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Introduction

According to Thurston’s classification, a diffeomorphism of a closed oriented
surface is either elliptic, reducible or a pseudo-Anosov diffeomorphism. The
structure of pseudo-Anosov diffeomorphisms, e.g. their dilatation coefficients,
and the corresponding measured foliations have been intensely investigated
since. Rather than focusing on properties of a single diffeomorphism, the
purpose of this chapter is to study the flat surfaces the pseudo-Anosov diffeo-
morphisms live on together with their whole group of affine diffeomorphisms.

A flat surface is a pair (X,ω) consisting of a Riemann surface X together
with a holomorphic one-form ω ∈ Γ(X,Ω1

X). Equivalently, flat surfaces arise
from gluing rational-angled planar polygons by parallel translations along their
edges. Furthermore, flat surfaces naturally arise when studying the trajectories
of a ball on a rational-angled billiard table.

One of the basic invariants of a flat surface (X,ω) is the affine group
SL(X,ω) (also called Veech group) defined as follows. Let Aff+(X,ω) be the
group of orientation-preserving diffeomorphisms that are affine on the comple-
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ment of the zero set of ω with respect to the charts defined by integrating ω.
The linear part of the affine map is independent of the charts and provides a
map

D : Aff+(X,ω) → SL2(R).

The image ofD is called the affine group SL(X,ω). The interest in these groups
stems from Veech’s paper [37], where flat surfaces are constructed whose affine
groups are non-arithmetic lattices in SL2(R). We will discuss them and recent
developments in Section 4.

This chapter touches the following aspects of affine groups. The affine
group is often said to be trivial for a generic surface. If we define generic to
be meant in the strata of a natural stratification of the space of flat surfaces,
this is a little imprecise. Our first goal is to give a complete description of the
generic affine group. Next we recall Thurston’s construction of pseudo-Anosov
diffeomorphisms using a pair of multicurves. This construction has a lot of
flexibility and produces rather large affine groups. Results of McMullen resp.
of Hubert-Lanneau show that in genus two all pseudo-Anosov diffeomorphisms
arise in this way but that this holds no longer for g ≥ 3.

In Sections 4 and 5 we review the known constructions of very large affine
groups: lattices and infinitely generated affine groups. In the last section we
discuss some relations between the size of the affine group and the closure
of SL2(R)-orbit of the corresponding flat surface in the moduli space of flat
surfaces.

We remark that the affine group is similarly defined for pairs (X, q) of a
Riemann surface X and a quadratic differential q. But such a surface admits
a canonical double covering which is a flat surface. Hence up to passing to
finite index subgroups all the information is contained in affine groups of flat
surfaces.

The whole topic is not nearly completely understood at the time of writing.
Consequently, the content of this chapter reflects simply the present state of
knowledge and almost all sections are concluded by an open problem.

The author thanks Erwan Lanneau for a helpful discussion on the proof of
Theorem 1.1

1 Basic properties of affine groups

Our first aim is to realize that for a general flat surface nothing exciting hap-
pens. In order to define what ’general’ means, we define the parameterizing
space of flat surfaces. Let Mg denote the moduli space of curves of genus g.
Over Mg there is a vector bundle of rank g whose fiber over a point corre-
sponding to the surface X is the vector space of holomorphic one-forms (or
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abelian differentials) on X . Let ΩMg be the total space of this vector bundle
minus the zero section. By construction, flat surfaces correspond to points of
ΩMg. The space ΩMg is stratified into subspaces

ΩMg =
⋃

P

n

i=1
ki=2g−2

ΩMg(k1, . . . , kn)

according to the number and multiplicities of the zeros of the holomorphic
one-form ω. Some of the strata are not connected, see [17]. A component of a
stratum is called hyperelliptic component, if it consists exclusively of hyperel-
liptic curves, i.e. curves with a degree two map to the projective line.

The strata are complex orbifolds that carry a natural complex coordinate
system, called period coordinates, whose definition will be recalled below. We
say that (X,ω) is generic in its stratum, if it lies outside a countable union of
real codimension one submanifolds in its stratum.

Theorem 1.1. For g(X) ≥ 2, the affine group of a generic surface (X,ω) is
Z/2 or trivial, depending on whether (X,ω) belongs to a hyperelliptic compo-
nent or not.

Before we can give the proof we need to recall some facts on flat surfaces and
to classify affine diffeomorphisms in order to explain the notions in Thurston’s
theorem stated at the beginning of the introduction.

As stated in the introduction, a flat surface is a pair (X,ω) of a Riemann
surface X together with a holomorphic one-form ω. A flat surface has a finite
number of zeros of ω, called singularities. These correspond to points where
the total angle with respect to |ω| exceeds 2π. On a flat surface we may talk
of geodesics with respect to the metric |ω|. Such a geodesic has a well-defined
direction in RP1. A geodesic joining two singularities or a singularity to itself
is called saddle connection.

Definition 1.2. A diffeomorphism ϕ of X is called elliptic if it is isotopic to
a diffeomorphism of finite order. A diffeomorphism ϕ is called reducible if it is
isotopic to a diffeomorphism fixing a (real) simple closed curve on X . If ϕ is
neither reducible nor elliptic, then ϕ is called pseudo-Anosov .

We alert the reader, that we follow the common abuse of the notion diffeo-
morphism for homeomorphisms that are C1 outside a finite set of points ([7],
Exposé V).

It is easy to see that an affine diffeomorphism ϕ of (X,ω) is elliptic, if it
is of finite order. In particular D(ϕ) is of finite order. Conversely, if D(ϕ) is
of finite order, then ϕ is of finite order, since Ker(D) consists of holomorphic
diffeomorphisms of X and consequently Ker(D) is finite by Hurwitz’ theorem.

If ϕ is a pseudo-Anosov diffeomorphism, there exists a pair (X, q) such that
ϕ is an affine diffeomorphism of (X, q). As stated above, we will restrict to
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the case that q = ω2. Moreover, (X,ω) can be chosen such that ϕ stretches
the horizontal lines by some factor λ > 1, called dilatation coefficient, and
contracts the vertical lines by the same factor λ. Thus, |trD(ϕ)| > 2 for an
affine pseudo-Anosov diffeomorphism.

Consequently, an affine diffeomorphism ϕ with |trD(ϕ)| = 2, i.e. such that
D(ϕ) is parabolic, is a reducible affine diffeomorphism. We briefly recall the
structure of such a parabolic diffeomorphism . Say the horizontal direction is
the eigendirection of D(ϕ). Then some power of ϕ fixes all the finitely many
horizontal saddle connections and the complement of these saddle connections
has to consist of metric cylinders.

In order to define coordinates on a stratum of ΩMg, fix locally on some
open set U a basis of the integral homology H1(X,Z(ω),Z) relative to Z(ω),
the zeros of ω. The cardinality of the basis is N = 2g − 1 + n, where n is the
number of zeros of ω. The map U → CN , that maps (X,ω) to the integrals of
ω along the fixed basis, is a local diffeomorphism ([36], see [28] for an algebraic
proof). The system of coordinates is called index period coordinates.

There is a natural action of GL+
2 (R) on ΩMg. In terms of period coordi-

nates, consider

CN ∼= RN ⊗R R2

and let GL+
2 (R) act naturally on R2. This is equivalent to letting an element

of GL+
2 (R) act on the local complex charts of X given by integration of ω as

real linear map. This action leaves the affine group essentially unchanged, we
have for A ∈ GL+

2 (R)

SL(A · (X,ω)) = A · (SL(X,ω)) · A−1.

Proof of Theorem 1.1. For each of the countably many pseudo-Anosov diffeo-
morphisms ϕ in the mapping class group there is a unique flat surface (X, q)
or (X,ω) up to the action of GL+

2 (R), such that ϕ is an affine diffeomorphism
on (X, q) or (X,ω) respectively. Consequently, the set of flat surfaces whose
affine group contains a pseudo-Anosov element is a countable union of real
4-dimensional subspaces. Since we assume g(X) ≥ 2, the generic flat surface
does not carry any affine pseudo-Anosov diffeomorphism.

Suppose that SL(X,ω) contains a parabolic element. By the classification
above, (X,ω) decomposes into metric cylinders in some direction. The bound-
aries of these cylinders consist of saddle connections and, since g ≥ 2, at least
two of them, say γ1 and γ2, are not homologous, i.e. they are linearly indepen-
dent elements of H1(X,Z(ω),Z). Since the saddle connections are parallel,
the periods of γ1 and γ2 are R-linearly dependent. The locus of surfaces where
γ1 and γ2 are linearly dependent is of R-codimension at least one in period
coordinates. Since the γi in question are two elements in the countable group
H1(X,Z(ω),Z), the generic flat surface does not contain an affine parabolic
element.
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The remaining discussion serves to prove that the number of elliptic affine
diffeomorphisms is as small as claimed. Suppose the generic flat surface (X,ω)
in a stratum contains such a diffeomorphism ϕ of finite order. Each stratum
contains square-tiled surfaces and their affine group is a subgroup of SL2(Z)
(see Section 4). In ΩTg, the pullback bundle to Teichmüller space, the presence
of an affine diffeomorphism of finite order is a closed condition. Consequently,
a generic affine diffeomorphism must be reflected in the affine group of all
square-tiled surfaces, hence ord(D(ϕ)) ∈ {1, 2, 3, 4, 6}.

First suppose that D(ϕ) is the identity or minus the identity, in particular
D(ϕ) ∈ SO2(R). Then ϕ is in fact an automorphism of X and fixes q = ω⊗2.
We are faced with the problem of classifying strata of half-translation surfaces
that consist entirely of pullbacks of half-translation surfaces of lower genus.
This classification was solved in [18], although precisely the case of squares of
abelian differential was excluded from the discussion in loc. cit. The difference
between the cases is apparent whenever the dimension count is involved, since

dimQg(k1, . . . , kn) = 2g − 2 + n while dim ΩMg(k1, . . . , kn) = 2g − 1 + n.

We let g0 denote the genus of the quotient surface X/〈ϕ〉 and we let d be the
degree of the covering, i.e. the order of ϕ. Moreover, let p be the number of
poles of q, let r be the number of zeros of q over which the covering π : X →
X/〈ϕ〉 is unramified, and let m be the number of regular points of q, over
which π is ramified. Finally, let n be the number of zeros of q over which π is
ramified.

The first case is D(ϕ) = id. Then ω is the pullback of an abelian differential
and we obtain, as in loc. cit. using the Riemann-Hurwitz formula, that

(d− 1)(2g0 − 2 + n+ r) ≤ −m.

We deduce g0 = 0, which is absurd since the projective line carries no abelian
differentials.

The second case is D(ϕ) = −id. Then ω is the pullback of a strictly
quadratic differential. An analysis of the covering results this time in

(d− 1)(2g0 − 2 +m+ n+ r) ≤
{

m(d− 2) + pd/2 − 1 if d is even
m(d− 2) + p(d− 1)/2− 1 if d is odd.

This implies g0 = 0 and for d = 2 one obtains the hyperelliptic components.
For d ≥ 3 we deduce n + r ≤ 1 and since p ≥ 4 the case n+ r = 1 is absurd.
If n + r = 0, we conclude that p = 4, that d is even and that m ∈ {1, 2}.
This case is excluded in the same way as the corresponding case in the proof
of Theorem 1 in [18].

We finally have to treat the cases where D(ϕ) has order 3, 4 or 6. In this
cases D(ϕ) is conjugate to an element in SO2(R) and ϕ is actually an auto-
morphism if D(ϕ) ∈ SO2(R). Consequently, for each (X,ω) the SL2(R)-orbit
contains a flat surface where the conjugate of ϕ is actually an automorphism.
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It thus suffices to prove that in each stratum the locus of flat surfaces with an
automorphism of order 3, 4 and 6 is of codimension more than one.

We start with the case ord(D(ϕ)) = 3. Consider the surface X/〈ϕ〉 marked
with s images of the ramification points. We give the details in the case
ord(ϕ) = 3, in all other cases even cruder dimension estimates suffice. The
quotient surface has

3g0 − 3 + s = g − 1

moduli by Riemann-Hurwitz. If (X,ω) lies in the generic stratum, the locus
of flat surfaces with such an automorphism has dimension

g − 1 + g < (4g − 3) − 1 = dim ΩMg(1, . . . , 1) − 1,

since g > 1. If (X,ω) lies in a non-generic stratum S, then the fiber of S →Mg

has at most dimension g − 1 and again the locus of flat surfaces with such an
automorphism has dimension less that dim(S) − 1.

The case ord(D(ϕ)) = 6 is contained in the previous one by considering ϕ2.
The same trick allows to reduce the case ord(D(ϕ)) = 4 to the hyperelliptic
loci. Again the Riemann-Hurwitz formula yields that the quotient surface has
not enough moduli.

Proposition 1.3. ([37] Proposition 2.7) The group SL(X,ω) is a discrete
subgroup of SL2(R).

Proof. Let ϕn be a sequence of affine diffeomorphisms such that D(ϕn) con-
verges to the identity. By Arzela-Ascoli and after passing to a subsequence,
we may suppose that ϕn converges to some affine diffeomorphism ϕ uniformly
on X . Hence for large enough n, the composition ϕnϕ

−1
n+1 is isotopic to the

identity. Using Thurston’s classification of diffeomorphisms this is not possible
unless D(ϕn) = id for large enough n.

Concerning the existence of cyclic affine groups, the parabolic case is easy,
while the hyperbolic case seems wide open at present. The proof of Proposi-
tion 1.4 will be given in the next section.

Proposition 1.4. In every stratum there exist flat surfaces whose affine group
is cyclic generated by a parabolic element.

Question 1.5. Does there exist a flat surface (X,ω) whose affine group
SL(X,ω) is cyclic generated by a hyperbolic element?
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2 Thurston’s construction and implications for the trace

field

The following construction first appears in Thurston’s famous 1976 preprint
([33]), see also [30], [37], [19], [10] and [24] and in the chapter by Harvey in
volume I of this handbook ([9]) for versions and different presentations.

A multicurve A on a surface Σg of genus g is a union of disjoint essential
simple closed curves, no two of which bound an annulus. A pair (A,B) of
multicurves fills (or binds) the surface if for each curve in A and each curve
in B the geometric intersection number is minimal in their homotopy classes
and if the complement Σg r (A ∪ B) is a simply connected polygonal region
with at least 4 sides.

We index the components of A and B such that A = ∪a
i=1γi and B =

∪a+b
i=a+1γi and let C be the (unsigned) intersection matrix of A and B, i.e. for

i 6= j we have Cij = |γi ∩ γj | and Cjj = 0 for all j.
As additional input datum for the construction we fix a set of multiplicities

mi ∈ N for i = 1, . . . , a + b. Since (A,B) fills Σg, the intersection graph is
connected and the matrix (miCij) is a Perron-Frobenius matrix. Hence there
is a unique positive eigenvector (hi) up to scale such that

µhi =

j=a+b
∑

j=1

miCijhj (2.1)

for some positive eigenvalue µ.
We now glue a surface X from rectangles Rp = [0, hi]× [0, hj ] ⊂ C for each

intersection point p ∈ γi ∩ γj . Namely, glue Rp to Rq along the vertical (resp.
horizontal) sides whenever p and q are joined by an edge in A (resp. B) of the
graph A∪B. The differentials dz2 on each rectangle glue to a global quadratic
differential q on X .

Let τi be the Dehn twist around γi and define

τA =
∏a

i=1 τ
mi

i

τB =
∏a+b

i=a+1 τ
mi

i .

Theorem 2.1. ([33]) The flat surface (X, q) constructed above contains affine
diffeomorphisms τA and τB with derivatives

DτA =

(

1 µ
0 1

)

and DτB =

(

1 0
−µ 1

)

In particular the elements τn
AτB are pseudo-Anosov diffeomorphisms for n large

enough.

Proof: By construction the modulus of the cylinder with core curve γi is
mi/µ. Hence the powers of the Dehn twists occurring in the definition of τA
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and τB have linear part as claimed. They fix the boundary of the horizontal
resp. vertical cylinders and together define affine diffeomorphisms.

In order to check the last claim, one has to recall that an affine diffeomor-
phism is pseudo-Anosov if and only if the absolute value of its trace is greater
than two. 2

Since we are dealing exclusively with flat surfaces in the sequel, we remark
that the quadratic differential has a squre root, i.e. q = ω2 if and only if
for a suitable orientation of the γi their geometric and algebraic intersection
numbers coincide.

2.1 Trace fields of affine groups

Given a pair (X,ω) resp. (X, q) we define the trace field of the affine group
SL(X,ω) to be K = Q(tr(A), A ∈ SL(X,ω)) The notion of trace field is a
useful invariant since it turns out to be stable under passing to a finite index
subgroup.

Theorem 2.2 ([16], Appendix; [22]). Let A = Dϕ ∈ SL(X,ω) be any hyper-
bolic element. Then the trace field of the affine group equals the trace field of
ϕ. More precisely, if SL(X,ω) contains a hyperbolic element A, then the Q-
vector space generated by the periods of ω is a 2-dimensional K-vector space,
where K = Q(tr(A)).

With this result we can obviously determine the trace fields of affine groups
arising from Thurston’s construction.

Corollary 2.3. If ϕ is constructed using a pair of multicurves then K =
Q(µ2), where µ is as in equation (2.1).

Hubert and Lanneau have shown that Thurston’s construction imposes a
restriction on the trace field. We will see below (Corollary 3.1) that this
property does not hold for all pseudo-Anosov diffeomorphisms.

Theorem 2.4 ([10]). If (X,ω) is given by Thurston’s construction, then the
trace field K of SL(X,ω) is totally real, i.e. all embeddings K → C factor
through R. In particular, if SL(X,ω) contains two non-commuting parabolic
elements then K is totally real.

Proof of Theorem 2.4. Let Dm be the diagonal matrix with entries mi. The
square of the largest eigenvalue of the matrix C (as in Thurston’s construction)
is the largest eigenvalue of the matrix C2. Hence we have to show that all the
eigenvalues of (DmC)2 are real.
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Suppose first for simplicity mi = 1 for all i. Since for some matrix C0 we
have

DmC = C =

(

0 C0

CT
0 0

)

, hence (DmC)2 = C2 =

(

C0C
T
0 0

0 CT
0 C0

)

.

Since C2 is symmetric, all its eigenvalues are real. Thus Q(µ2) is totally real.
If the mi are no longer identically one, (DmC)2 is still similar to a sym-

metric matrix: Split Dm into two pieces D′
m and D′′

m of size a resp. b and let
D′√

m
resp. D′′√

m
denote the diagonal matrix with entries

√
mi. Then

(DmC)2 =

(

D′
mC0D

′′
mC

T
0 0

0 D′′
mC

T
0 D

′
mC0

)

.

The upper block decomposes as

D′
mC0D

′′
mC

T
0 = D′√

m(D′√
mC0D

′′√
m)(D′√

mC0D
′′√

m)T (D′√
m)−1

and for the lower block the same trick works. The above conclusion about the
eigenvalues thus still holds.

We can now easily give a proof of a statement from the previous section.

Proof of Proposition 1.4. It is easy to construct in each stratum a flat surface
(X,ω) that consists of only one cylinder horizontally. Consequently, SL(X,ω)
contains a parabolic element ϕ irrespectively of the lengths of the horizontal
saddle connections. Since g(X) > 1 by hypothesis, we may arrange that the
periods of all horizontal saddle connections generate a K-vector space of di-
mension two or more, whereK is real, but not totally real. By Theorem 2.2 and
Theorem 2.4, the affine group SL(X,ω) does not contain two non-commuting
parabolic elements. Suppose SL(X,ω) contains a hyperbolic or an elliptic el-
ement ψ. Then ϕ and ψϕψ−1 are non-commuting parabolic elements. This
contradiction completes the claim.

Remark 2.5. Recent results on Thurston’s construction can be found in [19].
E.g., the smallest dilatation coefficients of the pseudo-Anosov diffeomorphisms
arising from Thurston’s construction are determined there.

3 The Arnoux-Yoccoz surface as a multi-purpose

counter-example

The following construction is a special case of what has become known as the
construction of zippered rectangles ([35], [20]). We sketch the version in [2]
where the construction is given for hyperelliptic curves of genus g. The con-
struction appeared originally in [3]. It will be used below to refute many naive
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conjectures one could derive seeing only the construction from the preceding
sections.

We first construct an interval exchange transformation f : [0, 1) → [0, 1),
i.e. a map that consists of translations on a subdivision of intervals. Here we
take α to be the real root of

αg + αg−1 + · · · + α = 1

and subdivide [0, 1) into g pairs of subintervals Ik of lengths αk/2, k=1,. . . ,g.
We let f be the exchange of the pairs of same length composed with a half
turn, where [0, 1) is identified with a circle. Explicitly, f = fr ◦ fs, where for
k = 0, . . . , g − 1 we let

fs(x) :=

{

x+ αk+1/2 if x ∈ [
∑k

i=1 α
i, αk+1/2 +

∑k
i=1 α

i)

x− αk+1/2 if x ∈ [αk+1/2 +
∑k

i=1 α
i,

∑k+1
i=1 α

i)

and define

fr(x) =

{

x+ 1/2 if x ∈ [0, 1/2)
x− 1/2 if x ∈ [1/2, 1).

The interval exchange f enjoys a remarkable ’self-similarity’ property,, inher-
ited by the form of the minimal polynomial of α. The map

ϕI :







[0, 1) → [0, α)

x 7→
{

αx + (α+ αg+1)/2 if x ∈ [0, (1− αg)/2)
αx − (α+ αg+1)/2 if x ∈ [(1 − αg)/2, 1),

which shrinks the interval linearly by the factor α and then exchanges two
pieces (of unequal length), commutes with f resp. its induction on the subin-
terval [0, α), i.e.

ϕI ◦ f = f |[0,α) ◦ ϕI ,

where

f |[0,α)(x) = fn(x), where n ∈ N>0 is minimal such that fn(x) ∈ [0, α).

Suppose we let each of the intervals Ii be the bottom of a rectangle of
height hi and glue the top of these rectangles to [0, 1) according to f . Under
some conditions (see e.g. [35] or the survey [38] §5 for details) the sides of the
rectangles can be glued to yield a translation surface. Here we take

hi =

g−k
∑

j=1

αj for i = 2k + 1, 2k + 2.

The resulting flat surface (XAY, ωAY) has genus g with two singularities of
type g − 1, i.e. with angle 2gπ.



Title 11

C

T

T1

2

C1 2

Figure 1. Topology of a special diagonal direction on the Arnoux-Yoccoz sur-
face, displayed horizontally

The main point in this choice of heights is that the self-similarity of the
base interval is also reflected in the gluing of the vertical sides. That is, there
is a map ϕ : XAY → XAY that restricts to ϕI on the segment [0, 1) and
which stretches the vertical side by α−1. Obviously ϕ is a pseudo-Anosov
diffeomorphism with dilatation α. Since Q(α + 1/α) is not totally real, we
conclude:

Corollary 3.1. ([10]) There exist flat surfaces with a pseudo-Anosov diffeo-
morphism whose trace field is not totally real. In particular, there exist flat sur-
faces with a pseudo-Anosov diffeomorphism that does not arise via Thurston’s
construction.

The Arnoux-Yoccoz surfaces were thought to be good candidates to answer
Question 1.5 affirmatively. But at least for g = 3 this is not the case.

Theorem 3.2. ([15]) For (XAY, ωAY) the Arnoux-Yoccoz surface with g(X) =
3 the group SL(X,ω) is not cyclic.

We sketch the proof in order to illustrate a phenomenon that yet needs
deeper investigation. First, there exist many (diagonal) directions on (XAY, ωAY)
that topologically look like the horizontal one in Figure 1, called 2T2C-direction
in [15]. The vague ’looks like topologically’ can be made precise using numer-
ical invariants of a given direction, like the widths, heights and twists and
some finite data, called combinatorics. The reader may consult [15] for the
definition of these invariants.

Second, many of these 2T2C-directions have the same combinatorics and
the same projectivised tuple of numerical invariants. Consequently, for each
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such pair of directions p, q, there exists an affine diffeomorphism of (X,ω),
that maps p to q. Necessarily, such a diffeomorphism is pseudo-Anosov.

Finally, there exist pairs of 2T2C-directions on (XAY, ωAY) with the same
projectivised invariants, such that the corresponding pseudo-Anosov diffeo-
morphism is not a power of the diffeomorphism ϕ constructed above. Conse-
quently, the affine group is not cyclic.

Question 3.3. How large is the affine group of (XAY, ωAY)? Is it finitely
generated or infinitely generated?

We finally mention three more questions, the Arnoux-Yoccoz surface pro-
vides a negative answer to. First, the dilatation coefficient of a pseudo-Anosov
diffeomorphism of a surface of genus g is an algebraic number of degree r at
most 2g over Q. In Thurston’s original examples r turned out to be even, but
the Arnoux-Yoccoz surface shows that odd r is possible too ([3]).

Second, the directional flow on a flat surface defines an interval exchange
transformation (IET). An IET has an easily computable invariant, the SAF-
invariant (compare [1] for the definition), that vanishes if the directional flow
has periodic orbits only. For a surface of genus two the converse holds, but the
Arnoux-Yoccoz surface shows that the converse does not hold in genus three
([1]).

The third question concerns SL2(R)-orbit closures and will be dealt with
in the last section.

4 Large affine groups: Veech surfaces

A flat surface (X,ω) is called a Veech surface if SL(X,ω) is a lattice in SL2(R).
We do not want to address the dynamics of flat surfaces here, but we mention
the most striking result, Veech’s dichotomy ([37]), for later use. If (X,ω) is a
Veech surface then for each direction either

• all geodesics are uniformly distributed, in particular dense, or,

• all geodesics are closed or a saddle connection. Such directions are called
periodic.

The presence of saddle connections on (X,ω) forces the lattice SL(X,ω)
to be non-cocompact. Up to coverings, all Veech surfaces known at the time
of writing except for one arise from two fundamental constructions which we
explain below:

• Quotients of cyclic coverings of the projective line branched at 4 points.

• Eigenforms for real multiplication by a quadratic field in genus two and
the Prym variants in genus g ≤ 5.
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From the point of view of affine groups we can state this result as follows:

Theorem 4.1. ([5]) All triangle groups (m,n,∞) for 1/m + 1/n < 1 and
m,n ≤ ∞ arise as affine groups of Veech surfaces.

Theorem 4.2. ([21], [6]) All real quadratic fields arise as trace fields of lattice
affine groups.

Before we give the proofs we need to recall some background. Recall from
Section 1 the action of GL+

2 (R) on flat surfaces. By a theorem of Smillie (see
[32] for a recent proof), the orbit of (X,ω) is closed in ΩMg if and only if
SL(X,ω) is a lattice in SL2(R). In this case the image C of the orbit in Mg

is a complex, in fact algebraic curve, called a Teichmüller curve. We mention
that such an algebraic curve is a totally geodesic subsurface for the Teichmüller
metric, whence the name, but we won’t need details on Teichmüller theory.
Instead of considering a Teichmüller curve as a curve in the moduli space of
curves, it is often useful to restrict the universal family over Mg to a family
f : X → C over the Teichmüller curve and to study f instead.

Proof of Theorem 4.1. We extract from [5] the special case where m,n are
both odd, finite and coprime. This case illustrates almost all ideas, except for
a fiber product construction needed to cover the general case.

The basic idea is to study a family of cyclic coverings ramified over the
projective line at 4 points. There is a criterion ([26], we will apply the version
[5] Theorem 1.2 (b)) that detects Teichmüller curves by the existence of an
eigenspace of the relative de Rham cohomology, whose monodromy group is
the affine group. For appropriate cyclic coverings, there is such an eigenspace
whose monodromy group is the desired triangle group. But the family of cyclic
coverings does not quite match the cohomological criterion as we shall see, so
we need furthermore to find a suitable quotient family.

Consider the family of cyclic degree N covering

Yt : yN = xa1(x− 1)a2(x− t)a3

of P1
x with t varying in P1

t r {0, 1,∞}, where N = 2mn and

a1 = 2mn−m+n, a2 = 2mn+m−n, a3 = 2mn+m+n, a4 = 2mn−m−n.
The coverings is ramified precisely over x = 0, x = 1, x = t and x = ∞.
Let L(i) denote the ζi

N -eigenspace of the relative de Rham cohomology for the
automorphism ϕ : (x, y) 7→ (x, ζNy). The local systems L(1), L(−1), L(mn+
1), L(mn− 1) are isomorphic and the ai are chosen such that the monodromy
group is ∆(m,n,∞).

We claim that we can lift the automorphisms of P1
x that interchange the

points {0, 1, t,∞} in pairs to an automorphism group H of Yt such that the
stable model of the fibers Y0/H and Y1/H are smooth. Let X = Y/H be the
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quotient and denote by f : X → P1
t the corresponding family of curves. Given

the claim, the local system

L(1) ⊕ L(−1) ⊕ L(α) ⊕ L(−α)

is made to be H-invariant. Thus, the de Rham cohomology of Xt has a local
subsystem of rank two with discrete monodromy group ∆(m,n,∞) and the
fibers of the family Xt are smooth precisely over H/∆(m,n,∞). We conclude
using the characterization of Teichmüller curves given in [5] Theorem 1.2 (b).

To establish the claim, choose elements t1/n, (t− 1)1/m ∈ C(t) and define

c = (t− 1)σ2+σ3 , d = tσ1+σ3 . (4.1)

We now define H = 〈σ, τ〉 by

σ(z) = cd
x(x − 1)

y(x− t)
= cd

−y
(x − t)2

and for α ≡ 1 mod m and α ≡ −1 mod n

τ(z) = d
y(α)

x2
.

The fiber over t = 0 consists of two smooth components with affine charts
yN = xa1(x− 1)a3 (since branch points of type a1 and a3 have come together)
and yN = xa2(x − 1)a4 . They meet in gcd(a1 + a3, N) points transversally.
One of the elements in H exchanges the two components and, in fact, fixes the
intersection points of the components. Consequently, the quotient is smooth
as claimed. See [5] for the details.

Proof of Theorem 4.2. Consider a curve X of genus two, such that its Jaco-
bian Jac(X) has more endomorphisms than just multiplication by an integer,
namely such that End(Jac(X)) is an order oD in a real quadratic field Q(

√
D).

These endomorphisms act on the space of holomorphic one-forms of Jac(X),
which is in natural bijection with the space of holomorphic one-forms on X .
Let ED ⊂ ΩM2 be the locus of flat surfaces (X,ω), such that Jac(X) has real
multiplication by oD and such that ω is an eigenform for the action of oD on
the space of holomorphic one-forms. Obviously, EK ⊂ ΩM2 is a closed sub-
variety and the main point is to show that ED is invariant under the action
of SL2(R). Granted this, the intersection WD = ED ∩ ΩM2(2) is again closed
and SL2(R)-invariant. A local dimension count shows that the image of WD

in M2 is a curve, by construction a Teichmüller curve.
We now single out the role of genus two rather than rigorously proving the

main point. Let A = Cg/Λ be a g-dimensional abelian variety. An endomor-
phism of A consists of an endomorphism of the lattice Λ plus a linear map of
Cg with the obvious compatibility condition. Suppose that (X,ω) is an eigen-
form for real multiplication and T a generator of oD. For any M ∈ GL+

2 (R)
let M · (X,ω) = (Y, η). By definition of the GL+

2 (R)-action, there is an affine
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diffeomorphism ϕM : X → Y . The map ϕM ◦ T ◦ ϕ−1
M defines a map of Λ,

where Jac(Y ) = Cg/Λ. Moreover this map preserves the complex line

M · 〈<ω,=ω〉 = 〈<η,=η〉.
Since here g = 2, the orthogonal complement of 〈<ω,=ω〉 with respect to
the symplectic form is also a complex line, also preserved by ϕM ◦ T ◦ ϕ−1

M .
Consequently, (Y, ω) has also real multiplication by oD. See [21] for the missing
details.

In fact, the orbifold Euler characteristic of the quotients H/SL(X,ω) for
(X,ω) as constructed in Theorem 4.2 has been determined by Bainbridge ([4]).
The complete description of the structure (starting with the number of elliptic
elements) of these Veech groups is an open question. Only for the 12 smallest
examples, when H/SL(X,ω) is a rational curve, the affine groups are known
by generators and relations. It would be interesting to have such a description
of the Veech groups for the whole series.

Square-tiled surfaces, covering constructions

Let (Y, η) be a Veech surface. A point P on Y is called a periodic point, if the
orbit SL(X,ω) · P is finite. A covering surface π : X → Y provided with the
flat structure ω = π∗η is again a Veech surface if and only if π is branched at
most over periodic points ([8]).

For the rest of this section we suppose that Y is the torus. In this case,
periodic points are precisely the torsion points on Y , if we normalize 0 ∈ Y to
be one of the branch points. For more on periodic points on flat surfaces of
higher genera, see [27]. Composition of X → Y with the multiplication on Y
ensures that the composition map is ramified over the origin only. These flat
surfaces are called square-tiled surfaces, sometimes also origamis. By [8] the
affine group of a square-tiled surface is a subgroup of finite index in SL2(Z).
We mention two results indicating that many types of subgroups of SL2(Z)
arise as affine group.

Theorem 4.3 ([12], [31]). With the exception of the covering consisting of
three squares, the affine groups of square-tiled surfaces in ΩM2 are non-congruence
subgroups. In any genus g ≥ 2 there are square-tiled surfaces, whose affine
group is a non-congruence subgroup.

Theorem 4.4 ([31]). All congruence subgroups of SL2(Z) with possibly 5 ex-
ceptions occur as affine groups of square-tiled surfaces.

Question 4.5. Is there a subgroup of SL2(Z) that is not the affine group of
a square-tiled surface?
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5 Also large affine groups: infinitely generated

There exist two constructions for infinitely generated affine groups. McMullen’s
construction ([22]) gives a complete description in genus two but the techniques
apply to genus two only. On the other hand, the construction of Hubert and
Schmidt ([13]) is a way to construct a flat surface with infinitely generated
affine group starting from a Veech surface with a special point. The resulting
surfaces have genus at least four.

We sketch both constructions and conclude with a number of open questions
concerning the precise structure of the limit of these infinitely generated affine
groups.

Theorem 5.1. ([22]) Suppose that (X,ω) ∈ ΩM2(1, 1) has a hyperbolic el-
ement in its affine group, but (X,ω) is neither in the GL+

2 (R)-orbit of the
regular decagon nor obtained as a covering of the torus. Then SL(X,ω) is
infinitely generated.

Sketch of proof. Veech surfaces in ΩM2(1, 1) are either in the orbit of the
decagon or torus coverings ([27], [23]). Hence it suffices to show that once
SL(X,ω) contains a hyperbolic element the limit set of SL(X,ω) is the whole
S1. For that purpose it is enough to show that each direction s joining a zero
and a Weierstraß point decomposes the surface into cylinders of commensu-
rable moduli, since then the affine group contains a parabolic element in such
a direction and since those directions are dense in S1.

In order to prove this, one first shows that the presence of the hyperbolic
element implies that the SAF-invariant of the induced interval exchange trans-
formation (IET) on a transverse interval to s vanishes. (The Galois flux used
in [22] is a quantity equivalent to the SAF-invariant.) In genus two, due to the
bad approximation of quadratic irrationals, this implies that the IET is not
minimal. Topological considerations using the Weierstraß point imply that
the direction s decomposes into cylinders. Using the presence of the hyper-
bolic element again, one checks that the moduli of the cylinders have to be
commensurable.

Theorem 5.2. ([13]) For g ≥ 4 there exist flat surfaces (X,ω), whose affine
group is infinitely generated.

More precisely, take any of the Veech surfaces in genus two with trace field
K 6= Q (see Theorem 4.2) and normalize it by GL+

2 (R) to have periods in K(i).
Then a covering ramified over a Weierstraß point and a non-Weierstraß point
with coordinates in K[i] has infinitely generated Veech group.

Proof. Recall the definition of a periodic point from Section 4. In order to
ensure that SL(X,ω) is infinitely generated, the branch points must not be
exclusively periodic points on the one hand and not too general either for
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SL(X,ω) might become trivial then. A connection point P on Y has the
property that every straight line emanating from a singularity of Y and passing
through P ends in a singularity, i.e. yields a saddle connection.

Suppose that (Y, η) admits a non-periodic connection point P . The sub-
group SL(P ) ⊂ SL(X,ω) that fixes P is not of finite index, since P is not
periodic. On the other hand, for each direction of a geodesic from a singular-
ity to P there is a parabolic element σ in SL(X,ω) by Veech dichotomy and
the definition of a connection point. A suitable power of σ fixes all saddle
connections, hence lies in SL(P ).

Since the set of directions joining P to a singularity is dense in S1, there
is a dense set of directions in S1 fixed by some parabolic element in SL(P ).
Said differently, the limit set of SL(P ) is S1. Consequently, SL(P ) is infinitely
generated.

It thus suffices to find a Veech surface with a non-periodic connection point.
The periodic points of the Veech surfaces from Theorem 4.2 are precisely the
Weierstraß points by [27]. A Veech surface normalized as in the second state-
ment of the theorem is said to have strong holonomy type, if the set of periodic
directions is precisely P1(K). It is straightforward to check that strong holon-
omy type implies that point with coordinates in K[i] are connection points.
Finally, [22] Theorem A.1 implies that all the Veech surfaces in question are
of strong holonomy type.

We remark that the abundance of surfaces of strong holonomy type is a
particular property of genus g = 2, too.

Some more results on the structure of infinitely generated affine groups
are known ([14]). For example H/SL(X,ω) has infinitely many cusps and
infinitely many infinite ends. Yet, many questions concerning these infinitely
generated groups both for the case of [13] and [22] remain open, in particular
the convergence behavior of the associated Poincaré series.

6 The size of the affine group compared to the size of

the orbit closure

In Section 4 we have encountered Veech surfaces. Their affine group is, by
definition, large, and the GL+

2 (R)-orbit is closed in ΩMg, it projects to a
Teichmüller curve. In genus two, actually the motto ’the larger the affine
group the smaller the orbit closure’ holds.

Theorem 6.1. ([25]) Suppose that g(X) = 2 and that SL(X,ω) contains a
hyperbolic element. Then the closure of the GL+

2 (R)-orbit of SL(X,ω) projects
to an orbifold of dimension one or two in M2.
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In fact, this projection is a Teichmüller curve if (X,ω) ∈ ΩM2(2). If
(X,ω) ∈ ΩM2(1, 1), then the projection is a Teichmüller curve or it is the
preimage of a Hilbert modular surface in the moduli space of abelian surfaces
under the Torelli map.

In genus three this motto no longer holds:

Theorem 6.2. ([15]) The affine group of the Arnoux-Yoccoz surface contains
a hyperbolic element and nevertheless the orbit closure is as big as possible,
namely the hyperelliptic locus L in the connected component of ΩM3(2, 2) which
does not consist entirely of hyperelliptic surfaces.

There is a GL+
2 (R)-equivariant map from L to the stratum Q(1, 1, 1, 1) of

quadratic differentials in genus 2 with 4 simple zeros. Consequently, the above
statement can be rephrased as follows: There is a surface in Q(1, 1, 1, 1), whose
affine group contains a hyperbolic element and whose GL+

2 (R)-orbit closure is
the whole stratum Q(1, 1, 1, 1).

We now explain the idea of proof of both theorems. The starting point
is to reduce the orbit closure question for flat surfaces to a question in a
homogeneous space, where Ratner’s theorem predicts how orbit closures look
like. For that purpose, one needs to cut the surface along saddle connections
in some fixed direction into tori and cylinders. In order to be able to do so
in a neighborhood of the surface, too, the slitting configuration has to stable
under small deformation. This means that the saddle connections have to be
homologous.

Such sets of homologous saddle connections are rather rare, but in genus
two each surface admits such a set ([25]) and in the locus L the generic surface
does. In L, the horizontal saddle connections in Figure 1 split the surface into
two tori and two cylinders. Not all surfaces in L admit such a 2T2C-direction,
but the Arnoux-Yoccoz surface does.

Cut the surface in pieces along the homologous saddle connections. The
difference between genus two and genus three becomes apparent in the applica-
tion of Ratner’s theorem to the splitting pieces. In genus two, if SL(X,ω) con-
tains a hyperbolic element, then the two splitting pieces are isogenous tori and
the orbit closure is a (’small’) unipotent subgroup of (GL+

2 (R))2. The major
remaining step to complete the proof of Theorem 6.1 consists in showing that
flat surfaces that split into isogenous tori have Jacobians with real multiplica-
tion. Consequently, compare to the proof of Theorem 4.2, the GL+

2 (R)-orbit
closure is contained in the preimage of a Hilbert modular surface

In the case of the Arnoux-Yoccoz surface however, the splitting pieces are
’as incommensurable as possible’ despite the presence of a hyperbolic element
in GL+

2 (R). Consequently, an application of Ratner’s theorem yields a large
orbit closure and a second application in a different 2T2C-direction implies
that the orbit closure is the whole locus L.
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As a first, and maybe important, step towards extending a Ratner type
theorem from genus two to genus three we are thus led to ask:

Question 6.3. How can one describe the locus of flat surfaces in L that admit
a 2T2C-direction?
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