Goethe-Universität Frankfurt Institut für Mathematik

Winter term 2020/21

3. Januar 2021

Algebra

Prof. Dr. Martin Möller M.Sc. Jeonghoon So M.Sc. Riccardo Zuffetti

Übungsblatt 8

Aufgabe 1 (6 Punkte)

Let (G, \circ) be a group and (A, \cdot) an abelian group together with a group action

$$G \times A \to A$$
, $(\sigma, a) \mapsto \sigma(a)$.

by which is meant a group homomorphism $G \to \operatorname{Aut}(A)$ and where $\operatorname{Aut}(A)$ is the group of bijective group homomorphisms $A \to A$. Let $\operatorname{Map}(G, A)$ be the abelian group of maps $G \to A$. We define two subgroups of $\operatorname{Map}(G, A)$ as

$$Z^{1}(G,A) = \{ f : f(\sigma \circ \sigma') = \sigma(f(\sigma')) \cdot f(\sigma) \text{ for all } \sigma, \sigma' \in G \},$$

$$B^{1}(G,A) = \{ f : \text{there exists } a \in A \text{ such that } f(\sigma) = a \cdot \sigma(a)^{-1} \text{ for all } \sigma \in G \}.$$

(a) Show that $B^1(G, A) \subseteq Z^1(G, A)$.

The quotient group

$$H^1(G, A) := Z^1(G, A)/B^1(G, A)$$

is called first cohomology group of G in A. If L/K is a finite Galois extension, then the group $H^1(Gal(L/K), L)$ is trivial.

- (b) Use this to show that if L/K is cyclic and $\sigma \in \operatorname{Gal}(L/K)$ a generator, then the following conditions are equivalent for elements $b \in L$:
 - (i) $\operatorname{Tr}_{L/K}(b) = 0$
 - (ii) There exists an element $a \in L$ such that $b = a \sigma(a)$.

Aufgabe 2 (4 Punkte)

Let n > 1. The dihedral group D_n (Diedergruppe) is the group of symmetries of the regular polygon with n vertices, which includes rotations and reflections.

- (a) Compute the order of D_n
- (b) Show that D_n is already generated by a reflection s and a rotation r
- (c) Show that a p-Sylow subgroup of D_n is cyclic and normal for p > 2.

Aufgabe 3 (2 Punkte)

Let G be a finite p-group. Show that the number of non-normal subgroups of G is divisible by p.

Aufgabe 4 (4 Punkte)

(a) Show that a group of order 351 has a normal p-Sylow subgroup for some prime p dividing its order.

(b) Let b be a group with order pqr , where p,q,r primes such that $p < q < r$. Prove that G has a normal Sylow subgroup for either p,q or r .	ıt