Prof. Dr. M. Möller Quentin Gendron Frankfurt/M., 21.05.2013 Abgabetermin: 27.05.2013

Darstellungstheorie

Übungsblatt 3

Aufgabe 1 (4 Punkte)

Sei $Q_8 := \langle i, j, k | i^2 = j^2 = k^2 = ijk = -1 \rangle$ die Quaternionengruppe.

- i) Bestimmen Sie alle Konjugationsklassen von Q_8 .
- ii) Bestimmen Sie die Charaktertafel von Q_8 .

Aufgabe 2 (7 Punkte)

Die folgende Tafel ist ein Teil der Charaktertafel einer Gruppe der Ordnung 12.

	e	u	v	w	\boldsymbol{x}	y
χ_1	1	1	1	1	1	1
χ_2	1	1	i	-1	-i	-1
χ_3	1	1	-1	1	-1	1
χ_4	1	1	$ \begin{array}{c} 1 \\ i \\ -1 \\ -i \end{array} $	-1	i	-1

- i) Berechnen Sie die Kardinalität der Konjugationsklassen u, \dots, y .
- ii) Bestimmen Sie die fehlende Zeile.
- iii) Geben Sie die Gruppe an, die diese Charaktertafel hat.

Tipp: Bis auf Isomorphie gibt es nur fünf Gruppen der Ordnung 12: Zwei abelsche Gruppen, die alternierende Gruppe A_4 , die Diedergruppe D_6 und das semidirekte Produkt

$$\mathbb{Z}/4\mathbb{Z} \ltimes \mathbb{Z}/3\mathbb{Z} := \left<\alpha, \beta | \alpha^4 = \beta^3 = \alpha \beta \alpha^{-1} \beta = e \right>.$$

Aufgabe 3 (5 Punkte)

- i) Bestimmen Sie die Charaktertafel von $D_4 := \langle \sigma, \tau | \sigma^2 = \tau^4 = \sigma \tau \sigma \tau = e \rangle$.
- ii) Seien G und H zwei endliche Gruppen, die die gleiche Charaktertafel haben. Ist G isomorph zu H.