Goethe-Universität Frankfurt Institut für Mathematik Sommersemester 2018

9. Mai 2018

Kommutative Algebra Prof. Dr. Martin Möller Matteo Costantini Dr. Jonathan Zachhuber

Übungsblatt 5

Aufgabe 1 (4 Punkte)

- (a) Sei G eine Gruppe, G die zugehörige Kategorie, sei G-Set die Kategorie der Mengen mit einer G-Operation (Morphismen sind G-äquivariante Abbildungen) und sei Hom(G, Set) die Kategorie der Funktoren von G nach Set (mit natürlichen Transformationen als Morphismen).
 - Geben Sie einen Funktor \mathcal{F} : $\mathbf{Hom}(\mathcal{G}, \mathbf{Set}) \to G$ - \mathbf{Set} an, so dass es für alle Objekte f, f' von $\mathbf{Hom}(\mathcal{G}, \mathbf{Set})$ die Zuordnung \mathcal{F} : $\mathbf{Hom}(f, f') \to \mathbf{Hom}(\mathcal{F}(f), \mathcal{F}(f'))$ bijektiv ist und es zu jedem M in G- \mathbf{Set} ein $f \in \mathbf{Hom}(\mathcal{G}, \mathbf{Set})$ gibt, so dass $\mathcal{F}(f) \cong M$ ist.
- (b) Sei k-Vek die Kategorie endlich-dimensionaler k-Vektorräume und $\mathcal{F} \colon k$ -Vek der Bidualraumfunktor.
 - Zeigen Sie, dass der Einsetzungsmorphismus eine natürliche Transformation von der Identität zu \mathcal{F} induziert.

Aufgabe 2 (4 Punkte)

Sei \mathcal{C} eine Kategorie und $\varphi \colon A \to B$ in \mathcal{C} .

Wir nennen φ einen *Monomorphismus*, falls für alle Objekte C in \mathcal{C} und alle Pfeile $x, y \colon C \to A$ aus $\varphi \circ x = \varphi \circ y$ bereits x = y folgt.

Wir nennen φ einen Epimorphismus, falls für alle Objekte C in C und alle Pfeile $x, y \colon B \to C$ auf $x \circ \varphi = y \circ \varphi$ bereits x = y folgt.

- (a) Zeigen Sie, dass in **Set** die Monomorphismen genau den injektiven und die Epimorphismen genau den surjektiven Abbildungen entsprechen.
- (b) Zeigen Sie, dass in **Grp** die Monomorphismen genau den injektiven und die Epimorphismen genau den surjektiven Gruppenhomomorphismen entsprechen.
 - Hinweis: Finden Sie eine Menge M, auf der B operiert, so dass es einen B-Fixpunkt $m \in M$ und einen $\varphi(A)$ -Fixpunkt $m' \in M$ gibt, der von B nicht festgehalten wird.
- (c) Zeigen Sie, dass $\mathbb{Z} \to \mathbb{Q}$ in **Rng** ein Epimorphismus, aber *nicht* surjektiv ist.
- (d) Eine abelsche Gruppe G heißt divisibel, falls es zu jedem $g \in G$ und jedem $n \in \mathbb{N}$ ein $a \in G$ mit na = g gibt. Wir bezeichnen die Kategorie der divisiblen abelschen Gruppen mit **Div-Ab** (Morphismen sind Gruppenhomomorphismen).
 - Zeigen Sie, dass $\mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$ in **Div-Ab** ein Monomorphismus, aber *nicht* injektiv ist.

Aufgabe 3 (4 Punkte)

Sei \mathcal{C} eine (lokal kleine) Kategorie und $\mathcal{F} \colon \mathcal{C} \to \mathbf{Set}$ ein (kovarianter) Funktor.

Zeigen Sie, dass die Abbildung

$$y \colon \operatorname{Hom}(\operatorname{Hom}(C, -), \mathcal{F}) \to \mathcal{F}(C), \quad \eta \mapsto \eta_C(\operatorname{id}_C)$$

für jedes Objekt C in C eine Bijektion ist.

Folgern Sie, dass es einen Funktor $\mathcal{Y} \colon \mathcal{C}^{\vee} \to \operatorname{Hom}(\mathcal{C}, \mathbf{Set})$ mit $\operatorname{Hom}(\mathcal{C}, \mathcal{C}') \cong \operatorname{Hom}(\mathcal{Y}(\mathcal{C}), \mathcal{Y}(\mathcal{C}'))$ gibt.

Aufgabe 4 (4 Punkte)

Gegeben sei folgendes kommutatives Diagram von R-Moduln, in dem die Zeilen exakt seien:

Zeigen Sie:

- (a) Ist f_1 surjektiv und sind f_2 und f_4 injektiv, so ist f_3 injektiv.
- (b) Ist f_5 injektiv und sind f_2 und f_4 surjektiv, so ist f_3 surjektiv.