1, . . . ,mk) having three or more zeros,
i.e. k ≥ 3, is determined by torsion.

Proposition 9.4. A form of type (4; 1, 1) is determined by torsion.

Proof of Theorem 1.7. Suppose we have an a priori bound for torsion orders
of algebraically primitive Teichmüller curves in ΩMg(1

2g−2). Propositions 9.3
and 9.4 imply that there are only finitely many possibilities for any non-pants
component of a stable curve at a cusp of an algebraically primitive Teichmüller
curve in this stratum. Theorem 8.1 then implies finiteness. �
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To apply these results, we need a priori bounds on torsion orders. When
an irreducible component (X∞, ω∞) of the stable form over a cusp contains two
zeros, one can often bound the torsion order of the difference of these two zeros
by appealing to Laurent’s theorem [Lau84] on torsion points in a subvariety of
Gm. Whether this works depends on the combinatorial type of (X∞, ω∞). To
formalize this, we introduce the notion of prescribing torsion.

Definition 9.5. A form of type (n;m1, . . . ,mk) prescribes torsion if for every
g ∈ N there exists N0 ∈ N such that for every partition of {1, . . . , n} into
subsets Sj , j ∈ J , none of which consists of a single element, and for every form
ω on P1, such that

i) for each part Sj of the partition
∑
i∈Sj

Resxi
(ω) = 0,

ii) the ratios of residues Resxi
(ω)/Resx1

(ω) for i = 1, . . . , n are elements of a
totally real number field of degree g whose Q-span has dimension n− |J |,
and

iii) for all a 6= b the cross-ratio [za, zb, xi1 , xi2 ] is a root of unity whenever i1
and i2 belong to the same part of the partition,

then all of the roots of unity appearing in iii) have order dividing N0.

We will prove the following results on which types of forms prescribe torsion.

Proposition 9.6. A form of type (6; 1, 1, 1, 1) prescribes torsion.

It might well be true – and would suffice to prove finiteness in the principal
stratum in all genera – that this proposition holds for all components of type
(2k; 12k−2). The following lemma is also part of checking the hypothesis for
pantsless-finiteness and works for all k.

Lemma 9.7. If a form of type (n;m1, . . . ,mk) with three or more zeros, i.e.
k ≥ 3, occurs as an irreducible component of a stable curve lying over a boundary
point of an algebraically primitive Teichmüller curve, then n is even. Moreover,
there is only a finite number (depending on n) of tuples of residues (up to con-
stant multiple) that occur for such boundary points.

Proposition 9.8. A form of type (4; 1, 1) prescribes torsion.

From these statements we will deduce the main theorem in the case of the
principal stratum.

Proof of Theorem 1.1, case ΩM3(1, 1, 1, 1). Consider a Veech surface generat-
ing an algebraically primitive Teichmüller curve in this stratum, and suppose
that two of its zeros zi and zj can be joined by a saddle connection of slope θ.
Consider the stable curve X∞ obtained by applying the Teichmüller geodesic
flow in the direction θ. The two zeros zi and zj will limit to the same component
of X∞. By Lemma 9.7, there are two possibilities: either X∞ is irreducible, or
it has two components, each containing two zeros. The Propositions 9.6 and 9.8
and Lemma 8.3 then bound in either case the torsion order of the corresponding
difference of sections si − sj by a universal constant.

More generally, any two zeros can be joined by a finite chain of saddle con-
nections, where the length of the chain is at most the number of zeros. Conse-
quently, the torsion order of any difference of sections si − sj is bounded by a
universal constant.

Theorem 1.7 then implies finiteness of algebraically primitive Teichmüller
curves in this stratum. �
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9.1 Forms with few zeros

Proof of Proposition 9.4 and Proposition 9.8. We consider a form ω∞ of type
(4; 1, 1) and use Aut(P1) to normalize the form ω∞ to have its two zeros at 0
and ∞. The partition of {1, 2, 3, 4} may have one or two parts.

In the case of two parts,

ω∞ =

(
r1

z − x1
− r1

z − x2
+

r2

z − u1
− r2

z − u2

)
dz =

Cz dz∏2
i=1(z − xi)

∏2
i=1(z − ui)

,

where {x1, x2}, {u1, u2} is the partition of the nodes and where C ∈ C is some
constant.

The torsion conditions imply that there exist two roots of unity ζx and ζu
such that

x2 = ζ2
xx1, u2 = ζ2

uu1.

The resulting equation for the z2 and constant terms of the numerator of ω∞
to vanish imply, with the normalization x = 1 and r1 = 1, that

r2 =
ζu
ζx

1− ζ2
x

1− ζ2
u

=
ζx − ζx
ζu − ζu

and u1 = −ζx
ζu
.

This is the situation of where McMullen’s theorem on ratio of sines [McM06b]
applies. As a consequence, since the ri belong to a cubic field, there are only a
finite number of choices for the torsion orders of the roots of unity and a finite
number of possibilities for the ri. This concludes the proof of both propositions
in this case.

In the case of one part

ω∞ =

(
4∑
i=1

ri
z − ui

)
dz =

Cz dz∏4
i=1(z − ui)

, (9.1)

where r4 = −(r1 + r2 + r3), and r1, r2, r3 are linearly independent over Q. The
torsion condition now implies that the pairwise ratios of the ui are roots of
unity. We may normalize u1 = 1 and ui = ζi for some Nth roots of unity ζi.
There are rational functions fi such that ri = fi(u1, . . . , u4), so if the roots of
unity ζi are known, then so is ω∞. This proves Proposition 9.4.

To prove Proposition 9.8, we need to show that in the same situation, there
are only finitely many choices for the roots of unity ζi for which the residues ri
belong to a field of bounded degree.

The degrees of the fi are independent of g. The image of a tuple of roots
of unity, which are of height zero, is thus of bounded height by (2.4). Since
the ratios of residues moreover lie in a field of degree bounded by g, Northcott’s
theorem implies that for each g there are only a finite number of possible residue
tuples up to scale.

For each such tuple, we have to check that there are only finitely many roots
of unity that give rise to this residue. For fixed residues ri, the possible ζi belong
to the curve cut out by the equations,

4∑
i=1

riζi = 0 and

4∑
i=1

riζ
−1
i = 0, (9.2)
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with the normalization ζ1 = 1. If there were an infinite number of solutions in
roots of unity, they would lie in a translate of a torus by a torsion point. That is
there exist a2, a3, a4 ∈ Z, not all zero, and roots of unity ηi, such that ζi = ηit

ai

for i = 2, 3, 4 is a solution to (9.2) for all t. Considering the limit t → 0 and
t→∞ implies that the highest and lowest exponent must not be isolated. We
may thus renumber the terms such that a2 = 0 and a3 = a4 6= 0. Substitution
into (9.2) implies that r3η3 + r4η4 = 0, hence r3/r4 = ±1. This contradicts
Q-linear independence. �

9.2 Forms with many zeros

For forms with more zeros, the basic idea of the proofs is similar, but the extra
dimensions involved create significant difficulties.

Lemma 9.9. Let ω∞ be a form of type (n;m1, . . . ,mk) with k ≥ 3. Suppose
that ω∞ satisfies the conditions i), ii) and iii) in Definition 9.5. Then n is even
and |Sj |= 2 for all parts of the partition.

Moreover, if we normalize z1 =∞ and z2 = 0 and renumber the poles such
that Sj = {j, `+ j}, where ` = n/2, then xj is the complex conjugate of x`+j.

We will write subsequently yj instead of x`+j . We use the normalization
z1 = ∞ and z2 = 0 and z3 = 1 and we call this standard normalization in the
rest of this section.

Proof. Fix a part Sj . By condition iii) all the points xi for i ∈ Sj lie on the
same circle around zero and they also lie on the same circle around one. Since
the two circles intersect in precisely two points that are complex conjugate, all
of the claims follow. �

Such a form ω∞ is determined, up to scale, by the location of its zeros and
poles, i.e. by a point P = (z1, . . . , zk, x1, . . . , x`, y1, . . . , y`) in M0,k+n. Coordi-
nates on this moduli space are cross-ratios, among which we select

Rabj = [za, zb, yj , xj ], 1 ≤ a < b ≤ k, 1 ≤ j ≤ `,

since these will be roots of unity for a form satisfying iii).
We define A = C`k(k−1)/2 with coordinates tabj (a, b, j as above), and we

define A′ ⊂ A to be the complement of the hyperplanes of the form V (tabj),
V (tabk−1), V (tabj− ta′bj), and V (tabj− tab′j). The cross-ratios Rabj then define
a morphism CR:M0,k+n → A′.

Since RabjRbcj = Racj , we may without loss of information restrict our
attention to the cross-ratios where the first zero is fixed to be z1, which we
denote by

Rij = [z1, zi, yj , xj ], 1 < i ≤ k, 1 ≤ j ≤ `.

We define Ared = C`(k−1) with coordinates tij (with i, j as above), and we
define A′red ⊂ Ared to be complement of the hyperplanes of the form V (tij),
V (tij − 1), and V (tij − ti′j). The cross-ratios Rij then define a morphism

CRred:M0,k+n → A′red.
Finally, we define Amin = Cn+k−3 with coordinates tij for i = 2, 3 and

1 ≤ j ≤ ` together with ti1 for 4 ≤ i ≤ k, and we define A′min to be the
complement of the hyperplanes of the form V (tij), V (tij − 1), and V (tij − ti′j).
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The cross-ratios Rij then define a morphism CRmin:M0,k+n → Amin. There is
a canonical projection pmin: Ared → Amin, forgetting the indices which do not
appear for Amin.

Lemma 9.10. The morphism CRmin is injective and dominant. The morphism
CRred is injective and dominant onto the subvariety Y of A′red cut out by the
equations

Eq(i, j, j′): [1, t2j , t3j , tij ]− [1, t2j′ , t3j′ , tij′ ] = 0

for i ≥ 4 and 1 ≤ j < j′ < `.

Obviously, the same subvariety is also cut out by all the equations Eq(i, 1, j′)
for i ≥ 4 and 2 ≤ j′ < `.

Proof. Again, normalize so that z1 = ∞ and z2 = 0 and z3 = 1. Then R2j =
xj/yj and R3j = (1 − xj)/(1 − yj). Since R2j 6= R3j , the knowledge of these
two cross-ratios thus determines the location of xj and yj . Since Ri1 = (zi −
x1)/(zi − yi), and Ri1 6= 1, this cross-ratio determines the location of zi. This
proves injectivity. Dominance of CRmin follows since the dimensions agree.

This argument states more precisely that for any fixed j the knowledge
of R2j , R3j and Rij determines the location of zi. In fact, a straightforward
calculation yields

zi = [1, R2j , R3j , Rij ].

These of course have to agree for any pair of indices j and j′, which is expressed
by Eq(i, j, j′). Consequently, the image of CRred is contained in the subvariety
cut out by all the Eq(i, j, j′). Given R2j′ , R3j′ , R21,R31, and Rj1, one can solve

Eq(i, 1, j′) uniquely for R1j′ . Since CRmin is dominant, it follows that CRred is
dominant to Y. �

Proof of Proposition 9.3 and Lemma 9.7. Consider a form ω∞ satisfying the
conditions i), ii) and iii) in Definition 9.1 or Definition 9.5. Its image under
CR and hence also CRmin is then a torsion point. By Lemma 9.10 the map
CRmin has an inverse rational map, hence ω∞ is determined up to scale and
finitely many choices by a bound on its torsion orders. This proves Proposi-
tion 9.3.

Consider now the rational map

Res:M0,k+n 99K Pn

that associates to a point in M0,k+n the projective tuple of residues of the
corresponding one-form

ω∞ =

∏k
j=1(z − zj)mj dz∏`
i=1(z − xi)(z − yi)

.

The rational map Res ◦(CRmin)−1 depends only on the type of the stratum.
Consequently, by (2.4) the Res ◦(CRmin)−1-image of the set of torsion points
has bounded height. By Northcott’s theorem, there are at most finitely many
possible residue tuples of degree at most g, proving Lemma 9.7. �
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We prepare now for the proof of Proposition 9.6. Suppose that its statement
was false for a stratum of some fixed type (n;m1, . . . ,mk) with k ≥ 3, not
specializing to n = 6 and mi = 1 yet. By Laurent’s Theorem [Lau84], this
means that there exists a subvariety T ⊂ A′ which is

a) the translate of a positive-dimensional torus by a torsion point,
b) generically contained in the image of CR,
c) generically contained in the image of the locus of stable forms (meaning

Resxi
ω∞ = −Resyi ω∞), and

d) contained in a fiber of Res′ (since there are only finitely many possible
residue tuples by Lemma 9.7).

Here Res′ is the morphism Res′ = Res ◦(CRmin)−1 ◦ pmin.
In a proof by contradiction we may restrict to the case dimT = 1, i.e.

T = {(cabjteabj ), 1 ≤ a < b ≤ k, 1 ≤ j ≤ `, t ∈ C∗}.

We next discuss the possibilities for the limit point T (0) of the (CRmin)−1◦pmin-
image of T as t→ 0. This is a well-defined point in the Deligne-Mumford com-
pacificationM0,k+n and corresponds to a stable curve Y0 in ∂M0,k+n together
with the limiting stable form η = limt→0 ω∞(t).

We represent the dual graph of the stable curve Y0 determined by T by a
tree TT , whose vertices are decorated by the zeros and poles that limit in the
corresponding component.

Lemma 9.11. The limiting stable form (Y0, η) associated with T (0) has the
following properties.

i) Whenever a curve γ is pinched as t → 0, no pair of poles xi and yi lies
on one side of γ such that two zeros lie on the other side.

ii) None of the pinched curves has η-period equal to zero, in particular η has
a pole at each of the nodes of Y0.

iii) Each component Y of Y0 has at least one zero.

Proof. Since T is generically contained in CR(Mk+n), for each index (a, b, j)
either eabi 6= 0 or cabi 6= 1. In particular the limit t → 0 of cabit

eabi is not 1.
This implies the first statement.

Since the residues Resxi ω∞(t) are Q-linearly independent and constant, the
period of a curve could only be zero if it does not separate any pair of poles
{xi, yi}. As there are at least four zeros, such a curve must violate i).

Now, since Y0 is a stable curve, each component must have at least three
nodes and poles. Since each node is a simple pole of the stable form by ii), each
component must have at least one zero as well. �

Corollary 9.12. In the case of a stratum of type (6; 1, 1, 1, 1) a complete list of
decorated trees arising as TT is given by the three possibilities in Figure 3 up to
renumbering zeros and poles, together with trees obtained by collapsing one or
more edges of these three trees.

Proof. The number of vertices is bounded by four by Lemma 9.11 iii) and there
are only two possible trees with four vertices, as listed in Figure 3, each with
one zero that we label as in the figure. Denote by x1 one of the two poles on the
component of z1. Then y1 lies on the component of z3 or of z4 by Lemma 9.11 i).
The remaining case distinction is now easily completed. �
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Figure 3: Possible stable limits of T

We attach to every edge e of TT , equivalently to every curve that is pinched
when degenerating to Y0, the number de of right Dehn twists performed by
the mododromy of a simple loop around t = 0 in T . As the monodromy must
perform a nontrivial twist around each pinched curve, we interpret de = 0 as
indicating that the edge e has been deleted from T .

Proposition 9.13. Given two zeros za and zb let S be the oriented segment in
TT joining za to zb. For any j ∈ {1, . . . , `} let Sj be the oriented subsegment of
S joining the projection ȳj of yj onto S to the projection x̄j of xj onto S.

Then the exponent in T of the coordinate Rabj is eabj = ±
∑
e∈Sj

de, where
the sign is positive if S and Sj have the same orientation, and negative other-
wise.

Proof. We assume that S and Sj have the same orientation, as swapping xj and
yj has the effect of inverting Rabj .

Normalize the zeros and poles of ω∞(t) so that za = 0, zb =∞ and xj = 1.
Then yj = cabjt

eabj by definition of the torus. Let γ be a path joining yj to
xj . Then the monodromy around t = 0 sends γ to γ + eabjδ, where δ is a loop
winding once around 0.

On the other hand, the edges Sj correspond the pinching loops which sepa-
rates za and yj from zb and xj . As each loop intersects γ once, performing de
Dehn twists about each loop sends γ to γ +

∑
e∈Sj

de. Comparing these two
computations of the monodromy, the formula for eabj follows. �

The torus-translate T defines via the projection pred: A→ Ared a torus trans-
late Tred in Ared. Conversely every translate of a torus Tred ⊂ Ared determines
a torus-translate T ⊂ A, since Rabj = Rbj/Raj . We will thus subsequently work
with tori in Ared only. Such a torus is parameterized as

Tred = {(cijteij ): 1 < i ≤ k, 1 ≤ j ≤ `, t ∈ C∗}.

From now on we restrict our attention to n = 6 and mi = 1, i.e. to a stratum
of type (6; 1, 1, 1, 1).

Lemma 9.14. Suppose that Tred = pred(T ) for some torus translate T satisfying
conditions a), b), c), and d) above. Then the tuple of exponents eij is in the
row span of one of the following three matrices

M1 =
(

1 1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 0 0

)
, M2 =

(
1 1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 1 1
0 0 0 0 0 1 0 0 1

)
, M3 =

(
1 0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 −1

)
.
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The columns appear in the order (R21, R31, R41, R22, R32, R42, R23, R33, R43).

Proof. The rows correspond to the exponents associated with

(d1, d2, d3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)},

calculated according to Proposition 9.13, in each of the three cases in Figure 3.
�

Proof of Proposition 9.6. 4 By the above discussion and Lemma 9.14, we must
show that there is no vector N contained in the row-span of one of the matrices
Mi and corresponding torus-translate aTN ⊂ A′red satisfying these properties:

• aTN is generically contained in the image CRred(M0,10) ⊂ Y ⊂ A′red.

• The opposite-residue condition Resxi ω∞ = −Resyi is satisfied along aTN .

For computational convenience, we work in the full affine plane Ared ⊃ A′red.
Let h1, h2, h3 ∈ Q[tij ] be the numerators of the rational functions Eq(4, 1, 2),
Eq(4, 1, 3), and Eq(4, 2, 3), which cut out Y by Lemma 9.10. The ideal I =
(h1, h2, h3) ⊂ Q[tij ] is prime, so it cuts out the Q-Zariski-closure Y of Y in Ared

(by the same argument as in Lemma 6.6, Y is the Zariski closure of Y as Y has
smooth rational points, though we do not need this). The rational map CRred

is a birational equivalence between M0,10 and Y.
As we are only interested in torus-translates contained in the image ofM0,10,

we define the peripheral divisor D0 = Amin \CRmin(M0,10), which we compute
as follows. We identify M0,10 with an open subset of C7 with coordinates
z4, xi, yi (with i = 1, 2, 3) using the standard normalization of the zeros, z1 =∞,
z2 = 0, and z3 = 1. The divisorD1 = C7\M0,10 consists of 21 hyperplanes, each
corresponding to the collision of two of the marked points. Given a hyperplane
H ⊂ D1 cut out by an affine polynomial h, the numerator of the rational
function h ◦ (CRmin)−1 cuts out a divisor in Amin \ CRmin(M0,10). We collect
the irreducible factors of the numerators of these 21 rational functions, as well
as the irreducible factors of the denominators of the coordinates of (CRmin)−1

(which express the condition that a marked point is colliding with z1 = ∞).
Together these polynomials cut out 35 Q-irreducible divisors in CRmin whose
union is the peripheral divisor D0.

We also define the peripheral divisor D = p−1
min(D0) ⊂ Ared, and J ⊂ Q[tij ]

the corresponding ideal. The rational map CRred then induces an isomorphism
CRred:M0,10 → Y \D.

We now apply the torus-containment algorithm to the variety Y with initial
subspaces M1,M2,M3. The result is a list of 554 subspaces of Z9 (3 of rank
three, 97 of rank two, and 454 of rank one), each contained in the row span of
one Mi. For each subspace N , there is a subvariety VN ⊂ C9 cut out by an ideal
IN ⊂ Q[aij ] (with indices i = 2, 3, 4, j = 1, 2, 3) such that the torus-translate
aTN is contained in Y if and only if a ∈ VN . We now check that none of these
varieties yield a torus-translate satisfying all of our constraints.

First, we rule out those subspaces N which do not in fact yield any torus-
translates, that is, when VN is contained in a coordinate hyperplane. In terms

4This proof is heavily computer-based. All of the assertions below were verified by sage

[S+14]. The file g3fin_ch9.sage contains all of the calculations, and is available on the
authors’ web pages.
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of the torus-containment algorithm, this occurs when for one of the polynomials
hi defining Y, the partition of a set of exponent-vectors induced by N has a
singleton. This condition rules out all but 78 of the 554 subspaces.

We then rule out subspacesN parameterizing only peripheral torus-translates,
that is, contained in the peripheral divisor D. There is a peripheral divisor
DN ⊂ C9 parameterizing coefficients a such that aTN ⊂ D, cut out by the
coefficient ideal (defined in §5) JN ⊂ Q[aij ]. Nonperipheral torus-translates are
then parameterized by VN \DN , whose Zariski-closure is cut out by the satu-
ration ideal KN =

⋃∞
i=1 IN : J iN , which we compute for each remaining N (see

for example [GP08][§1.8.9] for information on saturation ideals). In particular,
if KN = (1), then VN ⊂ DN , and this N yields only peripheral torus-translates.
This condition rules out all but 17 subspaces, and the ones which remain are
only rank-one.

We now apply the opposite-residue condition to each of the remaining vectors
N . The numerators of the rational functions Resxi ω∞/Resyi ω∞+1 (i = 1, 2, 3)
generate an ideal L ⊂ Q[tij ] with coefficient ideal LN ⊂ Q[aij ], which cuts out
the variety parameterizing those a such that aTN satisfies the opposite-residue
condition. We then compute the saturation ideals IN =

⋃∞
i=1(KN + LN ) :

J iN . For all but one of the remaining vectors N , we have IN = (1), meaning
there is no nonperipheral torus-translate corresponding to N which satisfies the
opposite-residue condition.

For the final remaining vector N , we were not able to compute the saturation
ideal IN directly. In this case, we instead compute the primary decomposition of
KN . For each associated prime Pi, we compute that

⋃∞
i=1(Pi +LN ) : J iN = (1),

which implies that IN = (1). �

10 Intermediate strata: Using the torsion con-
dition

In this section we prove Theorem 1.1 for all remaining strata. We maintain
the general hypothesis that f :X → C is the family over a Teichmüller curve,
generated by an algebraically primitive Veech surface (X,ω).

10.1 The stratum ΩM3(2, 1, 1)

Consider a stable form (X∞, ω∞) which is the limit of a cusp of an algebraically
primitive Teichmüller curve in ΩM3(2, 1, 1). In order to apply Theorem 8.1,
we need to check that there are finitely many possibilities for the non-pants
components of (X∞, ω∞). There are three cases to consider:

• (X∞, ω∞) has a component of type (4; 2) and either two pants components
or a component of type (4; 1, 1).

• (X∞, ω∞) has a component of type (5; 2, 1) and one pants component.

• (X∞, ω∞) is irreducible.

We now establish finiteness for each of these cases in turn.

Proposition 10.1. A limiting stable form of an algebraically primitive Teich-
müller curve in ΩM3(2, 1, 1) has no irreducible components of type (4; 2).
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Proof. Consider an irreducible component (Y, η) of a limiting stable form of type
(4; 2). In either of the configurations described above, the four poles of (Y, η)
come in two pairs (xi, yi), with i = 1, 2, such that Resxi

η = −Resyi η for each
i. The involution J of Y swapping each pair (xi, yi) then satisfies J∗η = −η, in
particular the unique zero p of η is fixed by J .

By Proposition 4.3, the form ησ with Galois-conjugate residues also vanishes
at p. This must be a simple zero, since ησ is not a constant multiple of η.
But η can only vanish to even order at a fixed point of J , as J∗η = −η, a
contradiction. �

Proposition 10.2. A stable curve of type (5; 2, 1) prescribes torsion and is
determined by torsion.

Proof. We compare with the case of type (4; 1, 1). Here, too, there are at most
two connected components of the complement of Y in the dual graph. The case
that there is only one connected component follows exactly along the same lines
as for (4; 1, 1).

In the case of two connected components we may suppose that the one-form
is

ω∞|Y =

(
3∑
i=1

ri
z − ui

+
r4

z − x1
− r4

z − x2

)
dz =

z2dz∏3
i=1(z − ui)

∏2
i=1(z − xi)

.

(10.1)
We may normalize u1 = 1 and by the torsion condition ui = ηi is a root of unity
for i = 2, 3 and x2 = ζx1 for some root of unity ζ 6= 1. The residues at x1 and
x2 add up to zero and this amounts to the condition

ζ2
3∏
i=1

(x1 − ui)−
3∏
i=1

(ζx1 − ui) = 0. (10.2)

Since ζ 6= 1, this polynomial (with coefficients in Q(ζ, ηi)) has degree exactly
three in x1. For fixed torsion order, there is a finite number of choices for the
roots of unity and for each of them there are at most three possibilities for x1.
This shows that forms of this type are determined by torsion.

We may view (10.2) as defining a hypersurface H in A4 with coordinates
x1, ζ,u2 and u3. Over the open set ζ 6= 1 the projection Q to A3 forgetting x1 is
finite, in fact degree three. Since we are interested in points on H whose image
consists of roots of unity, all the possibilities for x1 have bounded height by
Lemma 2.7. Being residues, the ri are images of a rational map Res on H, and
consequently their heights are bounded, too. Since the ratios ri/rj lie in a field
of degree three, we conclude that there is only a finite number of possibilities
for the ratios ri/rj .

We now normalize r1 = 1 and fix one of the finitely many choices for the
other ri. We still have to show that there is only a finite number of roots of unity
that give rise to such a tuple of residues. We follow the argument of [BM12,
Proposition 13.9]. Since there is only one relative period, and since Q is finite,
Q(Res−1(r1 : r2 : r3 : r4)) is a curve inside (C∗)3. If the claim was false, this
curve has to be a translate of a subtorus, in fact a subtorus as explained in loc.
cit. If this were true, we could find roots of unity η2, η3 and ζ and a function
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x1(a) such that (defining η1 = 1)

ω∞|Y =

(
3∑
i=1

ri
z − ηai

+
r4

z − x1(a)
− r4

z − ζax1(a)

)
dz (10.3)

has a double zero at z = 0 and a simple zero at z =∞. Clearing denominators,
we can either use the z3-term or the linear term to solve for x1(a) and take the
limit a→ 0. We obtain

x1(0) =
(q2 − q3)r2 − q3r1

q1r4
and x1(0) =

q1r4

(q2 − q3)r2 − q3r1
,

where ηj = e2πiqj and ζ = e2πiq1 , which implies that

((q2 − q3)r2 − q3r1 − q1r4)((q2 − q3)r2 − q3r1 + q1r4) = 0.

The vanishing of either factor contradicts the fact that {r1, r2, r4} is a Q-basis
of F and this completes the proof that such a stratum prescribes torsion. �

Proposition 10.3. A stable curve of type (6; 2, 1, 1) at the cusp of a Teichmüller
curve generated by (X,ω) ∈ ΩM3(2, 1, 1) prescribes torsion and is determined
by torsion.

The proof combines the fact that the residues are determined up to finitely
many choices by height bounds as in Section 9 and properties of the Harder-
Narasimhan filtration.

Proof. The stable form is determined by the location of the 6 poles and the
three zeros, these we may assume to be at z1 = ∞, z2 = 0 and z3 = 1 with z1

corresponding to the double zero. As in the cases in the principal stratum we
obtain a rational map

Res:M0,9 99K P3

that associates to a point in M0,9 the projective tuple of residues of the corre-
sponding one-form

ω∞ =
z(z − 1) dz∏3

j=1(z − xj)(z − yj)
.

The cross ratios R2j = yj/xj and R3j = (yj − 1)/(xj − 1) are roots of unity by
the torsion condition. By Lemma 9.7, the fact that roots of unity have bounded
height implies there are at most finitely many residue tuples (r1 : r2 : r3) lying
in a field of degree three.

Fix one of these residue tuples. If the statement of the proposition was
wrong, then there is a translate of a torus contained in the fibers of Res over
such a tuple. We will rule out that there is a one-dimensional such torus T ,
given by

R2j = cjt
ej and R3j = djt

fj .

We now use the conditions imposed by the Harder-Narasimhan filtration to
conclude that on the one hand

ω∞ =

 3∑
j=1

rj
z − xj

− rj
z − yj

 dz
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has a double zero at ∞, and that on the other hand by Proposition 4.1

ωσ∞ =

 3∑
j=1

rσj
z − xj

−
rσj

z − yj

 dz

also has a zero at z1 =∞. Equating for the top degree terms in the numerator
we find that

∑3
j=1 rj(xj − yj) = 0 and

∑3
j=1 r

σ
j (xj − yj) = 0. This implies that

(x1 − y1 : x2 − y2 : x3 − y3) = (sτ1 : sτ2 : sτ3)

where the si are the dual basis of (r1, r2, r3). From this we deduce that the
ratios (xi − yi)/(xj − yj) have to be constant along T . Now this differences are
expressed in cross-ratios as xj − yj = (1 − R2j)(1 − R3j)/(R2j − R3j), so that
we have to rule out that

(1− c1te1)(1− d1t
f1) (c2t

e2 − d2t
f2)

(1− c2te2)(1− d2tf2) (c1te1 − d1tf1)
= const.

Using the valuation at t = 0 of the numerator and denominator we deduce that
one of e1 = e2, e1 = f1, e2 = f2 or f1 = f2 holds. Switching the roles of x1 and
y1 or x2 and y2 we may assume that in fact e1 = e2 together with e1 < f1 and
e2 < f2 hold. Degree considerations now imply that f1 = f2. If e1 = 0 then
both d1 = d2 and d2/c2 = d1/c1 hold or d1 = d1/c1 and d2 = d2/c2. The first
case is a contradiction since x1 = y1 and the second case is a contradiction since
R21 = 1, i.e. the pole of ω∞ coincides with the zero along T . If e1 > 0 then
tfi is the largest t-power appearing in one of the linear factors. We deduce that
d1 = d2 and hence R31 = R32 along T . The case e1 < 0 is ruled out the same
way. �

Proof of Theorem 1.1, case ΩM3(2, 1, 1). By Propositions 10.1, 10.2, and 10.3,
the collection of algebraically primitive Teichmüller curves in this stratum is
pantsless-finite, so finiteness follows by Theorem 8.1. �

10.2 The stratum ΩM3(2, 2)hyp

Proof of Theorem 1.1, case ΩM3(2, 2)hyp. See [Möl08, Theorem 3.1] �

In the language introduced above, the main ingredient of this paper (besides
a special case of Theorem 7.2 using Néron models) is that on a hyperelliptic
curve, a stable form of type (2g; g−1, g−1) prescribes torsion and is determined
by torsion.

10.3 The stratum ΩM3(3, 1)

Proof of Theorem 1.1, case ΩM3(3, 1). See [BM12, Theorem 13.1] �

Part of this proof is [BM12, Lemma 13.5] which states in the language intro-
duced above, that an irreducible stable curve of type (6; 3, 1) is not determined
by torsion. This lemma states that this holds only if we exclude three-torsion.

We will see another instance of this phenomenon in the next case.
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10.4 The stratum ΩM3(2, 2)odd

The hyperelliptic locus in this stratum has been dealt with in §6.3 using [MW15].
It remains to establish finiteness in the nonhyperelliptic locus. The proof in this
case parallels [BM12, Section 13].

We will see that a component of type (6; 2, 2) is determined by torsion only if
we exclude 2-torsion. Using the hyperelliptic open-up of [CM12], these excluded
forms only arise as cusps of Teichmüller curves in the hyperelliptic locus.

LetM0,8 be the moduli space of 8 distinct labeled points on P1, correspond-
ing to two points z1 an z2 (zeros) and three pairs of points xi,yi, i = 1, 2, 3
(poles). We associate to such a point the one-form

ωP =
z2dz∏3

j=1(z − xj)(z − yj)
.

We normalize usually the two zeros to be at z1 = 0 and z2 = ∞. With this
normalization, M0,8 is naturally a subset of P5. Let S(2, 2) ⊂ M0,8 be the
locus where ωP satisfies the opposite residue condition Resxj ωP = −Resyj ωP
for j = 1, 2, 3. The variety S(2, 2) is locally parameterized by the projective
4-tuple consisting of the three residues and one relative period, so S(2, 2) is
three-dimensional.

Define the cross-ratio morphisms Qi:S(2, 2) → Gm and Ri:S(2, 2) → Gm

by
Qi = [z1, z2, yi, xi] and Ri = [xi+1, yi+1, xi+2, yi+2],

with indices taken mod 3. In the above normalization Qi = yi/xi. We define
Q,CR:S(2, 2) → G3

m by Q = (Q1, Q2, Q3) and CR = (R1, R2, R3), and define
Res:S(2, 2) → P2 by Res(P ) = (Resxi

ωP )3
i=1. Finally, given ζ = (ζ1, ζ2, ζ3) ∈

G3
m, we define Sζ(2, 2) ⊂ S(2, 2) to be the locus where Qi = ζi for each i.

Lemma 10.4. Any irreducible stable form (X,ω) ∈ ΩM3(2, 2)odd lying over
a cusp of an algebraically primitive Teichmüller curve C generated by (X,ω) ∈
ΩM3(2, 2)odd is equal to ωP for some P ∈ S(ζ1,ζ2,ζ3)(2, 2) ∈ CR−1(T ), where
the ζi are non-identity roots of unity and where T ⊂ G3

m is a proper algebraic
subgroup. Moreover, if we normalize the components (r1 : r2 : r3) of Res(P )
such that r1 ∈ Q, then {r1, r2, r3} is a basis of some totally real cubic number
field.

Proof. The proof of [BM12, Lemma 13.4], using only the description of boundary
points and the torsion condition, applies verbatim. �

Lemma 10.5. Let ζi be roots of unity, all different from one. Unless ζi = −1
for all i, the variety S(ζ1,ζ2,ζ3)(2, 2) is zero-dimensional. If ζi = −1 for all i,
then S(−1,−1,−1)(2, 2) = S(2, 2) is two-dimensional.

Proof. S(ζ1,ζ2,ζ3)(2, 2) is cut out by the equations yi = ζixi and

Di = ζ2
i

∏
j 6=i

(xi − xj)(xi − ζjxj)−
∏
j 6=i

(ζixi − xj)(ζixi − ζjxj), (10.4)

which expresses the opposite-residue condition.
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Suppose that S(ζ1,ζ2,ζ3)(2, 2) has a positive dimensional component. Then
there is a homogeneous polynomial P of some degree d < 4 which divides Dk

for all k. Expanding Dk, we obtain

Dk = x4
kζ

2
k(1− ζk)(1− ζ2

k) + · · ·+ ζk+1x
2
k+1ζk+2x

2
k+2(1− ζ2

k)(1− ζk),

with indices taken mod 3. Because eachDk contains x4
k with non-zero coefficient,

each monomial xdk appears in P with non-zero coefficient. We have

P (0, x2, x3) = α2x
d
2 +α3x

d
3 + . . . | D1(0, x2, x3) = ζ2x

2
2ζ3x

2
3(1− ζ2

1 )(1− ζ1).

This is not possible since the αi are nonzero since we may suppose ζ2
1 6= ±1,

possibly after swapping the indices.
�

Proposition 10.6. There is a finite number of projectivized triples of real cubic
numbers (r1 : r2 : r3) such that for any irreducible periodic direction on any
(X,ω) ∈ ΩM3(2, 2)odd generating an algebraically primitive Teichmüller curve,
the projectivized widths of the cylinders in that direction is one of the triples
(r1 : r2 : r3).

In particular, there are only a finite number of trace fields F of algebraically
primitive Teichmüller curves in ΩM3(2, 2).

Proof. By Northcott’s Theorem, we need only to give a uniform bound for
the heights of the triples (r1 : r2 : r3) of widths of cylinders, or equiva-
lently of residues of limiting irreducible stable forms satisfying the conditions of
Lemma 10.4.

If ζi = −1 for i = 1, 2, 3 the resulting stable form over any cusp of the
Teichmüller curve is hyperelliptic. By the hyperelliptic open-up [CM12] then
the whole Teichmüller curve parameterizes a family of hyperelliptic curves. This
case has been dealt with in Section 6.3.

In the remaining cases S(ζ1,ζ2,ζ3)(2, 2) is zero-dimensional by Lemma 10.5
and the proof of [BM12, Proposition 13.7] can be copied. �

Proposition 10.7. Given a basis (r1, r2, r3) over Q of a totally real cubic
number field, there are only finitely many stable forms over cusps of algebraically
primitive Teichmüller curves in ΩM3(2, 2)odd having residues (r1, r2, r3).

Proof. Consider the variety C = Res−1(r1 : r2 : r3) ⊂ S(2, 2) of forms hav-
ing residues ±ri and two zeros of order 2. A dimension count shows that C is
at least one-dimensional. In fact, C is exactly one-dimensional, as C is locally
parameterized by the single relative period of the forms ωP . Let C0 be a compo-
nent of C. We suppose that C0 contains infinitely many cusps of algebraically
primitive Teichmüller curves and derive a contradiction. Consider the image
Q(C0) ⊂ (C∗)3. We claim thatQ(C0) is a curve. If not, andQ(C0) = (ζ1, ζ2, ζ3),
then C0 is a component of S(ζ1,ζ2,ζ3), hence ζi = −1 for all i and we are in the
hyperelliptic case that has already been dealt with.

Now since C0 contains infinitely many cusps of Teichmüller curves, Q(C0)
must contain infinitely many torsion points of (C∗)3 by Lemma 10.4. From this
it follows that Q(C0) is a translate of a subtorus of (C∗)3 by a torsion point.
As in [BM12, Proposition 13.9] one checks that Q(C0) is in fact a subtorus of
(C∗)3, rather than a translate.
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It remains to show that Q(C) is not a subtorus of (C∗)3. If this were true,
we could find roots of unity ζi and a projective triple (x1(a) : x2(a) : x3(a))
depending on a parameter a, such that for all a ∈ C the differential

ω∞ =

(
3∑
i=1

ri
z − xi(a)

− ri
z − ζai xi(a)

)
dz =

p(z)dz∏
i(z − xi(a))(z − ζai xi(a))

has double zeros at z = 0 and at z = ∞. The vanishing of the z4-term of p(z)
implies ∑

rixi(1− ζai ) = 0

and the constant term (divided by x1x2x3) also yields a linear equation. Using
the normalization x1 = 1 we may solve the two linear equations for x2 and x3.
We then take the limit of x2 and x3 as a → 0, applying l’Hôpital’s rule twice.
If we let ζi = e2πiqi for some qi ∈ Q, we obtain

x2(0) =
q3r3 − q1r1

q2r2 − q3r3
and x3(0) =

q2r2 − q1r1

q3r3 − q2r2
. (10.5)

We normalize r1 = 1 and write r̃i = qiri as shorthand. Taking the derivative
of the z3-term of p(z) with respect to a at a = 0 and making the substitution
(10.5), we obtain

3∑
i=1

r̃3
i + 3r̃1r̃2r̃3 −

∑
i 6=j

r̃ir̃
2
j = 0.

and from the constant terms with this substitution the limit a = 0 is

r̃3

(
−6r̃1r̃2r̃3 +

∑
i 6=j

r̃ir̃
2
j

)
= 0

Taking the resultant with respect to r2 we obtain

q1r
6
2q3r3 (q1 − q3r3) (q1 + q3r3) = 0.

Since {r1 = 1, r2, r3} is a Q-basis of F , this gives the contradiction we are
aiming for. �

Proof of Theorem 1.1, case ΩM3(2, 2)odd. This is now a consequence of Propo-
sition 10.7 and [BM12, Proposition 13.10]. �
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