Goethe-Universität Frankfurt Institut für Mathematik

Wintersemester 2018 21. Januar 2019 Komplexe Algebraische Geometrie

Prof. Dr. Martin Möller Dr. David Torres-Teigell M.Sc. Riccardo Zuffetti

Übungsblatt 11

Aufgabe 1 (3 Punkte)

Let $B \subset \mathbb{C}^n$ be a polydisc and let $\alpha \in \mathcal{A}^{p,q}(B)$ be a d-closed form with $p, q \geq 1$. Show that there exists a form $\gamma \in \mathcal{A}^{p-1,q-1}(B)$ such that $\partial \bar{\partial} \gamma = \alpha$.

Hint: Show first that α is also d-exact. Let k = p + q and let $\beta \in \mathcal{A}^{k-1}_{\mathbb{C}}(B)$ be such that $d\beta = \alpha$. Study the decomposition of β in

$$\mathcal{A}_{\mathbb{C}}^{k-1}(B) = \bigoplus_{a+b=k-1} \mathcal{A}^{a,b}(B).$$

Aufgabe 2 (3 Punkte)

- (a) Let $\omega = \frac{i}{2\pi} \sum_{i} dz_i \wedge d\bar{z}_i$ be the standard fundamental form on \mathbb{C}^n . Show that one can write $\omega = \frac{i}{2\pi} \partial \bar{\partial} \varphi$ for a positive function φ and determine φ . The function φ is called Kähler potential.
- (b) Show that $\omega = \frac{i}{2\pi} \partial \bar{\partial} \log(|z|^2 + 1) \in \mathcal{A}^{1,1}(\mathbb{C})$ is the fundamental form of a compatible metric g that osculates to order two in any point.

Remark: this is the local shape of the Fubini-Study Kähler form of \mathbb{P}^1 .

Aufgabe 3 (4 Punkte)

Let (V, \langle , \rangle) be an euclidean vector space and let I, J, K be compatible almost complex structures where $K = I \circ J = -J \circ I$. The associated fundamental forms are denoted by $\omega_I, \omega_J, \omega_K$.

(a) Show that V becomes in a natural way a vector space over the quaternions. **Hint:** recall that the *quaternions* are the associative algebra $\mathbb{H} = \langle 1, i, j, k \rangle \cong \mathbb{R}^4$, with multiplication given by:

$$ij = -ji = k$$
, $jk = -kj = i$, $ki = -ik = j$, $i^2 = j^2 = k^2 = -1$.

- (b) Show that $\omega_J + i \cdot \omega_K$ with respect to I is a form of type (2,0).
- (c) How many natural almost complex structures do you see in this context? **Hint:** let $a_1, a_2, a_3 \in \mathbb{R}$ and consider the endomorphism $W := a_1 I + a_2 J + a_3 K : V \to V$. When is W an almost complex structure?

Aufgabe 4 (6 Punkte)

Let X be a complex manifold of dimension n. The aim of this exercise is to make the tangent and cotangent bundles of X more explicit.

(a) Show that TX can be expressed as:

$$\pi: \bigsqcup_{x \in X} T_x^{1,0} X \longrightarrow X,$$

where $\pi(\mathbf{v}) := x$ if $\mathbf{v} \in T_x^{1,0} X$.

Hint: show that the cocycle description of this bundle is exactly the cocycle description of the tangent bundle. To do that, fix $\{(U_{\alpha}, \varphi_{\alpha})\}$ a covering of local charts for X, and write $\varphi_{\alpha} = (z_1^{\alpha}, \dots, z_n^{\alpha})$ in local coordinates. Then consider as local trivializations the following maps:

$$\psi_{\alpha}: \pi^{-1}(U_{\alpha}) \longrightarrow U_{\alpha} \times \mathbb{C}^{n},$$

$$\sum_{j=1}^{n} v_{j} \cdot \frac{\partial}{\partial z_{j}^{\alpha}} \Big|_{x} \longmapsto (x, (v_{1}, \dots, v_{n})).$$

(b) Follow the same idea as in the previous point and show that T^*X can be expressed as:

$$\pi: \bigsqcup_{x \in X} (T_x^* X)^{1,0} \longrightarrow X,$$

where $\pi(\omega) := x$ if $\omega \in (T_x^*X)^{1,0}$.

Hint: in this case define the trivializations:

$$\psi_{\alpha}: \pi^{-1}(U_{\alpha}) \longrightarrow U_{\alpha} \times \mathbb{C}^{n},$$

$$\sum_{j=1}^{n} v_{j} \cdot dz_{j}^{\alpha}|_{x} \longmapsto (x, (v_{1}, \dots, v_{n})).$$