Goethe-Universität Frankfurt Institut für Mathematik Sommersemester 2019 23. Mai 2019

Algebraische Geometrie II Prof. Dr. Martin Möller Dr. David Torres-Teigell Dr. Matteo Costantini

Übungsblatt 3

Aufgabe 1 (4 Punkte)

Let (M,g) be a Riemannian manifold. Let $D: \mathcal{A}^0(TM) \to \mathcal{A}^1(TM)$ be a connection on the real tangent bundle TM. Let $D_v(u) \in TM$ be the tangent vector obtained by applying $D(v) \in \mathcal{A}^1(TM) \cong \mathcal{A}^0(\text{End}(TM))$ to $u \in TM$. Recall that the Lie bracket $[\cdot, \cdot]: \mathcal{A}^0(TM) \times \mathcal{A}^0(TM) \to \mathcal{A}^0(TM)$ is defined locally by

$$[u, v] = \sum_{j} (\mathrm{d}b_{j}(u) - \mathrm{d}a_{j}(v)) \frac{\partial}{\partial x_{j}}$$

for $u = \sum_i a_i \frac{\partial}{\partial x_i}$ and $v = \sum_i b_i \frac{\partial}{\partial x_i}$. Define the torsion of a connection D as

$$T_D: TM \times TM \to TM, \quad T_D(u, v) = D_u v - D_v u - [u, v].$$

- (a) Show that $T_D \in \mathcal{A}^2(TM)$, namely that it is skew-symmetric and \mathcal{A}^0 -linear.
- (b) Write locally D = d + A, where A is a one form with values in End(TM). Show that

$$T_D(u,v) = A(u)(v) - A(v)u$$

for any $u, v \in \mathcal{A}^0(TM)$.

Aufgabe 2 (4 Punkte)

Let (X, h) be a hermitian complex manifold. Let g := Re(h) be the induced Riemannian metric on the real tangent bundle.

- (a) Show that, under the natural isomorphism $TX \cong T^{1,0}(X)$, any hermitian connection ∇_h on $T^{1,0}(X)$ induces a metric connection D_h on the Riemannian manifold (X,g), i.e. dg(u,v) = g(Du,v) + g(u,Dv).
- (b) Let ∇_h be a hermitian connection with $T_{D_h} = 0$. Show that ∇_h is the Chern connection and that Im(h) is a Kähler form on X.

Remark: A metric connection D with $T_D = 0$ is called Levi-Civita connection. It is unique. One can prove also a converse of the last statement, so remember that if X is a Kähler manifold, the unique Chern connection on the holomorphic tangent bundle corresponds to the unique Levi-Civita connection on the real tangent bundle.

Aufgabe 3 (2 Punkte)

Let X be a Riemann surface. Show that for any line bundle $\mathcal{O}_X(D)$ it holds

$$c_1(\mathcal{O}_X(D)) = \deg(D).$$

Aufgabe 4 (6 Punkte)

Let $f: \mathcal{X} \to B$ be a family of Riemann surfaces. Recall that the flat vector bundle \mathcal{H} over B given fiberwise by $\mathcal{H}_b = H^1(\mathcal{X}_b, \mathbb{C})$ defines a representation

$$\rho_f: \pi_1(B,b) \to \operatorname{Aut}(H^1(\mathcal{X}_b,\mathbb{C}))$$

for any $b \in B$. Compute the representation ρ_f for the two following families:

- (a) $\chi = Z(y^2 = (x^2 b)(x 1))$, $B = \mathbb{D}_1(0) \setminus \{0\}$ is the punctured unit disk and the family map is $f: (x, y, b) \mapsto b$.
- (b) $\chi = Z(y^2 = x(x-1)(x-b)), B = \mathbb{A}^1_{\mathbb{C}} \setminus \{0,1\}$ and the family map is $f:(x,y,b) \mapsto b$.

Hint: First of all compute the genus of \mathcal{X}_b . Then, for all $b \in B$, consider \mathcal{X}_b as a ramified cover of \mathbb{P}^1 via the projection π_x and find a symplectic basis of $H_1(\mathcal{X}_b, \mathbb{C})$ by lifting loops in $\mathbb{P}^1 \setminus r_{\pi_x}$ via π_x , where r_{π_x} is the set of ramification points.

Abgabe: Zu Beginn der Übung um 14:15 Uhr am Mittwoch, den 5. Juni.