Goethe-Universität Frankfurt Institut für Mathematik Sommersemester 2018/19 24. April 2019

Komplexe Algebraische Geometrie II Prof. Dr. Martin Möller Dr. Matteo Costantini Dr. David Torres-Teigell

Übungsblatt 1

Let D be a divisor on a variety X and recall the different definitions of the $complete\ linear$ system

$$|D| = \mathbb{P}H^0(X, \mathcal{O}_X(D)) = \{D' \in \operatorname{Div}(X) : D' \sim D \text{ and } D \ge 0\} = \mathbb{P}L(D) := \{f \text{ meromorphic function on } X : (f) + D \ge 0\}.$$

Assume that D is effective and write $D = (s_D)$ for a section $s_D \in H^0(X, \mathcal{O}_C(D))$. The equivalences between the definitions above are given by

More generally, any linear subspace $V \subset |D|$ is called a *linear system*. We define the *base locus* of V as

$$\operatorname{Bs}(V) = \bigcap_{D' \in V} D' = \{ x \in X : s(x) = 0 \text{ for all } s \in V \subset \mathbb{P}H^0(X, \mathcal{O}_X(D)) \}.$$

Aufgabe 1 (5 Punkte)

Consider the affine curve in \mathbb{C}^2 given by equation $y^3 = x^5 - 1$ and the projection $\pi(x, y) = x$. Let X be the curve given by the unique smooth completion of the above affine curve and call $\pi: X \to \mathbb{P}^1$ the extension of the above projection. Set $p = \pi^{-1}(\infty)$ and $r_{\alpha} = (e^{2\pi i \cdot \alpha/5} : 0 : 1)$ for $\alpha = 0, \ldots, 4$.

- (a) Find the ramification divisor of π and compute the genus of X.
 - **Hint:** The ramification divisor of a map π is $\sum_{p \in X} (e_p 1) \cdot [p]$, where e_p is the ramification index of π at p.
- (b) Establish the linear equivalences $3p \sim 3r_{\alpha}$, for $\alpha = 0, \ldots, 4$, and $\sum_{\alpha=0}^{4} r_{\alpha} \sim 5p$.
- (c) Determine the space $H^0(X, K_X)$ of holomorphic differentials on X.

Hint: Find |D| where D = (dx).

- (d) Describe the canonical map $\phi_{K_X}: X \to \mathbb{P}^3$ and determine the equations of its image.
- (e) Using part (c) show that for $D = \sum_{\alpha=0}^{4} r_{\alpha}$ one has $h^{0}(X, K_{X}(-D)) = 1$. Use Riemann-Roch to conclude that $h^{0}(X, \mathcal{O}(D)) = 3$.

Aufgabe 2 (3 Punkte)

Let D be a divisor on a curve X.

- (a) Prove that D is base-point-free if and only if $h^0(X, D [p]) = h^0(X, D) 1$ for all points $p \in X$.
- (b) Prove that D is very ample if and only if $h^0(X, D [p] [q]) = h^0(X, D) 2$ for all points $p, q \in X$.

Aufgabe 3 (4 Punkte)

Let D be a divisor on \mathbb{P}^2 and $V \subset |D|$ a linear system. Write $\varphi_V : \mathbb{P}^2 \dashrightarrow \mathbb{P}^N$ for its associated map and assume that the base locus Bs(V) consists of a single point P. Consider the blow-up $\pi : Bl_P(\mathbb{P}^2) \to \mathbb{P}^2$ and prove that there exists a morphism $\Phi : Bl_P(\mathbb{P}^2) \to \mathbb{P}^N$ everywhere defined such that $\Phi = \phi_V \circ \pi$.

Hint: What can you say about the linear systems

$$\pi^*V - kE = \{\pi^*D' - kE : D' \in V\}$$

for different $k \in \mathbb{Z}$, where $E = \pi^{-1}(P)$ is the exceptional divisor?

Aufgabe 4 (4 Punkte)

In this exercise we construct maps ϕ_L associated to certain line bundles L on projective spaces.

- (a) Let L be a very ample line bundle on a variety X. Prove that $L^{\otimes m}$ is very ample for every $m \geq 1$.
- (b) Consider the line bundle $\mathcal{O}(d)$ on \mathbb{P}^n . Recall that its global sections can be identified with homogeneous polynomials of degree d. Describe the map $\phi_{\mathcal{O}(d)}$, called the *Veronese embedding*. Why is it an embedding?
- (c) Let $X = \mathbb{P}^{n_1} \times \mathbb{P}^{n_2}$ and write $p_i : X \to \mathbb{P}^{n_i}$ for the two natural projections. Describe the map ϕ_L associated to the line bundle $L = p_1^* \mathcal{O}(1) \otimes p_2^* \mathcal{O}(1)$ on X, called the Segre embedding. What is the base locus Bs(|L|)?