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Abstract

We study the action of the Veech group of square-tiled surfaces

of genus two on homology. This action defines the homology Veech

group which is a subgroup of SL2(OD) where OD is a quadratic order

of square discriminant. Extending a result of Weitze-Schmithüsen we

show that also the homology Veech group is a totally non-congruence

subgroup with exceptions stemming only from the prime ideals lying

above 2. While Weitze-Schmithüsen’s result for Veech groups is asym-

metric with respect to the spin structure our use of the homology Veech

group yields a completely symmetric picture.
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1 Introduction

Veech groups of square-tiled surfaces are an interesting class of subgroups of
SL2(Z). Ellenberg and McReynolds showed in [ER12] that with some minor
restrictions all subgroups of SL2(Z) appear as a Veech group if the genus of
the square-tiled surface is allowed to be large. However, for genus two square-
tiled surfaces Weitze-Schmithüsen proved in [WS12] that these Veech groups

∗The author is partially supported by the ERC-StG 257137.
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are very far away from being congruence subgroups. In fact, the Veech group
of a genus two square-tiled surface has two representations in SL2(Z) given
by its action on homology. These two representations yield a pair of matrices
(A1, A2) ∈ SL2(OD) where OD is a quadratic order of square discriminant
(see Section 2). The image of this representation is called homology Veech
group. In this paper we generalize Weitze-Schmithüsen’s result by showing
that also the homology Veech group is very far away from being a congruence
subgroup.

For our result Weitze-Schmithüsen’s approach of using different prototypes
in the sense of [Bai07] or [McM05] at the same time seems to be of limited
use since the conjugation on the complementary part of homology (see Sec-
tion 3) is unknown. Moreover her idea of using the Wohlfahrt level may
not be easily carried over to subgroups of SL2(OD) since it is not evident
how to generalize the Wohlfahrt level to this case. Indeed our additional
ingredients are therefore that we explicitly find coset representatives like in
[Wei12] and use Nori’s Theorem, which states that the number of elements
of a subgroup of SL2(Fp) generated by parabolic elements is limited to only
three possibilities (Corollary 2.12). Our arguments work step by step as we
do consider congruence subgroups of decreasing level.

While Weitze-Schmithüsen takes into account principal congruence subgroups
we look at Hecke congruence subgroups instead. Nori’s Theorem [Nor87,
Theorem 5.1] implies that the assertion for principal congruence subgroups
follows from the case of Hecke congruence subgroups at least for all prime
ideals. So on the level of Veech groups the two statements are almost equiv-
alent and considering Hecke congruence subgroups is not a great restriction.
Furthermore Weitze-Schmithüsen’s theorem is asymmetric with respect to
the spin structure of the square-tiled surfaces but our approach of using the
homology Veech group symmetrizes the result.

Let us now make more precise what we mean by “being very far away from be-
ing a congruence subgroup“: let O be either Z or more generally a quadratic
order OD. Then a finite index subgroup of SL2(O) is called a congruence

subgroup if it contains a principal congruence subgroup Γ(a) (see Section 2).
A finite index subgroup Γ of SL2(O) is a congruence subgroup if and only
if there exists an ideal a ⊂ O such that the level index [SL2(O/a) : ρa(Γ)]
equals the index [SL2(O) : Γ] where ρa : SL2(O) → SL2(O/a) is the natural
projection. The group Γ is thus called a non-congruence subgroup of

level a if the two indices differ and Γ is called a totally non-congruence

subgroup of level a if [SL2(O/a) : ρa(Γ)] = 1. Being a totally non-
congruence subgroup of level a is equivalent to the index [Γ : Γ∩Γ(a)] being
equal to the index [SL2(O) : Γ(a)].
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Weitze-Schmithüsen proved in [WS12] the following theorem on Veech groups
of square-tiled surfaces in ΩM2(2):

Theorem 1.1. (Weitze-Schmithüsen, [WS12, Theorem 3]) Let Ld be
a square-tiled surface in ΩM2(2) with d squares and let SL(Ld) be its Veech
group. We distinguish the two different cases that Ld is in the orbit Ad and
Bd in the classification of square-tiled surfaces in ΩM2(2) (Theorem 3.6).

(1A) If d is even or d is odd and Ld is in Ad, or d = 3, then we have
[SL(Ld) : SL(Ld) ∩ Γ(n)] = [SL2(Z) : Γ(n)] for all odd n ∈ N.

(1B) If d is even or d is odd and Ld is in Ad, or d = 3, then we have
[SL(Ld) : SL(Ld) ∩ Γ(n)] = 1

3 [SL2(Z) : Γ(n)] for all even n ∈ N.

(2) If d is odd, d ≥ 5 and Ld is in Bd then SL(Ld) is a totally non-
congruence subgroup, i.e. [SL(Ld) : SL(Ld) ∩ Γ(n)] = [SL2(Z) : Γ(n)]
for all n ∈ N.

Note that the theorem is asymmetric with respect to the spin structure. If
one introduces the Hecke congruence subgroups Γ0(n) where only the lower
left entry of the matrices has to be equal to 0 mod n, then the theorem
implies:

Corollary 1.2. Let Ld be a square-tiled surface in ΩM2(2) with d squares
and let SL(Ld) be its Veech group.

(1A) If d is even, or d is odd and Ld is in Ad, or d = 3, then we have
[SL(Ld) : SL(Ld) ∩ Γ0(n)] = [SL2(Z) : Γ0(n)] for all odd n ∈ N.

(1B) If d is even, or d is odd and Ld is in Ad, or d = 3, then we have
[SL(Ld) : SL(Ld) ∩ Γ0(n)] =

2
3 [SL2(Z) : Γ0(n)] for all even n ∈ N.

(2) If d is odd, d ≥ 5 and Ld is in Bd then [SL(Ld) : SL(Ld) ∩ Γ0(n)] =
[SL2(Z) : Γ0(n)] for all n ∈ N.

Conversely, Nori’s Theorem [Nor87, Theorem 5.1] yields that the asser-
tion of the theorem also follows from the corollary for all prime numbers
p ∈ N.

In this paper, we generalize Weitze-Schmithüsen’s Theorem in the following
setting: a square-tiled surface π1 : X → E1 with g(X) = 2 and consisting of
d unit squares is called minimal if it does not factor via an isogeny. For a
minimal square-tiled surface there exists a covering π2 : X → E2 of the same
degree such that the induced morphism Jac(X) → E1 × E2 is an isogeny
(of degree d2). We call E2 the complementary elliptic curve (see Sec-
tion 3, [BL04] or [Kan03] for details). This means that H1(X,Z) contains
Λ := H1(E1,Z) ⊕ H1(E2,Z) as a sublattice of index d2 and that the sym-
plectic pairing on H1(X,Z) respects this decomposition. The action of the

3



Veech group on X induces an action on homology and thus an action on Λ.
For a given matrix A in the Veech group the induced action on Λ is given by
a pair of matrices Ã := (A1 = A,RA2R

−1) where Ai acts on H1(Ei,Z) and
R = diag(−1, 1) (for details see Section 3). More precisely, Ã is a matrix in
SL2(Od2) where Od2 is the quadratic order of discriminant d2. We call the
corresponding subgroup of SL2(Od2) the homology Veech group.

In particular, the homology Veech group is a subgroup of a Lie group of
rank 2 while the Veech group is only a subgroup of a Lie group of rank 1.
However, the homology Veech group is a subgroup of SL2(Od2) of infinite
index. Note that the notion of being a totally non-congruence subgroup
of level a still makes sense in this situation if one defines this property via
[Γ : Γ ∩ Γ(a)] = [SL2(O) : Γ(a)].

Given those cases where Weitze-Schmithüsen’s result implies total non-con-
gruence it is the most interesting case to analyze primes where this fails for
the homology Veech group. The asymmetry with respect to the spin struc-
ture which appeared in the theorem of Weitze-Schmithüsen then vanishes.
The topological reason for this is that the number of integral Weierstraß
points is well-defined not only for the square-tiled covering map but also for
the complementary covering as we will prove:

Theorem 3.9. Let π1 : Ld → E1 be a square-tiled surface in ΩM2(2) and
let E2 denote the complementary elliptic curve. If π1 : Ld → E1 has even
spin, then π2 : Ld → E2 has odd spin. If π1 : Ld → E1 has odd spin, then
π2 : Ld → E2 has even spin.

This result allows us to preserve the main properties of Weitze-Schmithü-
sen’s theorem but to solve its strange asymmetry with respect to the spin
structure.

Theorem 4.1. Let Ld be a square-tiled surface in ΩM2(2) with d squares
and let SL1(Ld) be its homology Veech group. We distinguish the two different
cases that Ld is in the orbit Ad and Bd in the classification of square-tiled
surfaces in ΩM2(2). Moreover if d is odd let 2 = p2p

σ
2 be the decomposition

of 2 into prime ideals, where p2 is the distinguished common prime ideal
divisor of 2 and (2, 2 − d) in OD.

(1A) If d is odd and Ld is in Ad, or d = 3, then [SL1(Ld) : SL
1(Ld)∩Γ0(a)] =

[SL2(Od2) : Γ0(a)] for all ideals a ⊂ Od2 with (p2, a) = 1.

(1B) If d is odd and Ld is in Ad, or d = 3, then [SL1(Ld) : SL
1(Ld)∩Γ0(a)] =

2
3 [SL2(Od2) : Γ0(a)] for all ideals with p2|a.

(2A) If d is odd and Ld is in Bd, then we have [SL1(Ld) : SL
1(Ld)∩Γ0(a)] =

[SL2(Od2) : Γ0(a)] for all ideals a ⊂ Od2 with (pσ2 , a) = 1.
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(2B) If d is odd and Ld is in Bd, then we have [SL1(Ld) : SL
1(Ld)∩Γ0(a)] =

2
3 [SL2(Od2) : Γ0(a)] for all ideals with pσ2 |a.

(3A) If d is even, then [SL1(Ld) : SL
1(Ld) ∩ Γ0(a)] = [SL2(Od2) : Γ0(a)] for

all ideals a ⊂ Od2 with 2 ∤ N (a) (the norm of a).

(3B) If d is even, then [SL1(Ld) : SL1(Ld) ∩ Γ0(a)] =
2
3 [SL2(Od2) : Γ0(a)]

for all ideals with 2|N (a),

For primitive Teichmüller curves in ΩM2(2), i.e. those not stemming
from square-tiled surfaces, and fundamental discriminants, a theorem which
exactly corresponds to Theorem 4.1 was proven in [Wei12, Theorem 5.1].
Therefore this paper almost completes the picture for ΩM2(2) and Γ0. Then
Nori’s theorem also almost closes the gap to principal congruence subgroups.
To get a complete picture one only has to perform a similar analysis for those
Teichmüller curves whose discriminants are neither square nor fundamental.

Acknowledgement. I am very grateful to Martin Möller for his constant
support of my work on this paper and for many very fruitful discussions.
Moreover I would like to thank André Kappes for showing me how to prac-
tically calculate elements of the homology Veech group and my office mate
Quentin Gendron for always being willing to discuss my mathematical prob-
lems.

2 The Special Linear Group over square quadratic

orders

In this section we introduce quadratic orders OD. We will almost exclu-
sively deal here with the case of square discriminants. In particular, we
will calculate Spec OD (Proposition A.12) and discuss the ramification of
prime numbers p ∈ N over OD. As most things here work exactly like in
the case of fundamental discriminants we postpone most of the proofs to
the appendix. Afterwards we will focus on the special linear group, define
congruence subgroups and calculate some important indexes.

Quadratic orders. Recall that any quadratic order is isomorphic to one
of the form

OD = Z[T ]/(T 2 + bT + c),

where b, c ∈ Z and b2 − 4c = D and the isomorphism class does only depend
on the discriminant D (see e.g. [Bai07, Chapter 2.2]). For every D ≡ 0, 1
mod 4 there hence exists a unique quadratic order. In this paper we will
only be concerned about the case where D = d2 is a square. To the best of
our knowledge, there does not seem to be any good reference, where these
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special quadratic orders are treated in detail. Therefore we want to collect
some elementary facts and to explain similarities and differences to the non-
square case.

Square discriminants. Let us describe the structure of the quadratic
order. As D = d2 is a square we have that

OD = {(x, y) ∈ Z× Z | x ≡ y mod d} .

The quadratic order is hence a subring of K = Q ⊕ Q, where addition and
multiplication are defined componentwise. The algebra K may be interpreted
as a substitute for the quadratic number field Q(

√
D) where OD is contained

in for non-square D (this is also the reason for our notation). Furthermore we
can regard Q⊕Q as an extension of Q by the diagonal map Q → Q⊕Q. This
makes perfectly sense since Z is then embedded into OD by this construction.
The Galois automorphism of Q⊕Q is given by

(x, y) 7→ (x, y)σ := (y, x).

Norm and trace. We can use this to define norm and trace on OD and
Q⊕Q respectively in the following way:

N ((x, y)) := (x, y)(x, y)σ ,

tr((x, y)) := (x, y) + (x, y)σ .

We call 1 := (1, 1) and w := (0, d) the standard basis of OD as they indeed
generate OD as a Z−module (see Appendix A for a proof). We hence have:

Proposition 2.1. The quadratic order OD is Noetherian.

Ideals. Of course, one may define ideals in OD, prime ideals, maximal
ideals and so on in the usual way. It follows from Proposition 2.1 and Krull’s
Hauptidealsatz that every prime ideal in OD is also maximal (see e.g. [Har77,
Theorem 1.11A]). For an element z ∈ OD we define the principal ideal

generated by z by:
(z) := zOD := {za|a ∈ OD} .

Now let (0) 6= a ⊂ OD be an arbitrary ideal in OD. Then its norm N (a) is
defined as the number of the elements in OD/a if this quotient is finite. If
the quotient is infinite we set N (a) := 0. In particular, if z ∈ OD is a zero
divisor, then we have N ((z)) = 0. The definition perfectly generalizes the
norm of an element as N ((z)) = N (z) holds for all z ∈ OD (see Lemma A.5).
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Ideals as modules. When we want to calculate Spec OD it turns out to
be very useful to consider ideals as Z−modules. As in the case of non-square
discriminants, it is essential to see that every Z−module in OD is generated
by at most two elements.

Proposition 2.2. Let M ⊂ OD be a Z-module in OD. Then there exist
integers m,n ∈ Z≥0 and a ∈ Z such that

M = [n1; a1+mw] := n1Z⊕ (a1 +mw)Z.

Proof. See Proposition A.9

As it does simplify the notation and cannot cause any confusion we will
from now on leave away the symbol 1 when we want to embed Z into OD.
In other words, we write every Z-module in OD as [n; a + mw] for some
a, n,m ∈ Z.

Since every ideal of OD is also Z-module, it is generated by at most two
elements. The converse is not true since e.g. M = [1; 0] = Z is a Z-submodule
of OD, but not an ideal.

Proposition 2.3. A nonzero Z-module M = [n; a+mw] is an ideal if and
only if m|n, m|a, i.e. a = mb for some b ∈ Z, and n|mN (b+ w).

These conditions are just the same as in the case of non-square dis-
criminants. From these one immediately gets (both facts are proven in the
appendix).

Corollary 2.4. Every ideal of prime norm p is of the form [p; a + w] for
some a ∈ Z with p|N (a+ w). These ideals are indeed prime ideals.

This corollary implies that there does not exist any inert prime number
if D is a square because it is always possible to find an a ∈ Z such that
p|N (a+ w), i.e. a = p.

Proposition 2.5. Let OD be a quadratic order of square discriminant. Then

Spec OD = {[p; p+ w], [p; p − d+ w] | p ∈ Z prime with p ∤ D}
∪ {[p; p+ w] | p ∈ Z prime with p|D} .

Proof. See Proposition A.12.

We are thus able to count the number of different prime ideals of a given
norm p if p is a prime number. This is also an important step towards the
ramification theory of prime numbers p ∈ Z over OD. Note, that for p|D we
have (p) 6= [p;w]2 since p itself is not contained in the right-hand side.

7



Ramification. We may now deduce the ramification theory for prime num-
bers over OD (a detailed proof is given in the appendix).

Theorem 2.6. Let p ∈ Z be a prime number.

(i) If p ∤ d then (p) = aaσ for a prime ideal a of norm p, i.e. p splits.

(ii) If p|d then (p) is an irreducible ideal which is not prime.

Corollary 2.7. Let z ∈ OD be an arbitrary element with (d,N (z)) = 1.
Then the principal ideal (z) can be uniquely written as a product of prime
ideals.

Let us say a few words about ideals generated by elements z ∈ OD with
(d,N (z)) 6= 1. One might have z ∈ Z with z|d. Then one can uniquely
write z as a product of prime numbers pi ∈ Z and each of these pi defines
an irreducible ideal by Theorem 2.6. However, there also exist irreducible
ideals generated by z ∈ OD with z ∤ d. An example for this to happen is
d = 2 and z = (4, 6). Then 2 ∤ z since (2, 3) /∈ O4 and (z) is an irreducible
ideal.

The special linear group. We define SL2(OD) to be the group of all 2
by 2 matrices with entries in OD and determinant 1. Let us describe the
elements in SL2(OD) differently. An element

A =

(
(a1, a2) (b1, b2)
(c1, c2) (d1, d2)

)
∈ SL2(OD)

has determinant (a1d1 − b1c1, a2d2 − b2c2) = (1, 1).

Congruence subgroups. Now we want to define some of the main objects
of this paper, namely congruence subgroups. For an ideal a ⊂ OD the
principal congruence subgroup of level a is defined by

ΓD(a) :=

{(
a b
c d

)
∈ SL2(OD) :

(
a b
c d

)
≡

(
1 0
0 1

)
mod a

}
.

As usual, a subgroup Γ ⊂ SL2(OD) is called a congruence subgroup,
if it contains a principal congruence subgroup. The two most examples of
congruence subgroups which we will be interested in are

ΓD
0 (a) :=

{(
a b
c d

)
|
(
a b
c d

)
≡

(
∗ ∗
0 ∗

)
mod a

}

and

ΓD
1 (a) =

{(
a b
c d

)
|
(
a b
c d

)
≡

(
1 ∗
0 1

)
mod a

}
.

One might also define ΓD(a) as the kernel of the projection SL2(OD) →
SL2(OD/a). Indeed, we even get the following proposition.

8



Proposition 2.8. The sequence

0 → ΓD(a) → SL2(OD) → SL2(OD/a) → 0

is exact.

The index of some congruence subgroups. We now want to calculate
the indexes of ΓD(a) and ΓD

0 (a) in SL2(OD) for an arbitrary ideal a ⊂ OD.
The formulas which we will deduce are reminiscent of the formulas for non-
square discriminants. The reason is that one can imitate the standard proof,
which is given e.g. in [Kil08, Chapter 2.4] although one has to keep in mind
that there are irreducible elements which are not prime. Obviously, the
following inclusions hold for any ideal a ⊂ OD:

ΓD(a) ⊂ ΓD
1 (a) ⊂ ΓD

0 (a) ⊂ SL2(OD).

We now state a lemma about the indexes of these inclusions. For the proofs
we refer the reader to [Kil08] or [Wei08].

Lemma 2.9. Let a ⊂ OD be an ideal of finite norm.

(i) Then
[SL2(OD) : Γ

D
0 (a)] = #P 1(OD/a)

holds, where P 1(·) denotes the projective space of dimension one.

(ii) We have
[ΓD

0 (a) : Γ
D
1 (a)] = N (a).

(iii) We have
[ΓD

1 (a) : Γ
D(a)] = φD(a)

where φD(·) is the generalized Euler totient function, i.e. it counts the
number of units in OD/a.

What is left to do is to calculate the number of elements of the projective
space and the number of units. We start with two special cases and then
deduce from them the general formula. First let N ∈ OD be an arbitrary
element with (N (N), d) = 1. Then Theorem 2.6 implies that the quotient
OD/NOD completely splits into groups of prime order. Therefore we get
(compare [Wei12, Chapter 1.3])

#P 1(OD/NOD) = N (N)
∏

p|N

(1 + 1/N (p))

and
φD(N) = N (N)

∏

p|N

(1− 1/N (p))

9



where both products are taken over all prime ideals p dividing N . On the
other hand, if N ∈ Z is an arbitrary element with N |d then let p1, ..., pn be
all the prime numbers in Z that divide N . Then OD/NOD splits into the
product of the OD/piOD but not any further by Theorem 2.6. Hence

#P 1(OD/NOD) = N (N)
∏

p|N

(1 + 1/p))

and
φD(N) = N (N)

∏

p|N

(1− 1/p))

where both products are taken over all prime numbers p ∈ Z dividing N .

Now we come to the general case. So let a ⊂ OD be an arbitrary ideal. By
the symmetry of OD it is clear that a and aσ define congruence subgroups
of the same index. On the other hand the product of a and aσ is the ideal
generated by the integer N (a). We may write N (a) uniquely as f ·M with
(M,d) = 1 and f sharing all of its prime divisors in Z with d. So we can
apply the two special cases which we just discussed to get:

Theorem 2.10. Let a ⊂ OD be an arbitrary ideal.

(i) Then the index of ΓD
0 (a) in SL2(OD) is given as

N (N)
∏

(p,pσ)
p|N (a)
ppσ ∤a

(1 + 1/N (p))
∏

(p,pσ)
p|N (a)
ppσ |a

(1 + 1/N (p))2
∏

p|N (a)
p|d

(1 + 1/p)

where the first and the second product are taken over all pairs of con-
jugated prime ideals and the third is taken over all prime numbers
dividing d.

(ii) The index of ΓD(N) in SL2(OD) is given as

N (N)3
∏

(p,pσ)
p|N (a)
ppσ ∤a

(1− 1/N (p)2)
∏

(p,pσ)
p|N (a)
ppσ |a

(1− 1/N (p)2)2
∏

p|N (a)
p|d

(1− 1/p2)

where the products are taken over the same objects as in (i).

In other words, the indexes of ΓD
0 (a) and of ΓD(a) are as big as one would

expect if one regarded prime divisors of the discriminant as ramified prime
numbers (which they are not by Theorem 2.6).
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Non-congruence subgroups. Recall that a finite index subgroup Γ of
SL2(OD) is a congruence subgroup if and only if there exists an ideal a ⊂
OD such that the level index [SL2(OD/a) : ρa(Γ)] is equal to the index
[SL2(OD) : Γ] where ρa : SL2(OD) → SL2(OD/a) is the natural projection.
The group Γ is called a non-congruence subgroup of level a if the two
indices differ and Γ is called a totally non-congruence subgroup of level

a if [SL2(OD/a) : ρa(Γ)] = 1. Being a totally non-congruence subgroup of
level a is yet equivalent to the index [Γ : Γ ∩ Γ(a)] being equal to the index
[SL2(OD) : Γ(a)]. Note that the notion of being a totally non-congruence
subgroup of level a still makes sense in the situation that Γ is of infinite
index if one defines this property via [Γ : Γ∩Γ(a)] = [SL2(OD) : Γ(a)]. More
details on non-congruence subgroups can be found in [WS12, Chapter 3].

Nori’s Theorem. We have just seen that congruence subgroups are closely
related to subgroups of GLn(Fm) where Fm denotes the finite field with m
elements. In this situation one of the most powerful tools is Nori’s theorem.
It describes the subgroups of GLn(Fp) for n ∈ N arbitrary and p ∈ N a
prime number with p > n. We closely follow the exposition in [Rap12,
Chapter 3.2] here: Let H be an arbitrary subgroup of GLn(Fp) and let
X := {x ∈ H | xp = 1} and let H+ = 〈X〉 ⊂ H. An element x ∈ H lies in
X if and only if (x− 1)n = 1. We may thus for fixed x ∈ X define

log x := −
p−1∑

i=1

(1− x)i

i
.

Observing that log(x)n = 0, we see that for any t ∈ Fp, the algebraic closure
of Fp, we can define

x(t) := exp(t · log x) where exp z =

p−1∑

i=0

zi

i!
.

We regard x(t) as a 1-parameter subgroup of GLn and let H̃ be the Fp-
subgroup of GLn generated by the x(t).

Theorem 2.11. (Nori, [Nor87]) If p is large enough (for a given n), then
H+ coincides with H̃(Fp), the subgroup of H̃(Fp)

+ generated by all unipotents
contained in it.

If we specify to the case of GL2, which is the only case we will make use
of, we get (compare [Rap12, Chapter 3.2]):

Corollary 2.12. For any subgroup of H ⊂ GL2(Fp), the subgroup H+ has
either 1 or p or p3 − p elements.
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Theta functions and theta characteristic. The 2-torsion points on
an elliptic curve are in a natural correspondence with theta characteristics
[FK92, Corollary VI.1.5]. Moreover the Weiterstraß points on a curve of
genus 2 correspond to the odd theta characteristics (see e.g. [FK92, Chap-
ter VII.1]). We will therefore quickly introduce this concept, but restrict
here to dimension 2: Let H2 denote the Siegel upper half space of genus
2. Then we define for ǫ, ǫ′ ∈ {0, 1}2x1 the theta function with theta

characteristic (ǫ, ǫ′) on C2 ×H2 by

θ

[
ǫ
ǫ′

]
(u,Z) :=

∑

x∈Z2+ǫ/2

exp

(
2πi

(
1

2
xZxT + x

(
u+

ǫ′

2

)))
.

The theta characteristic is called odd if ǫ(ǫ′)T is odd and even otherwise.
Accordingly we denote the zero-locus of the theta function by

Θ :=

{
z ∈ Cg | θ

[
ǫ
ǫ′

]
(z,Π) = 0

}

where Π is a fixed element in H2. We leave away Π in the definition of Θ as
it will be clear from the context which matrix is meant.

3 Teichmüller curves

A Teichmüller curve C → Mg is an algebraic curve in Mg that is to-
tally geodesic with respect to the Teichmüller metric. Every Teichmüller
curve stems from the projection of a SL2(R)-orbit of a translation surface
(X,ω) ∈ ΩMg to Mg (see e.g. [Möl11]). The stabilizer of (X,ω) under the
SL2(R)-action is called its Veech group. On the contrary, the projection of
the SL2(R)-orbit of a flat surface (X,ω) to Mg yields a Teichmüller curve if
and only if its Veech group is a lattice. Moreover the Veech group is never
cocompact. Although Teichmüller curves in higher genera Mg are not satis-
factorily well understood yet, there has been great progress on Teichmüller
curves in M2 in the last ten years (see e.g. [Bai07], [McM03], [Muk11]).

The simplest examples of Teichmüller curves are generated by square-tiled

surfaces (or Origamis), i.e. flat surfaces (X,ω), where X is obtained as
a covering of a torus ramified over at most one point and ω is the pullback
of the holomorphic one-form on the torus. A square-tiled surface is called
primitive if the developing vectors of the saddle connections span Z2. The
square-tiled surfaces which we will treat here exclusively are the L-shaped
polygons L(m,n) (compare Figure 1) that all lie ΩM2(2).

12
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Figure 1. A L(m,n) square-tiled surface with indicated pullback of the
symplectic basis of H1(E1,Z).

The decomposition of homology. A square-tiled surface π1 : X → E1

with g(X) = 2 and consisting of d unit squares is called minimal if it
does not factor via an isogeny. In this case, it is known that X is split

Jacobian, i.e. for a minimal square-tiled surface there exists a torus E2 and
a covering π2 : X → E2 of the same degree such that the induced morphism
Jac(X) → E1 × E2 is an isogeny of degree d2 (compare [Kuh88]). We call
E2 the complementary elliptic curve. Note that we may identify the
2-torsion points of Jac(X) and the 2-torsion points of E1 × E2 if d is odd.
In our case, E2 can be chosen in a canonical way. Roughly speaking, it is
just the complementary variety of E1 ⊂ Jac(X). An explicit construction of
E2 is given e.g. in [Kan03, Proposition 2.7] (see also [BL04, Chapters 5 and
12]). Then H1(E2,Z) is the symplectic orthogonal complement of H1(E1,Z)
inside H1(X,Z).

Remark 3.1. A square-tiled surface is minimal if and only if it is primitive
(see [Kap11]).

This implies that H1(X,Z) contains Λ := H1(E1,Z) ⊕ H1(E2,Z) as a
sublattice of index d2 and that the symplectic pairing on H1(X,Z) respects
this decomposition and is of type (d) on each direct summand. The action of
the affine group Aff+(π1) induces an action on homology and thus induces
an action on H1(Ei,Z). We denote these automorphism groups by Γi and
let Γi(φ) be the image of φ ∈ Aff+(π1).

Lemma 3.2. If we regard the affine group Aff+(π1) as a subgroup of SL2(Z)
(and not of PSL2(Z)) then the differential map D : Aff+ → Γ(π1) is an
isomorphism. More precisely, Γ1(φ) = D(φ). Hence there is a natural ho-
momorphism f : Γ(π1) → Γ2.

Proof. The first statement follows from the fact that minimal genus 2 covers
have no internal automorphisms if d > 2 [Kan03, Proposition 2.1]. Hence
D : Aff+(π1) → Γ(π1) is an isomorphism. The second statement is just the
definition of the action of the affine group.

From now on and until the end of this paper we fix the bases of both of
the homology groups H1(Ei,Z). The explicit choice of the basis on H1(E1,Z)

13



is indicated in Figure 1. Kani’s result in [Kan03, Chapter 4 and 5] imply
that for this choice of bases the reduction of f mod d is conjugation by the
diagonal matrix R := diag(−1, 1). Thus for a given matrix A in the Veech
group the induced action on Λ is given by a pair of matrices Ã := (A1 =
A,RA2R

−1) where Ai acts on H1(Ei,Z) and Ã ∈ SL2(OD). We call the
corresponding group the homology Veech group.

Example 3.3. The homology Veech group of L(2, 2) is generated by the
matrices (

1 2− w
0 1

)
,

(
1 0

2− w 1

)
,

(
0 1
−1 0

)
.

Spin structure. Due to a result of Kani in [Kan03] the spin structure of
a square-tiled surface in ΩM2(2) may be defined via the number of inte-
gral Weierstraß points: recall that in genus 2 the Weierstraß points of a
square-tiled surface are the six fixed points of the hyperelliptic involution.
A Weierstraß point is called integral if it is a vertex of one of the squares.

Proposition 3.4. (Kani, [Kan03, Proposition 2.4]) A primitive square-
tiled surface in ΩM2(2) consisting of d squares has

• for d = 3, exactly 1 integral Weierstraß point

• for even d, exactly 2 integral Weierstaß points

• for odd d, either 1 or 3 integral Weierstraß points and both values occur.

If d is odd then the spin structure of the square-tiled surface is called
even if the number of Weierstraß point is 1 and otherwise it is called odd.

Remark 3.5. The result of Kani was originally formulated in the language
of abstract algebraic geometry. Its relevance for square-tiled surfaces was first
observed in [Möl05, Remark 3.4]. Our formulation of the result goes back to
[HL06, Proposition 4.3].

Hubert and Lelièvre proved in [HL06] that the SL2(R)-orbits of square-
tiled surfaces in ΩM2(2) can be distinguished by their spin structure. We
restate their result in a way which is more applicable for us (compare also
[WS12]):

Theorem 3.6. (Hubert/Lelièvre) The set of primitive square-tiled sur-
faces in ΩM2(2) with d squares forms one single SL2(Z) orbit, if d is even
or d = 3. They form two orbits called Ad and Bd distinguished by their num-
ber of integral Weierstraß points, if d is odd and greater than 3. A square-tiled
surface L(m,n) with d = m + n − 1 squares belongs to Ad if both m and n
are even and belongs to Bd if both m and n are odd. Each such square-tiled
surface-orbit is generated by some L(m,n).

14



Remark 3.7. More generally, Teichmüller curves in ΩM2(2) have been
completely classified by McMullen in [McM05] by their spin structure and
their discriminant.

We embed the Teichmüller curve X ⊂ M2 in its Jacobian in the following
way: we choose an arbitrary Weierstraß point z ∈ X and define

ϕz : X → Jac(X), x 7→ [x− z].

Then ϕz(X) = Θ if [z] = 1
2(Idǫ

′ +Πǫ) (compare [FK92, Chapter VII.1.2]).

Spin structure of the complementary elliptic curve. By counting the
number of integral Weierstraß points also the complementary elliptic curve
may be given a spin structure in a canonical way if d > 3 is odd. We fix
E1 by choosing the marked point as p =: (0, 0). By construction also the
complementary elliptic curve E2 is then fixed (it is the symplectic orthog-
onal complement of E1 inside the Jacobian). The Weierstraß points of the
square-tiled surface π : Ld → E1 are preimages of the 2-torsion points on E1

and 1 or 3 of them are integral, i.e. lie over p.

Since Jac(X) → E1 ×E2 is an isogeny of degree d where d is odd all Weier-
straß points of X are 2-torsion points of E1 × E2. There is a one-to-one
correspondence between the Weierstraß points of X and odd theta charac-
teristics. The latter are:

[
0 1
0 1

] [
0 1
1 1

] [
1 1
0 1

] [
1 0
1 0

] [
1 0
1 1

] [
1 1
1 0

]
.

More precisely, if we use the fact that Jac(X) is isogenous to E1 × E2 of
odd degree d, then by renormalizing the odd theta characteristics by an
odd translation the correspondence can be made as follows (compare [FK92,
Chapter VI.3]): the first column of the theta characteristic divided by 2
corresponds to the coordinates of the projection of the Weierstraß points of
Ld to E1 and the second column of the theta characteristic divided by 2
corresponds to the coordinates of the projection of the Weierstraß points of
Ld to E2.

Lemma 3.8. If the odd theta characteristics are translated by an odd theta
characteristic

• with first column

[
1
1

]
then there is one translated characteristic with

second column

[
0
0

]
.

• with first column

[
1
0

]
or

[
0
1

]
or

[
0
0

]
then there are three translated

characteristics with second column

[
0
0

]
.
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Proof. This is an immediate calculation.

Theorem 3.9. Let π1 : Ld → E1 be a square-tiled surface in ΩM2(2) and
let E2 denote the complementary elliptic curve. If π1 : Ld → E1 has even
spin, then π2 : Ld → E2 has odd spin. If π1 : Ld → E1 has odd spin, then
π2 : Ld → E2 has even spin.

Proof. If π1 : Ld → E1 has three 3 integral Weiterstraß points then we
have to renormalize the odd theta characteristics by adding a odd theta

characteristic with first column

[
1
1

]
. Thus π2 : Ld → E2 has exactly 1

integral Weierstraß point by Lemma 3.8. If π1 : Ld → E1 has one integral
Weierstraß point then we have to renormalize the odd theta characteristics

by adding an odd characteristic with first column 6=
[
1
1

]
to each element of

the list (although we do, of course, not know precisely which one). Then
π2 : Ld → E2 has three integral Weierstraß points again by Lemma 3.8.

Calculating elements of the homology Veech group. Having de-
scribed how the Veech group acts on homology and how this action yields
matrices in SL2(OD), we now calculate some elements of the homology Veech
group of L(m,n) with m+n− 1 = d. We denote its Veech group by SL(Ld)
and accordingly its homology Veech group by SL1(Ld). Let a, b be the sym-
plectic basis of H1(E1,Z) and consider its pullback to H1(L(m,n),Z) (com-
pare Figure 1). Note that the classes a1, ..., am−1 and the classes b1, ..., bn−1

respectively each define only a single classes in H1(L(m,n),Z). Therefore
the pullback of the symplectic basis of H1(Ei,Z) yields the elements

c1 = (m− 1)a1 + am and d1 = (n− 1)b1 + bn.

of H1(L(m,n),Z). For their symplectic pairing we have

(c1, d1) = (m− 1)(n − 1) · 0 + (m− 1) · 1 + (n− 1) · 1 + 1 = d.

The set c1, d1 may be extended to a symplectic basis of Λ by choosing c2 :=
na1 − am and d2 := −mb1 + bn as

(c1, c2) = (n− 1) + (−n) + 1 = 0 and (d1, d2) = (m− 1) + (−m) + 1 = 0

and
(c2, d2) = n+m− 1 = d.

Before we start with the calculation of some elements of the homology Veech
group, let us first fix the notation for some special matrices in SL2(Z) first,
namely

T ′ :=

(
1 1
0 1

)
, Z ′ :=

(
1 0
1 1

)
and S′ =

(
0 −1
1 0

)
.
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Recall that the Veech group of L(m,n) always contains the element T ′n.
This matrix acts on the ai and bi by

ai 7→ ai i = 1,m

b1 7→ b1 + am

bn 7→ bn + am + n(m− 1)a1

since the matrix T ′n yields a single Dehn-twist on the lower cylinder and a
n-fold Dehn-twist on the upper cylinder and since the ai are parallel to the
twist direction. Therefore

c2 7→ c2 and d2 7→ c2 + (m− 1)d2.

The action of the Veech group on the homology of L(m,n) hence yields the
element T := (T ′n, T ′n−d) ∈ SL2(OD). Analogously, the homology Veech
group always contains Z := (Z ′m, Z ′m−d) ∈ SL2(OD).
Furthermore the Veech group of L(m,n) always contains the element

E′ :=

(
1− d d
−d 1 + d

)
.

Analyzing the action of this element on the homology basis ai, bi we get

a1 7→ ma1 + am + (n− 1)b1 + bn

am 7→ (m− 1)na1 + (n + 1)am + (n− 1)nb1 + nbn

b1 7→ −((m− 1)a1 + am + (n− 2)b1 + bn)

bn 7→ −((m− 1)ma1 +mam + (n− 1)mb1 + (m− 1)bm).

This yields that the homology Veech group contains the matrix

E := (E′, Id) =

(
1− (d− w) d− w
−(d− w) 1 + (d− w)

)
.

If n = 3 and m is odd, then we can compute an element in the homology
from the cylinder decomposition in direction (2/m, 1), namely

F :=

(
(1− 2(d− 2), 1 + (4− d)) (4, 4 − d)
(−(d− 2)2,−(4− d)) (1 + 2(d− 2), 1 − (4− d))

)

=

(
1− (2(d− 2) + w) 4− w

−(d− 2)2 + (d− 3)w 1 + (2(d− 2) + w)

)

Finally, let us specify to the case n = 2. Then the cylinder decomposition
in direction (2/m, 1) yields the following elements in the homology Veech
group:
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• If m ≡ 2 mod 4:

F :=

(
(1− 3/2m, 2 −m/2) (3,−(m− 2))
(−3/4m2, (m− 2)/4) (1 + 3/2m,m/2)

)
=

(
∗ 3− w
∗ ∗

)

• If m ≡ 0 mod 4:

F :=

(
(1− 3m, 3−m) (6,−2(m − 2))

(−3/2m2, (m− 2)/2) (1 + 3m,m− 1)

)
=

(
∗ 2(3 − w)
∗ ∗

)

• If m ≡ 1 mod 2:

F :=

(
(1− 6a, 5 − 2m) (12, 4(m − 2))
(−3m2,m− 2) (1 + 6m, 2m − 3)

)
=

(
∗ 4(3− w)
∗ ∗

)

4 Proof of the main result

In this section, we calculate the index of ΓD
0 (a) ∩ SL1(Ld) in SL1(Ld) for an

arbitrary ideal a ⊂ OD and thereby show our main theorem.

Theorem 4.1. Let Ld be a square-tiled surface in ΩM2(2) with d squares
and let SL1(Ld) be its homology Veech group. We distinguish the two different
cases that Ld is in the orbit Ad and Bd in the classification of square-tiled
surfaces in ΩM2(2). Moreover if d is odd let 2 = p2p

σ
2 be the decomposition

of 2 into prime ideals, where p2 is the distinguished common prime ideal
divisor of 2 and 2− w in OD.

(1A) If d is odd and Ld is in Ad, or d = 3, then [SL1(Ld) : SL
1(Ld)∩Γ0(a)] =

[SL2(Od2) : Γ0(a)] for all ideals a ⊂ Od2 with (p2, a) = 1.

(1B) If d is odd and Ld is in Ad, or d = 3, then [SL1(Ld) : SL
1(Ld)∩Γ0(a)] =

2
3 [SL2(Od2) : Γ0(a)] for all ideals with p2|a.

(2A) If d is odd and Ld is in Bd, then we have [SL1(Ld) : SL
1(Ld)∩Γ0(a)] =

[SL2(Od2) : Γ0(a)] for all ideals a ⊂ Od2 with (pσ2 , a) = 1.

(2B) If d is odd and Ld is in Bd, then we have [SL1(Ld) : SL
1(Ld)∩Γ0(a)] =

2
3 [SL2(Od2) : Γ0(a)] for all ideals with pσ2 |a.

(3A) If d is even, then [SL1(Ld) : SL
1(Ld) ∩ Γ0(a)] = [SL2(Od2) : Γ0(a)] for

all ideals a ⊂ Od2 with 2 ∤ N (a) (the norm of a).

(3B) If d is even, then [SL1(Ld) : SL1(Ld) ∩ Γ0(a)] =
2
3 [SL2(Od2) : Γ0(a)]

for all ideals with 2|N (a),

Remark 4.2. The case d = 3 may be directly read off from example 3.3. We
will therefore not treat this case in the following.
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Remark 4.3. As every ideal a ⊂ OD is contained in a principal ideal gen-
erated by an element h ∈ Z, we may restrict to the case a = (h) whenever
necessary.

Before we start with the proof let us fix some notation. We have seen
that we may (h) decompose uniquely as

(h) =
∏

p|d,
p|n

pep
∏

q|n

qfqqσfq

with ei, fi ∈ N where the first product is taken over all prime numbers and
the second is taken over all prime ideals. Furthermore we set H := N (h).

We will prove Theorem 4.1 step by step: As the index of SL1(Ld) ∩ ΓD(h)
in SL1(Ld) does not depend on the ordering of the divisors of (h) which we
choose, we may first divide out the prime number divisors of the discriminant
and then the prime divisors of split prime numbers. Moreover we may always
assume that we consider the divisor p of (h) which has the highest order in
(h) of all divisors pi of the given type.

To prove the theorem we will proceed in the following way: We first calculate
for an arbitrary prime ideal p ⊂ OD and with ((h), p) = 1 the index

[(SL1(Ld) ∩ ΓD
0 ((h)p

k) : (SL1(Ld) ∩ ΓD((h)pk+1))]

for all k ∈ N and then the index

[(SL1(Ld) ∩ ΓD((h))) : (SL1(Ld) ∩ ΓD((h)p))].

Of course, this suffices to prove the theorem. We will from now leave away
brackets indicating ideals since this will facilitate notation. As a shortcut we
write

T :=

(
1 η+

0 1

)
and Z :=

(
1 0
η− 1

)
.

Remark 4.4. For all L(m.n) we have

η∗ := η+η− = (n− w)(m− w) = mn− w.

Furthermore we will frequently make use of the following lemma:

Lemma 4.5. (i) If b ∈ OD is not a zero divisor and a, c ∈ OD then ab|cb
if and only if a|c.

(ii) If p ∈ Z is a prime number and a, b ∈ Z then p|a + wb if and only if
p|a and p|b.
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(ii) If p,m, x ∈ OD and p ∈ Z is a prime number with p|d and p|mx. Then
p ∤ N (m) implies p|x.

Proof. (i) and (ii) are immediately clear by definition.
(iii) Let m = (m1,m2) and x = (x1, x2). Then p|mx implies N (p)|N (mx)
or in other words p2|m1m2x1x2. Since p ∤ N (m) hence p|x1x2 and since p|d
we must have p|x1 and p|x2, i.e. x1 = pk1 and x2 = x1 + jd = pk1 + pk2
with k1, k2 ∈ Z. Then (p, p)|(pk1m1, (pk1 + pk2)(m1 + ld)) is equivalent to

(p, p)|(pm1k1, p(m1k1 +m1k2 + k1ld+ k2ld)

which implies d|m2k2+(k1+k2)ld. From this it follows either that p|m1 which
contradicts the fact p ∤ N (m) or p|k2. In the latter case x2 = p(k1 + dk2)
and so p|x as we claim.

Divisors of the discriminant. We begin with the case which is the most
special compared to [Wei12] since prime numbers p ∈ Z with p|d are in our
case irreducible but not prime. The main difference to the proof of [Wei12,
Theorem 5.1] is that we need to use Weitze-Schmithüsen’s result at some
point (Proposition 4.8).

Proposition 4.6. Let p ∈ Z be a prime number with p|d and (m, p) = 1 and
let h ∈ Z be an arbitrary element with (h, p) = 1. Then for all k ∈ N

[
(SL1(Ld) ∩ ΓD

0 (hp
k)) : (SL1(Ld) ∩ ΓD

0 (hp
k+1))

]
= N (p) = p2

holds.

Proof. We want to find matrix W which is a word in T and Z such that the
matrices

W lZhpkj , j = 1, ..., p, l = 1, ..., p

lie ΓD
0 (hp

k) but are all incongruent modulo ΓD
0 (hp

k+1). The matrix

W := ZT hpkZ−1

is a good a choice for this. First, it is in ΓD
0 (hp

k). Secondly

W yZhpkj ≡ W lZhpki

is equivalent to W yZhpk(j−i)W−l ∈ ΓD
0 (hp

k+1). Setting x := j − i we thus
need to check when

(W yZhpkxW−l)2,1 = p3kh3η−3η+2 · ylx︸ ︷︷ ︸
v1

+ p2kh2η−2η+ · (y + l)x︸ ︷︷ ︸
v2

+ pkhη−(x+ η−η+ · (l − y))︸ ︷︷ ︸
v3
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is divisible by hpk+1. We already know that hpk+1|v1 + v2. So we are
interested in which cases we have hpk+1|hpkη−(x + η−η+ · (l − y)). By
Lemma 4.5 we only have to check when p|η−(x+ η−η+ · (l − y)) holds. We
have η−η+ = mn−w, by Remark 4.4. Thus we ask when p|(m−w)((mn−
w) · (l − y) + x). We now just look at the real part of the right hand side
(i.e. the part which does lie in Z). This gives us that p|x+mn(l − y) since
p ∤ m. Considering the imaginary part (i.e. the part which does lie in Z) we
then get p|m(l − y). Thus l = y and therefore p|x. This yields x = 0 or in
other words i = j.

Since the proof did not depend on the condition k > 0 we get an imme-
diate corollary:

Corollary 4.7. Let p ∈ Z be an inert prime number with p|d and (m, p) = 1.
Moreover let h ∈ Z be an arbitrary elements with (h, p) = 1. Then

[
(SL1(Ld) ∩ ΓD

0 (h)) : (SL
1(Ld) ∩ ΓD

0 (hp))
]
≥ p2

holds.

Before we are able to prove that this index is indeed as big as possible,
i.e. equal to p(p + 1), we have to do some abstract group theory. Recall
our situation: the homology Veech group SL1(Ld) is given by pairs (Ai, Bi)
with Ai in the ordinary Veech group SL(Ld) and Bi is in the complementary
Veech group SLc(Ld). Two elements (A1, B1) and (A2, B2) in SL1(Ld) yield
the same representative in SL1(Ld)/(SL

1(Ld) ∩ Γ0((h1, h2))) if and only if
A1 and A2 yield the same representative in SL(Ld)(SL(Ld)∩Γ0(h1)) and B1

and B2 yield the same representative in SLc(Ld)/(SL
c(Ld) ∩ Γ0(h2)). Now

we can easily prove:

Proposition 4.8. Let p ∈ Z be an inert prime number with p|d and (m, p) =
1. Moreover let h ∈ Z be an arbitrary element with (h, p) = 1. Then

[
(SL1(Ld) ∩ ΓD

0 (m)) : (SL1(Ld) ∩ ΓD
0 (mp))

]
= p(p+ 1)

holds.

Proof. Let q be the index
[
(SL(LD) ∩ ΓD

0 (m)) : (SL(LD) ∩ ΓD
0 (mp))

]
. We

know by Corollary 4.7 that q ≥ p2. Then we get by Corollary 1.2 that p+1|q
since the index [SL(Ld) : (SL(Ld) ∩ Γ0(h1))] divides the index [SL1(Ld) :
(SL1(Ld)∩Γ0((h1, h2)))]. Finally, (p+1)(p−1) = p2−1 yields the claim.

Divisors of split prime numbers. The second case which we treat con-
cerns prime numbers p ∈ Z that split, i.e. p ∈ Z with p ∤ d.
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Lemma 4.9. Let p ∈ Z with p = ppσ and let (p, η−) = 1. Moreover let
h ⊂ OD be an arbitrary ideal with (h, p) = 1. Then for all k ∈ N

[
(SL1(Ld) ∩ ΓD

0 (hp
k) : (SL1(Ld) ∩ ΓD

0 (hp
k+1)

]
= p

holds.

Proof. The aim is to find p matrices in ΓD
0 (hp

k) which are inequivalent mod-
ulo ΓD

0 (hp
k+1). We will now describe the simplest set of matrices which we

found. We have to distinguish two cases.

1. Case: p is not conjugated to any of the q dividing h
Then ZHpki, i = 1, ..., p are obviously in ΓD

0 (hp
k) but inequivalent modulo

ΓD
0 (hp

k+1).

2. Case: p is conjugated to a certain q dividing h with order fq
We set h := hq−fq and H ′ := N (h). Let us assume that ql|η− and ql+1 ∤ η−

for some l ∈ Z≥0. We now have to distinguish two subcases.
Case (a) fq − l > k
In particular, this implies that q has a higher order in h than k. We therefore
want to divide out powers of q first. This means that we have to show

[
(SL1(Ld) ∩ ΓD

0 (hq
fq−1pk)) : (SL1(Ld) ∩ ΓD

0 (hq
fqpk))

]
= p.

We set u := fq − l − 1 and v := pu. The matrices ZH′vi, 1 ≤ i ≤ p lie

in ΓD
0 (hq

fq−1
h pk)) since hqfq−1pk|H ′vη− · i but the matrices are incongruent

modulo ΓD
0 (hq

fqpk) since hqfqpk|H ′vη− · i implies q|i by the definition of v.
This means that we may restrict to case (b), namely:
Case (b) k ≥ fq − l.
We then set v = pk and look at the matrices ZH′vi, 1 ≤ i ≤ p. These
matrices are all in ΓD

0 (hp
k) but are not equivalent modulo ΓD

0 (hp
k+1) by

definition of v.

Lemma 4.10. Let p ∈ Z with p = ppσ and (p, η∗) = 1. Moreover let h ⊂ OD

be an arbitrary ideal with (N (h), p) = 1. Then
[
(SL1(Ld) ∩ ΓD

0 (h) : (SL(LD) ∩ ΓD
0 (hp)

]
= p+ 1

holds.

Proof. We want to find a k ∈ N such that the matrices

(I) ZHi, i = 1, ..., p

(II) ZHkT

lie in ΓD
0 (h) and are pairwise incongruent modulo ΓD

0 (hp). Indeed, we choose
k as follows: let k ∈ {1, ..., p}, such that p|kHη−η++1. This is always possi-
ble since p ∤ η∗ and p ∤ H and 1, .., p are incongruent modulo p. Furthermore
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we know that k 6= p because otherwise it would follow that p|1. By defini-
tion, it is clear that all the matrices (I) and (II) lie in ΓD

0 (h) and that the
matrices in (I) are pairwise incongruent. Finally, we calculate

(ZHkTZ−Hi)2,1 = Hη−(−(kHη−η+ + 1)i + k).

Now suppose p|Hη−(−(kHη−η+ + 1)i + k). In other words this means
p|(−i(kHη−η+ + 1) + k) which is yet equivalent to p|k as p|(kHη−η+ + 1).
This is a contradiction.

Lemma 4.11. Let p ∈ Z with p = ppσ and (p, η∗) = 1. Moreover let h ⊂ OD

be an arbitrary ideal with (N (h), p) = 1. Then

[
(SL1(Ld) ∩ ΓD

0 (hp
σ) : (SL1(Ld) ∩ ΓD

0 (hp
σp)

]
= p+ 1

holds.

Proof. We want to find a matrix W which is a word in T and Z such that
the matrices

(I) WT i, i = 1, ..., p

(II) Id

lie in ΓD
0 (hp

σ) and are pairwise incongruent modulo ΓD
0 (hp

σp). This time,
we choose k as follows: let k ∈ {1, ..., p}, such that pσ|kη−η+ + 1. This is
possible since pσ ∤ η∗. Now suppose that p|kη−η+ + 1. Since (p, pσ) = 1 we
would then have ppσ |kη−η+ +1 which would imply p|k (by Remark 4.4 and
Lemma 4.5). This is a contradiction. Hence p ∤ kη−η+ + 1.
We now choose W := ZT kZHT−kZ−1. Then we have

(WT i)2,1 = Hη−(kη+η− + 1)2

and so all the matrices lie in ΓD
0 (hp

σ) but none of them is equivalent to the
identity. Finally, we calculate

(WT xW−1)2,1 = −Hη−2η+(kη−η+ + 1)4 · x.

As p ∤ H, p ∤ η∗ and p ∤ (kη−η+ + 1) the matrices in (I) are pairwise
incongruent modulo ΓD

0 (hp
σp).

Summarizing we have proven:

Proposition 4.12. Let p ∈ Z with p = ppσ and (p, η∗) = 1. Then for all
ideals h ⊂ OD with (h, p) = 1

[
(SL1(Ld) ∩ ΓD

0 (h)) : (SL
1(Ld) ∩ ΓD

0 (hp)
]
= p+ 1

holds.
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Divisors of η∗. So far we have only treated ideals a with (a, η∗) = 1.
Before we come to the case (a, η∗) 6= 1 let us analyze the prime divisors of
m−w and n−w. By Corollary 2.4 there are essentially two different types
of prime ideals of norm p, namely

p1 = [p, p + w] and p2 = [p, p− d+ w].

If the prime ideal is of type 1 and divides m−w then it follows that p|m and
that p1 ∤ d−w since p ∤ d. If the prime ideal is of type 2 and divides m−w
then it follows that p|m + d and that p2|d − w. Now we choose m = d − 1
and n = 2 whenever this is possible by Corollary 3.6 and m = d − 2 and
n = 3 otherwise. Note that the only possible common divisor of m− w and
n− w are then the prime ideal divisors of 2.

Remark 4.13. By the choice of m there does not exist a p ∈ Z with p|d and
p|m. Thus the main theorem is proven for all divisors of the discriminant.

Lemma 4.14. Let p ∈ Z with p = ppσ with p|η−. Moreover let h ⊂ OD be
an arbitrary element with (h, p) = 1. Then for all k ∈ N

[
(SL1(Ld) ∩ ΓD

0 (hp
k) : (SL1(Ld) ∩ ΓD

0 (hp
k+1)

]
= p

holds.

Proof. Case n = 2: Note that p ∤ d since p splits. Since p is a prime ideal
it is either of the form [p, p + w] or [p, p − d + w] (Corollary 2.4). As p|η−
it must even be of the form [p, p + w]. Hence we have that p ∤ (d − w) but
pσ|(d − w). Then we set H ′ = N (h(h, pσ)−1) and claim that the matrices

EH′pki, 1 ≤ i ≤ p are a set of coset representatives. Now assume that
pk+1|H ′(d−w)pki. This yields p|(d− w)i (Lemma 4.5). Since p ∤ d− w the
claim follows.
Case n = 3: We have to treat the case p|η− and p|2 separately. If p =
[2,−d+ w] divides 3− w then d− 3 is odd and thus p does not divide F2,1.
Hence the claim follows.

Lemma 4.15. Let p ∈ Z with p = ppσ and let p|η− with p ∤ 2. Moreover let
h ⊂ OD be an arbitrary ideal with (h, p) = 1. Then

[
(SL1(Ld) ∩ ΓD

0 (h) : (SL
1(Ld) ∩ ΓD

0 (hp)
]
= p+ 1

holds.

Proof. Case (1) p ∤ d − n: Note that since p|η− and p ∤ d − n we get that
p ∤ (d − w) but pσ|(d − w). Let H ′ = N (h(h, pσ)−1). Then we claim that
the matrices

(I) EH′

T k k = 1, ..., p

(II) Id
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lie in ΓD
0 (h) and are pairwise incongruent modulo ΓD

0 (hp). Since

(EH′

T k)2,1 = H ′(d− w)

none of the matrices in (I) is congruent to the identity. On the other hand

(EMT kE−M )2,1 = −H ′2η+(d− w)2 · k

and thus the matrices (I) are pairwise incongruent modulo ΓD
0 (hp).

Case (2) p|d − n: By case (1) we may assume that p ∤ N (h). Then the
arguments work as above after replacing E by F .

For the divisors of η+, Nori’s theorem significantly facilitates the proof.

Lemma 4.16. Let p ∈ Z with p = ppσ and let p|η+. Moreover let h ⊂ OD

be an arbitrary ideal with (h, p) = 1. Then

[
(SL1(Ld) ∩ ΓD

0 (h) : (SL
1(Ld) ∩ ΓD

0 (hp)
]
= p+ 1

holds.

Proof. Case n = 2: Note that since p|η+ = 2−w we have that p ∤ 3−w. By
what we have proven so far, we may assume that (N (h), p) = 1. Then the
matrices FMi and TMi all lie in ΓD

0 (h) and they all yield different elements
when they are projected to SL2(OD/pOD) ∼= SL2(Fp). By the corollary to
Nori’s theorem (Corollary 2.12), this map has to be surjective and therefore
SL1(Ld)∩Γ0

D(hp) must have the maximal possible index in SL1(Ld)∩ΓD
0 (h).

Case n = 3: The same reasoning as above is possible since η+ = 3− w and
F1,2 = (4− w).

The divisors of 2. We finally come to the missing prime ideal divisors of
2.

Lemma 4.17. If 2 splits, let p2 = (2, η−) and let h ⊂ OD be an arbitrary
ideal with (h, 2) = 1. If Ld ∈ Ad, then

[
(SL1(Ld) ∩ ΓD

0 (h) : (SL
1(Ld) ∩ ΓD

0 (2h)
]
= 6

and [
(SL1(Ld) ∩ ΓD

0 (h) : (SL
1(Ld) ∩ ΓD

0 (hp2)
]
= 2.

Proof. It can easily be checked that the matrices TH , ZH , ZHTH , EH , EHTH

are inequivalent modulo ΓD
0 (2h). By Weitze-Schmithüsen’s Theorem respec-

tively Corollary 1.2, we have that the index is divisible 2 and that it is at
most 6. Thus the claim follows.

Lemma 4.18. If 2|d then

[
(SL1(Ld) ∩ ΓD

0 (h) : (SL
1(Ld) ∩ ΓD

0 (2h)
]
= 4.
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Proof. The matrices TH , ZH , ZHTH are inequivalent modulo ΓD
0 (2h), the

index is divisible by 2 and at most 4.

This finishes the proof of Theorem 4.1, (1) and (3).

The most special case is the case where d is odd and Ld ∈ Bd. Then m = 3
and η− = 3−w. Since the norm of η− is positive we have that pσ2 |3−w (but
p2 ∤ 3− w). So we are now only interested in ΓD

0 (p
σ
2 ).

Remark 4.19. By considering the matrix F we immediately see that for all
ideals h ⊂ OD with (h, p2) = 1

[
(SL1(Ld) ∩ ΓD

0 (h) : (SL
1(Ld) ∩ ΓD

0 (hp
σ
2 )
]
≥ 2

holds if Ld ∈ Bd.

So it remains to show that the index is not greater than 2. To prove
this, it is convenient to consider the subgroup SL1(LD)∩ ΓD(2) instead and
to show that this index is at most 1

3 [SL2(OD) : ΓD(2)]. By projection on
the second factor of the homology Veech group and by the arguments given
in the proof of [WS12, Theorem 3 (ii)] it suffices to show that one of the
non-integral Weierstraß points on E2 can be distinguished from the others.
This is clear by Theorem 3.9 since E2 has only one integral Weierstraß point.
Thus we have proven:

Proposition 4.20. We have

[
(SL1(Ld) : (SL

1(Ld) ∩ ΓD(2)
]
≤ 1

3
[SL2(OD) : Γ

D(2)]

if Ld ∈ Bd.

Corollary 4.21. For all ideals h ⊂ OD with (h, pσ2 ) = 1

[
(SL1(Ld) ∩ ΓD

0 (h) : (SL
1(Ld) ∩ ΓD

0 (hp
σ
2 )
]
= 2

holds if Ld ∈ Bd.

This finishes the proof of Theorem 4.1, (2).

A Appendix

In the appendix we collect some results on quadratic orders OD of square
discriminant. In particular, we will give proofs of the results mentioned in
the main part of the paper.
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Norm and trace. Analogously as in the non-square case we have:

Remark A.1. An element z ∈ K is in Q if and only if z = zσ, since OD is
diagonally embedded into K.

Recall that if D is square-free, then the order OD is the ring of integers
of K = Q(

√
D) and an element z ∈ K is in OD if and only both trace and

norm of z lie in Z.1 In accordance with this property, a similar property
does also hold if D is the square of a prime number. We can however not
expect that z ∈ OD if and only if tr(z) and N (z) are in Z, as we can see by
the example d = 5 and z = (1, 2). Indeed, one has to additionally impose
some congruence conditions on the trace and the norm.

Lemma A.2. Let z ∈ K. If D = d2 and d has no prime divisor of order
greater than 1, then z ∈ OD if and only if tr(z),N (z) ∈ Z and tr(z) ≡ 2v
mod d and N (z) ≡ v2 mod d for some v ∈ Z.

Proof. If z ∈ OD then z = (x, y) for some x, y ∈ Z. Then tr(z) = (x+y, x+y)
and N (z) = (xy, xy) and hence tr(z),N (z) ∈ Z. Moreover x ≡ y mod d
implies that x+ y ≡ 2x mod d and xy ≡ x2 mod d.
On the other hand, let z = (x, y) for some x, y ∈ Q and let tr(z) and N (z)
be in Z. Since x+ y and xy are both in Z and therefore both x and y are in
Z. Then tr(z) ≡ 2v mod d implies that y ≡ 2v − x mod d. Inserting this
into N (z) ≡ v2 mod d gives (x− v)2 ≡ 0 mod d. Since d has no quadratic
term we have x ≡ v mod d and thus x ≡ y mod d.

Noetherian rings. We now want to prove that OD is a Noetherian ring
as in the case of non-square-discriminants. For this it suffices to prove, that
OD is a finitely generated Z-module.

Lemma A.3. The ring OD is finitely generated as Z-module. We call 1 =
(1, 1) and w = (0, d) the standard basis of OD.

Proof. One easily checks that (1, w) is indeed a basis of OD as Z-module.

Proposition A.4. The quadratic order OD is Noetherian.

Ideals. So far, the notion of the norm has only been defined for elements
in K but not for ideals. Note that one may define ideals in OD, prime ideals,
maximal ideals and so on in the usual way. It follows from Proposition A.4
and Krull’s Hauptidealsatz that every prime ideal in OD is also maximal
(see e.g. [Har77, Theorem 1.11A]). For an element z ∈ OD we define the
principal ideal generated by z by:

(z) := zOD := {za|a ∈ OD} .
1This in not true any more if D is not square-free as the example D = 45 and z =

(2 + 5w)/3 shows.
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Now let (0) 6= a ⊂ OD be an arbitrary ideal in OD. Then its norm N (a) is
defined as the number of the elements in OD/a if this quotient is finite. If
the quotient is infinite we set N (a) := 0. In particular, if z ∈ OD is 0 or a
zero divisor we then have N ((z)) = 0. The definition perfectly generalizes
the norm of an element:

Lemma A.5. For z ∈ OD we have N ((z)) = N (z). In particular, we have
N ((z)) = z2 for all z ∈ Z.

Proof. Let z = (x, y), u = (p, q), v = (r, s) be three elements in OD. Then
(p, q) − (r, s) = (p − r, q − s) ∈ (z) if and only if x|(p − r) and y|(q − s).
Hence there are x · y elements in OD/(z) and thus the two a priori different
definitions of the norm agree.

The Lasker-Noether theorem. Recall that a Dedekind ring is an one-
dimensional, Noetherian, normal integral domain. In a Dedekind ring one
always has unique prime factorization in the sense of ideals. Note however
that OD is never a Dedekind ring since it is not an integral domain. Nev-
ertheless, there remains a very important tool, namely the Lasker-Noether
factorization, because OD is Noetherian. In order to understand its impor-
tance one has to introduce primary ideals first. A primary ideal is a proper
ideal a such that whenever xy ∈ a with x, y ∈ OD either x or yn is in a for
some n ∈ N. The most important class of examples of primary ideals are
evidently prime ideals. A primary ideal a ⊂ OD is a prime ideal if and only
if it is semiprime, i.e. if xk ∈ a for x ∈ OD and k ∈ N then x ∈ a. This
implies that there might (and there actually do) exist primary ideals in OD

which are not prime. If a is a primary ideal, then its radical
√
a is a prime

ideal and it is customary to say that
√
a is the prime ideal associated to a.

Definition A.6. Let a ⊂ OD be an ideal. Then a tuple (a1, ..., ak) is said
to be a primary decomposition of a if all the ai are primary ideals and
a = a1 ∩ ... ∩ ak. The decomposition is called minimal (or irredudant) if
we further get: For all j = 1, ..., k we have a 6= ∩i 6=jai and for i 6= j we have√
ai 6= √

aj .

Primary ideals are so to say what one has to buy whenever a Noetherian
ring is not Dedekind.

Theorem A.7. (Lasker, Noether) Let a 6= OD be an ideal in OD. Then
it admits a minimal primary decomposition and in this decomposition the
associated prime ideals are uniquely determined by a.

Primary principal ideals. The Lasker-Noether theorem suggests that it
is important to detect the primary ideals among the ideals of OD. This will
be done now. Let us start with principal ideals.
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Proposition A.8. Let (z) = ((x, y)) be a principal ideal. Then (z) is a
primary ideal if and only if x = pe and y = pf for a prime number p ∈ Z
and e, f ∈ N.

Proof. Let x = pe11 · · · penn and y = qf11 · · · qfmm be the prime decompositions
of x and y. If (z) is a primary ideal then (a, b)(c, d) ∈ (z) implies that
(a, b) ∈ (z) or (c, d)n ∈ (z). In particular we must have that x|ac yields x|a
or x|cn. This implies that x = pe with p a prime number and e ∈ N. The
same reasoning shows that y = qf with q a prime number and f ∈ N. Now
assume that p 6= q. Then we choose (a, b) = (pe, pe) ∈ OD and (c, d) =
(qf , qf ) ∈ OD. Then (a, b)(c, d) lies in ((x, y)) but neither (a, b)n nor (c, d)n

does. This is a contradiction. On the other hand, it is clear that the tuple
(pe, pf ) with d|pe − pf defines a primary ideal.

Ideals as modules. Let us now describe all ideals in OD. Recall that
every ideal of OD is also a Z-module. The point of view that ideals are
modules will be very useful for giving a list of primary ideals. Moreover it
allows us to calculate the spectrum of OD. As in the case of non-square
discriminants, it is essential to see that every Z-module in OD is generated
by at most two elements.

Proposition A.9. Let M ⊂ OD be a Z-module in OD. Then there exist
integers m,n ∈ Z≥0 and a ∈ Z such that

M = [n1; a1+mw] := n1Z⊕ (a1 +mw)Z.

Proof. Consider the subgroup H := {s ∈ Z : r1+ sw ∈ M} of Z. As H is a
subgroup of Z, it is of the form mZ for some m ≥ 0. By construction, there
exists an a ∈ Z with a1 + mw ∈ M . Furthermore we know that M ∩ Z1
can be regarded a subgroup of Z and so M ∩ 1Z = n1Z for some n ≥ 0. We
claim that M = n1Z⊕ (a1 +mw)Z. The inclusion ⊇ is evident. Hence let
us assume that r1+ sw ∈ M . Since s ∈ H we have s = um for some u ∈ Z,
and thus

r1− ua1 = r1+ sw − u(a1 +mw) ∈ M ∩ 1Z.

Hence r − ua = nv. But then

r1+sw = (r−ua)1+u(a1+mw) = nv1+u(a1+mw) ∈ n1Z⊕(a1+mw)Z.

As it does simplify the notation and cannot cause any confusion we will
from now on leave away the symbol 1 when we want to embed Z into OD.
In other words, we write every Z-module in OD as [n; a + mw] for some
a, n,m ∈ Z.

29



As every ideal of OD is also Z-module, it is generated by at most two ele-
ments. The converse is not true since e.g. M = [1; 0] = Z is a Z-submodule
of OD, but not an ideal. We therefore now describe under which conditions
on a,m, n the Z-module M is also an ideal. These conditions are just the
same as in the case of non-square discriminants.

Proposition A.10. A nonzero Z-module M = [n; a+mw] is an ideal if and
only if m|n, m|a, i.e. a = mb for some b ∈ Z, and n|mN (b+ w).

Proof. Suppose that M is an ideal. We consider the group H from the proof
of Proposition A.9. Then c ∈ M ∩ Z implies cw ∈ M and hence c ∈ H.
This shows that nZ = M ∩ Z ⊂ H = mZ or in other words that m|n.
Observe that w2 = dw. Since M is an ideal, a + mw ∈ M implies that
(a + mw)w = (a + md)w ∈ M . By the definition of H we therefore have
that a ∈ H and hence m|a. Finally we put β := a+mw = m(b+ w). Then
β ∈ M implies β(b+ wσ) ∈ M . Hence n|mN (b+ w).
Now suppose that all the divisibility relations are fulfilled by M . We only
have to show that nw and (a+mw)w both lie in M . We have

nw =
n

m
mw =

n

m
(a+mw)− n

m
a =

n

m
(a+mw)− bn

and so nw ∈ M since m|n. And

(a+mw)w = aw +mw2 = (a+md)w = (b+ d)(a+mw)− ((b+ d)bm) =

(b+ d)(a+mw)−mN (b+ d)

implies that (a+mw)w ∈ M since n|mN (b+ w).

This proposition gives a nice possibility to calculate the norm of an arbi-
trary ideal a = [n; a+mw]: it is straightforward to check (by giving an ex-
plicit list of representatives) that N (a) = mn. Note that if M = [n; a+mw]
is an ideal then its conjugated module is given by [n; a + mw]σ = [n; a +
md −mw] which does not need to be an ideal even if M was an ideal, i.e.
ideals are not closed under conjugation although the conjugated module has
the same norm as M .2 On the other hand, if a = ((x, y)) is a principal ideal
then also aσ = ((y, x)) is a principal ideal. Furthermore one immediately
sees:

Corollary A.11. Every ideal of prime norm p is of the form [p; a+ w] for
some a ∈ Z with p|N (a+ w). These ideals are indeed prime ideals.

Proof. The first assertion is clear from Proposition A.10. The second asser-
tion follows since [p; a + w] is contained in a prime ideal p since all prime
ideals are maximal. As p is a prime number, the quotient OD/p must either
have p or 1 elements. Therefore we must either have [p; a+w] = p or p = OD.
Hence [p; a+ w] is a prime ideal.

2An example for this to happen is O9 and M = [25, 25 + 5w].
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This corollary shows that there does not exist any inert prime number
if D is a square because it is always possible to find an a ∈ Z such that
p|N (a + w), i.e. a = p. We are now even able to count the number of
different prime ideals of norm p if p is a prime number. This is an important
step towards a ramification theory of prime numbers over OD.

Proposition A.12. Let p ∈ Z be a prime number. If p|D then there exists
exactly one prime ideal a of norm p and aσ = a. Otherwise there exist exactly
two different prime ideals a, b of norm p and aσ = b.

Proof. Let p ∈ Z be a prime number with p|D. Then every ideal of norm
p is of the form a = [p; a + w] with p|a(a + d). As p ∈ a we may without
loss of generality assume that 1 ≤ a ≤ p. Since p|d we always have p|a and
therefore a = p. So there exists exactly one ideal of norm p if p|d. It is then
clear that aσ = a.
If p ∈ Z is a prime number with p ∤ d then we may again assume that
1 ≤ a ≤ p. So there remain the two possibilities p|a and p|(a + d). These
ideals a and b are indeed different since p ∤ d and one can immediately check
that aσ = b.

We can also characterize primary ideals.

Proposition A.13. If a = [n; a+mw] is a primary ideal if and only if it is
an ideal and N (a) = pl for some prime number p ∈ Z and some l ∈ N, i.e.
m = pk and n = pl−k for a k ∈ Z with 0 ≤ k ≤ l/2.

Proof. Assume that a is a primary ideal. Then m 6= 0. Since m|n and
N (a) = nm, it suffices to show that n has a unique prime divisor. Assume
that n = pe11 · · · perr with r ≥ 2. Then pe11 · (pe22 · · · perr ) ∈ a but neither the
first factor nor any power of the second factor is in a as one sees by regarding
a as Z-module. This is a contradiction.

Now assume that a is an ideal and fulfills the above relations. If k 6= 0 then
ef ∈ a if and only if either e or f is divisible by p (because pk|a). Hence a is
primary. If k = 0 then pl|N (a+ w), i.e. p divides a or a+ d. We now have
to distinguish two cases, namely p ∤ d and p|d.
Let us first assume that p ∤ d. Then pl either divides a or a + d, i.e. not
both of them at the same time. Let us assume that pl|(a + d) and let
e = (e1, e2), f = (f1, f2) ∈ OD with ef ∈ a. Since a = [pl; a + w] we hence
have that p|e2 or p|f2. We may without loss of generality assume that p|f2.
By passing to powers of f if necessary, we may furthermore assume that
f2 = plr with r ∈ Z. Moreover we know that a+ d = plz for some z ∈ Z and
that f1 = plr + sd for some s ∈ Z. We now want to show that f = (f1, f2)
lies in a. To see this, we look at the equation (in the usual coordinates of
OD)

x(pl, pl) + y(zpl − d, zpl) = (plr + sd, plr).
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As we want to see that (f1, f2) ∈ a we have to show that x, y ∈ Z. The first
coordinate yields x = r − yz ∈ Z. Inserting this into the second coordinate
we get that y = −s ∈ Z and hence the claim. If pl|a the proof works
analogously.
Secondly assume that p|d. Then p|a and p|a+d since p|N (a+w) = a(a+d).
Let e = (e1, e2), f = (f1, f2) ∈ OD with ef ∈ a. Since p|a we may then
assume that p|f1. But then also p|f2 since f2 = f1 + kd. After passing to
powers if necessary we hence have pl|f1 and pl|f2 and so f ∈ a.

Ramification. We may now deduce the ramification theory for prime num-
bers over OD. In order to do this, we have to better understand how to
multiply two prime ideals. Let us first assume that p is a prime number
with p|d and let a = [p, p + w] be the unique prime ideal of norm p. Then
a2 = [p, p+w][p, p+w] = [p2, p2 + pw]. This implies that p with p|d cannot
be written as the product of two prime ideals and that N (·) is in general not
multiplicative. If p ∤ d then let a = [p, p+w] and b = [p, p−d+w] be the two
different ideals of norm p. Then ab = [p, p + w][p, p − d+ w] = [n, a+mw]
and

(ep+ f(p+ w))(gp + h(p− d+ w)) =

p ((g + h)(e+ f)p− h(e+ f)d) + (eh+ gf + 2fh)pw.

and therefore m = p. Since (p, d) = 1 we must evidently have that ab ∩Z =
pZ and hence n = p and by Proposition 2.3 that a = pc with c ∈ Z. Since
p ∈ ab we may therefore choose a = p, i.e. ab = [p, p(1 + w)]. On the other
hand we have [p, p(1 +w)] = (p) and hence we have established:

Theorem A.14. Let p ∈ Z be a prime number.

(i) If p ∤ d then (p) = aaσ for a prime ideal a of norm p, i.e. p splits.

(ii) If p|d then (p) is an irreducible ideal which is not prime.

Corollary A.15. Let n ∈ Z be an arbitrary number with (n, d) = 1. Then
the principal ideal (n) can be uniquely written as a product of prime ideals.

Proof. We decompose n = pei1 · · · pell in Z. Then each pi can be written as
the product of two prime ideals (p) = aaσ by Theorem 2.6. Hence the claim
follows.

If a = ((x, y)) is a principal ideal then also aσ = ((y, x)) is a principal
ideal and aaσ = N ((x, y))OD . Thus for (x, y) ∈ OD with (d,N ((x, y)) = 1
we may write

aaσ =
∏

i

peii p
eiσ
i

where all the pi are prime ideals as in Corollary A.15. Let us first assume
that (x, y) = 1. Then either peii or peiσi divides a but not both of them.
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Therefore we can find a unique decomposition of ((x, y)) into prime ideals.
If (x, y) = n then ((x, y)) = ((n, n))((x′, y′)) with (x′, y′) = 1. Hence we
have established:

Corollary A.16. Let z ∈ OD be an arbitrary element with gcd(d,N (z)) = 1.
Then the principal ideal (z) can be uniquely written as a product of prime
ideals.

Let us say a few words about ideals generated by elements z ∈ OD with
gcd(d,N (z)) 6= 1. On the one hand we might have z ∈ Z with z|d. Then
one can uniquely write z as a product of prime numbers pi ∈ Z and each
of these pi defines an irreducible ideal by Theorem 2.6. However, there also
exist irreducible ideals generated by z ∈ OD with z ∤ d. An example for this
to happen is d = 2 and z = (4, 6). Then 2 ∤ z since (2, 3) /∈ O4 and so (z) is
an irreducible ideal.

Finally, we compose all the results which we have achieved in a table which
compares the case of square discriminants to non-square discriminants. Let
f be a square-free positive integer and d ∈ N be arbitrary.

D = f D = d2f D = d2

Structure of OD Dedekind Noetherian Noetherian
Integral domain

Prime decomposition All ideals Ideals with Ideals with
(N (a), d) = 1 (N (a), d) = 1

Ramification of primes Ramifation Ramification all primes
with (d, p) = 1 law law splitting

Lasker-Noether factorization. We now come back to the factorization
of an arbitrary (principal) ideal into primary ideals. Let us at first look at
the two examples:

Example A.17. (i) Consider O16 and the principal ideal a = ((3, 7)).
Since a ∩ Z = 21Z and since the norm N (a) = 21 we must have
n = 21,m = 1 and since 3 + w ∈ a we get a = 3. Hence

a = [21; 3 +w]

From this it is evident that the Lasker-Noether decomposition is

a = [7; 3 + w] ∩ [3; 3 + w].

(ii) We now look at the principal ideal a = ((2, 6)) = (2+w). There happens
something quite different from the first example, namely a ∩ Z = 12Z.
Then we get m = 2 and a = 2. Thus

a = [12; 2 +w]
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and the primary decomposition is

a = [4; 2 + w] ∩ [3; 2 + w].

Let us deduce from this the general recipe how to find the Lasker-Noether
decomposition of any principal ideal in OD: let (e+ fw) = ((e, e + fd)) be
an arbitrary principal ideal. The norm of (e+ fw) is e(e+ fd). Let us now
calculate n. We have (e, e + fd)(x, x + dy) = (ex, ex + fdx+ fd2y + edy).
Since we want to calculate M ∩ Z we set fdx + fd2y + edy = 0 to get
x = −y e+fd

f . Hence n = e(e+fd)
gcd(e,f) and m = gcd(e, f). From this data it is

now possible to also calculate a = gcd(e, f)b (a more precise expression for
a would be hardly of any use in the following). So we may assume that

a =

[
e(e+ fd)

gcd(e, f)
; gcd(e, f)(b+ w)

]
.

Let m = gcd(e, f) = pe11 · · · perr and n = pf11 · · · pfrr · qg11 · · · qgss be the prime
decomposition of m and n. Then the Lasker-Noether decomposition of a is

a =

r⋂

i=1

[
pfii ; p

ei
i (b+ w)

] s⋂

j=1

[
q
gj
j ; (b+ w)

]
.

The special linear group. Here we just prove the claim of Proposition 2.8
with the help of the following two lemmas.

Lemma A.18. Let R,S be two commutative rings such that there exists a
surjective homomorphism of rings f : S → R. If SL2(R) is generated by ele-
mentary matrices then the induced map SL2(S) → SL2(S) is also surjective.

Proof. Any elementary matrix over R lifts to an elementary matrix of S.

Lemma A.19. If R is a finite commutative ring, then SL2(R) is generated
by elementary matrices.

Proof. Every finite commutative ring is a direct product of local rings. Since
the claim is true for local rings (see e.g. [Ros94, Chapter 2.2]) this finishes
the proof.

Proof (of Proposition 2.8). By definition ΓD(a) is the kernel of the projec-
tion SL2(OD) → SL2(OD/a). The projection map is surjective by the pre-
ceding two lemmas.
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