Goethe-Universität Frankfurt Institut für Mathematik Sommersemester 2018

16. Mai 2018

Kommutative Algebra Prof. Dr. Martin Möller Matteo Costantini Dr. Jonathan Zachhuber

Übungsblatt 6

Aufgabe 1 (5 Punkte)

Sei R ein Ring, $S \subseteq R$ ein multiplikatives System und $h: R \to S^{-1}R$ die Lokalisierungsabbildung.

(a) Sei $R = \mathbb{Z}/6\mathbb{Z}$ und $\mathfrak{p} = (2) \subseteq R$.

Bestimmen Sie $R_{\mathfrak{p}}$ und R/\mathfrak{p} .

- (b) Zeigen Sie: Kern $h = \{r \in R : sr = 0 \text{ für ein } s \in S\}.$
- (c) Geben Sie eine Bijektion zwischen den Primidealen in $S^{-1}R$ und den Primidealen $\mathfrak{p}\subset R$ mit $\mathfrak{p}\cap S=\emptyset$ an.

Aufgabe 2 (3 Punkte)

Sei $S \subseteq R$ ein multiplikatives System.

Zeigen Sie, dass der Funktor $M \mapsto S^{-1}M$ (von R-Mod nach $S^{-1}R$ -Mod) exakt ist.

Aufgabe 3 (4 Punkte)

- (a) Sei R ein Hauptidealring und M ein R-Modul. Zeigen Sie:
 - (i) M ist projektiv $\iff M$ ist frei.
 - (ii) M ist injektiv $\iff M$ ist divisibel.
- (b) Zeigen Sie: Ist $P \neq \{0\}$ ein projektiver R-Modul ist $\operatorname{Hom}_R(P,R) \neq \{0\}$.
- (c) Zeigen Sie: \mathbb{Q} ist \mathbb{Z} -injektiv aber nicht \mathbb{Z} -projektiv.
- (d) Zeigen Sie: $\mathbb{Z}/2\mathbb{Z}$ ist $\mathbb{Z}/6\mathbb{Z}$ -projektiv aber nicht frei.

Aufgabe 4 (4 Punkte)

(a) Sei R ein Ring und P ein R-Modul.

Zeigen Sie: P ist ist genau dann projektiv, wenn jede kurze exakte Sequenz von R-Moduln

$$0 \to N \to M \xrightarrow{\psi} P \to 0$$

spaltet, d.h. es gibt ein $\sigma \colon P \to M$ mit $\psi \circ \sigma = \mathrm{id}_P$.

(b) Sei R nullteilerfrei und kein Körper und sei M ein R-Modul, der R-injektiv und R-projektiv ist.

Zeigen Sie: $M = \{0\}$.

Hinweis: Zeigen Sie zunächst: Ist M R-divisibel und R nullteilerfrei, so ist $f: M \to R$ die Nullabbildung oder surjektiv.