Lineare Algebra

Übungsblatt 14¹

Aufgabe 1

i) Sei $A \in \mathbb{C}^{2 \times 2}$. Zeigen Sie: Falls

$$4 \det(A) - \operatorname{Spur}(A)^2 \neq 0$$

gilt, dann sind das charakteristische Polynom und das Minimalpolynom gleich.

ii) Sei Kein Körper, $A \in K^{3 \times 3}.$ Zeigen Sie, dass das charakteristische Polynom von A

$$\chi_A(X) = -X^3 + \text{Spur}(A)X^2 - \left(\sum_{i=1}^3 \det(A_{ii})\right)X + \det(A)$$

ist.

Aufgabe 2

Sei K ein Körper. Man sagt, dass A in $K^{n\times n}$ über dem Körper K eine Jordannor-malform besitzt, wenn $\sum \dim H_{\lambda_i} = n$ ist. In diesem Fall liefert der Algorithmus der Vorlesung eine Matrix T, sodass $T^{-1}AT$ die Gestalt einer Jordannormalform hat.

Sei

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \in K^{3 \times 3}.$$

In welchen der drei Fälle $K = \mathbb{C}$, $K = \mathbb{R}$ und $K = \mathbb{F}_2$ besitzt A eine Jordansche Normalform? Geben Sie diese in diesen Fällen an.

Aufgabe 3

Hat 27 ein multiplikatives Inverses in \mathbb{Z}_{199} ? Falls ja, berechnen Sie dieses Inverse.

Aufgabe 4

Sei R ein endlicher kommutativer Ring, sodass für alle $a, b \in R$ mit ab = 0 auch a = 0 oder b = 0 gilt (diese Eigenschaft heißt Nullteilerfreiheit). Zeigen Sie, dass R ein Körper ist.

¹ auch im Internet unter