Goethe-Universität Frankfurt Institut für Mathematik Winter term 2020/21

Algebra Prof. Dr. Martin Möller M.Sc. Riccardo Zuffetti

1. Dezember 2020

Übungsblatt 5

Aufgabe 1 (6 Punkte)

Let L/K be a field extension together with intermediate fields E and E' such that E/K and E'/K are finite Galois extensions.

(i) Prove that $E \cdot E'$ is finite and Galois over K, and that the homomorphism

$$\varphi \colon \operatorname{Gal}(E \cdot E'/E) \longrightarrow \operatorname{Gal}(E'/E \cap E'), \quad \sigma \longmapsto \sigma|_{E'}$$

is an isomorphism.

(ii) Prove that the homomorphism

$$\eta \colon \operatorname{Gal}(E \cdot E'/K) \longrightarrow \operatorname{Gal}(E/K) \times \operatorname{Gal}(E'/K), \quad \sigma \longmapsto (\sigma|_E, \sigma|_{E'})$$

is injective. Show also that if $E \cap E' = K$, then η is surjective and hence an isomorphism.

- (iii) Prove that $[E \cdot E' : K] = \frac{[E : K][E' : K]}{[E \cap E' : K]}$.
- (iv) The previous formula is in general \underline{false} if E/K and E'/K are finite but non-Galois. Show that with an example.

Hint: consider two simple extensions of \mathbb{Q} generated by two different roots of X^3-2 .

Aufgabe 2 (10 Punkte)

Let $\alpha_{s,t} := s\sqrt{3} + t\sqrt{2}$, where $s, t \in \mathbb{Q}$.

- (i) Prove that $\mathbb{Q}(\alpha_{1,1})/\mathbb{Q}$ is a finite Galois extension.
- (ii) Compute $[\mathbb{Q}(\alpha_{1,1}):\mathbb{Q}]$.
- (iii) Compute $Gal(\mathbb{Q}(\alpha_{1,1})/\mathbb{Q})$.
- (iv) Compute all intermediate fields of $\mathbb{Q}(\alpha_{1,1})/\mathbb{Q}$.
- (v) Compute the minimal polynomial of $\alpha_{1,1}$.
- (vi) Prove that $\mathbb{Q}(\alpha_{s,t}) = \mathbb{Q}(\alpha_{1,1})$ if and only if $s \cdot t \neq 0$. Prove also that $\mathbb{Q}(\alpha_{s,t})/\mathbb{Q}$ is finite and Galois for every $s, t \in \mathbb{Q}$.
- (vii) Compute the minimal polynomial of $\alpha_{s,t}$ over \mathbb{Q} , for every $s,t\in\mathbb{Q}$.

Hint: you can use Aufgabe 1 and Übungsblatt 2 Aufgabe 3. Recall that $Gal(\mathbb{Q}(\alpha_{s,t})/\mathbb{Q})$ permutes the roots of the minimal polynomial of $\alpha_{s,t}$.

Please, upload your solutions on the Olat page of this course, by 14:00 on Tuesday, 8.12.2020.