$\begin{array}{c} WS~2011/12\\ Frankfurt/M.,~18.~Januar~2012\\ Abgabetermin:~26.01.2012 \end{array}$

Lineare Algebra

Übungsblatt 12¹

Aufgabe 1

Sei

$$A := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ -3 & 3 & 2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

Das ist die Matrix von Blatt 11, Aufgaben 1 und 2, mit $\zeta=1$. Sei $P:=X^7-3X^6+6X^4$. Berechnen Sie P(A) mit Hilfe der Ergebnisse von Blatt 11.

Aufgabe 2

- i) Seien f, g zwei Endomorphismen eines Vektorraums V. Zeigen Sie: Wenn eine Basis von V existiert, sodass die Abbildungsmatrizen A_f und A_g bezüglich dieser Basis diagonal sind, dann gilt $f \circ g = g \circ f$.
- ii) Seien f und $g \in \text{End}(V)$ diagonalisierbar. Gilt immer $f \circ g = g \circ f$?
- iii) Seien $A, B \in K^{n \times n}$, sodass AB = BA. Wir definieren $E_{\lambda}(A)$ als den Eigenraum von A zum Eigenwert λ . Zeigen Sie, dass $x \in E_{\lambda}(A)$ auch $Bx \in E_{\lambda}(A)$ impliziert.

Aufgabe 3

Seien
$$a_i \in \mathbb{R}$$
 und $A = \begin{pmatrix} a_1 & 1 & 0 \\ 0 & a_2 & 1 \\ 0 & 0 & a_3 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$.

- i) Für welche a_i ist diese Matrix diagonalisierbar?
- ii) Berechnen Sie in diesem Fall eine Diagonalmatrix $D \in \mathbb{R}^{3\times 3}$ und eine invertierbare Matrix $Q \in Gl_3(\mathbb{R})$, sodass $Q^{-1}AQ = D$ gilt.

Aufgabe 4

Sei
$$A = \begin{pmatrix} -5 & -3 & \sqrt{3} \\ 9 & \frac{11}{2} & -\frac{3\sqrt{3}}{2} \\ -\sqrt{3} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \in \mathbb{C}^{3\times3}.$$

- i) Bestimmen Sie eine Diagonalmatrix $D \in \mathbb{C}^{3\times 3}$, sodass eine invertierbare Matrix $Q \in \mathrm{Gl}_3(\mathbb{C})$ mit $Q^{-1}AQ = D$ existiert.
- ii) Berechnen Sie A^{2012} .

¹auch im Internet unter