Prof. Dr. M. Möller Dr. Dominik Ufer Quentin Gendron Christian Weiss

Funktionentheorie und gewöhnliche Differentialgleichungen

Übungsblatt 3¹

Aufgabe 1

Sei $U \subset \mathbb{C}$ eine offene, zusammenhängend Teilmenge. Eine holomorphe Abbildung $l: U \to \mathbb{C}$ ist ein *Logarithmus* wenn für alle $z \in U$ die Gleichung $\exp(l(z)) = z$ gilt. Wir definieren auch $\mathbb{C}^- := \mathbb{C} \setminus [-\infty, 0]$. Zeigen Sie:

- i) Sei $l: U \to \mathbb{C}$ einen Logarithmus in U gegeben. Dann ist eine Abbildung $\hat{l}: U \to \mathbb{C}$ ein Logarithmus genau dann wenn eine ganze Zahl n existiert, sodass $\hat{l} = l + 2i\pi n$ gilt.
- ii) Sei $l:U\to\mathbb{C}$ eine stetige Abbildung, sodass $\exp\circ l=\mathrm{Id}$ gilt. Dann ist l holomorph, also ein Logarithmus.
- iii) Sei $f: \mathbb{C}^- \to \mathbb{C}; z = re^{i\varphi} \to \log(|z|) + i\varphi$ gegeben. Zeigen Sie, dass f ein Logarithmus ist und dass in $B_1(1)$ die Formel

$$f(z) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (z-1)^k$$

gilt.

Aufgabe 2

Sei γ ein geschlossener Weg in \mathbb{C} und $z \in \mathbb{C} \setminus \gamma$. Dann heißt

$$ind(C, z) := \frac{1}{2i\pi} \int_{\gamma} \frac{dw}{w - z}$$

die Umlaufzahl von γ bzl. z.

i) Berechnen Sie ind (γ, z) für z=0 und γ die k-fach durchlaufene Kreislinie von Radius r>0 um 0, d.h. γ ist gegeben durch die Gleichung $\gamma(t)=re^{2i\pi kt},\,t\in[0,1].$

www.uni-frankfurt.de/fb/fb12/mathematik/ag/personen/lehnert_ralf/FtDgl1213/index.html $und\ im\ e\text{-}Learning\ System\ OLAT$

¹auch im Internet unter

ii) Zeigen Sie, dass $\operatorname{ind}(\gamma, \mathbf{z}) \in \mathbb{Z}$ für alle geschlossenen Wege γ und für alle $z \in \mathbb{C} \setminus \gamma$.

Tipp: Benützen Sie die Abbildung

$$H(t) = \exp(-\int_0^t \frac{\gamma'(u)}{\gamma(u) - z}) du) \cdot (\gamma(t) - z)$$

als Hilfsfunktion.

iii) Seien $z_0, z_1 \in \mathbb{C} \setminus \gamma$ so, dass ein Weg γ von z_0 nach z_1 in $\mathbb{C} \setminus \gamma$ existiert. Zeigen Sie, dass $\operatorname{ind}(\gamma, z_0) = \operatorname{ind}(\gamma, z_1)$.

Aufgabe 3

Sei $\gamma(t)=e^{it}$ mit $t\in[0,2\pi]$ und $f:\mathbb{C}\to\mathbb{C}$ eine holomorphe Abbildung. Zeigen Sie, dass

$$\overline{\int_{\gamma} f(z) dz} = -\int_{\gamma} \frac{\overline{f(z)}}{z^2} dz$$

gilt.