Goethe-Universität Frankfurt Institut für Mathematik Winter term 2020/21 22. November 2020 Algebra Prof. Dr. Martin Möller M.Sc. Riccardo Zuffetti

Übungsblatt 4

Aufgabe 1 (2 Punkte)

Let L/K be a finite field extension of degree [L:K]=n. Assume there is an element $\alpha \in L$ together with isomorphisms $\sigma_j: L \longrightarrow L, j=1,\ldots,n$, satisfying $\sigma_j|_K = \mathrm{id}_K$ and $\sigma_j(\alpha) \neq \sigma_\ell(\alpha)$ for $j \neq \ell$. Show that $L = K(\alpha)$.

Aufgabe 2 (5 Punkte)

Consider $L = \mathbb{Q}(\sqrt[4]{2}, i)$ as a field extending \mathbb{Q} .

- (i) Prove that L is a splitting field of $X^4 2$ over \mathbb{Q} .
- (ii) Compute $[L:\mathbb{Q}]$, and find a basis of L as \mathbb{Q} -vector space.
- (iii) Determine the eight \mathbb{Q} -automorphisms of $\operatorname{Aut}_{\mathbb{Q}}(L)$. Hint: find where each automorphism maps the roots of X^4-2 and i.
- (iv) Prove that $L = \mathbb{Q}(\sqrt[4]{2} + i)$. *Hint: use Aufgabe* 1.

Aufgabe 3 (5 Punkte)

Consider $f(X) := X^6 - 7X^4 + 3X^2 + 3$ as a polynomial in $\mathbb{Q}[X]$, as well as in $\mathbb{F}_{13}[X]$. In either case, decompose f into its irreducible factors, and determine a splitting field of f over \mathbb{Q} , resp. \mathbb{F}_{13} .

Aufgabe 4 (4 Punkte)

Let L/K be a field extension in characteristic p > 0 and consider an element $\alpha \in L$ that is algebraic over K. Show that α is separable over K if and only if $K(\alpha) = K(\alpha^p)$. Hint: (\Rightarrow) Suppose $K(\alpha) \neq K(\alpha^p)$, prove that $X^p - \alpha^p$ is irreducible over $K(\alpha^p)$. (\Leftarrow) Note that if $K(\alpha) = K(\alpha^p)$, then there exists $F \in K[X]$ such that α is a root of $F(X^p) - X$. Why?

Please, upload your solutions on the Olat page of this course, by 14:00 on Tuesday, 1.12.2020.