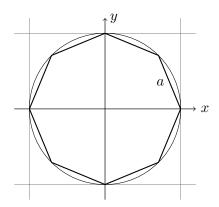
Geometrie L2/L5Prof. Dr. Martin Möller
Dr. Jonathan Zachhuber

Übungsblatt 2

Aufgabe 1 (4 Punkte)

Bestimmen Sie die Seitenlänge a und den Flächeninhalt \mathcal{A} des folgendermaßen in den Einheitskreis einbeschriebenen regelmäßigen Achtecks:



Aufgabe 2 (4 Punkte)

(a) Gibt es ein Dreieck mit Winkeln α , β , γ und gegenüber liegenden Seiten der Länge a,b,c, sodass gilt:

$$c = 7$$
, $\cos(\alpha) = \frac{3}{5}$

und so, dass der Umfang 12 + $4\sqrt{2}$ beträgt? Falls ja, bestimmen Sie die Längen der anderen Seiten und skizzieren Sie es.

(b) Wie viele Dreiecke mit Winkeln α , β , γ und gegenüberliegenden Seiten der Längen a, b, c gibt es, so dass

$$\sin(\alpha) = \frac{1}{2}, \qquad \alpha + \beta = \frac{11\pi}{12} \quad \text{und} \quad b = 4$$

gilt? Bestimmen Sie die Seitenlänge c für jedes solche Dreieck und skizzieren Sie es.

Hinweis:
$$(1 - \sqrt{3})^2 = 2(2 - \sqrt{3})$$
.

Aufgabe 3 (4 Punkte)

Finden Sie alle $0 \le \alpha < 2\pi$, so dass

- (a) $\cos(2\alpha) + 2\cos\alpha = -1$;
- (b) $\frac{9}{4}\sin\alpha 3\sin(2\alpha) + \sin(3\alpha) + \sin^3\alpha = 0$.

Aufgabe 4 (4 Punkte)

(a) Beweisen Sie die Additionstheoreme für den Fall $\alpha, \beta \in (0, \frac{\pi}{2})$, aber $\alpha + \beta > \frac{\pi}{2}$:

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta),$$

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta).$$

(b) Folgern Sie das Additionstheorem für den Tangens:

$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}.$$