Goethe-Universität Frankfurt Institut für Mathematik Wintersemester 2017/18

18. Oktober 2017

Riemannsche Flächen Prof. Dr. Martin Möller Dr. Jonathan Zachhuber

Übungsblatt 1

Aufgabe 1 (4 Punkte)

Sei $S^2 := \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\} \subseteq \mathbb{R}^3$ die Einheitssphäre im \mathbb{R}^3 . Weiterhin bezeichnen wir den *Nordpol* mit N := (0,0,1) und den *Südpol* mit S := (0,0,-1). Zu diesen definieren wir die *stereographischen Projektionen*

$$\phi_N \colon S^2 \setminus N \to \mathbb{R}^2$$
 und $\phi_S \colon S^2 \setminus S \to \mathbb{R}^2$

durch folgende Vorschrift: Zu $P \in S^2 \setminus N$ gibt es genau eine Gerade g durch P und N; wir setzen $(a, b, 0) := \{z = 0\} \cap g$ und definieren $\phi_N(P) := (a, b)$. Die Abbildung ϕ_S sei analog definiert.

Zeigen Sie, dass, nach geeigneten Identifikationen von \mathbb{R}^2 mit \mathbb{C} , die Karten $(S^2 \setminus N, \phi_N)$ und $(S^2 \setminus S, \phi_S)$ einen komplexen Atlas von S^2 bilden.

Aufgabe 2 (4 Punkte)

Sei $\mathbb{Z}[i] := \{a + ib : a, b \in \mathbb{Z}\} \subset \mathbb{C}$ das $Gau\beta$ 'sche Gitter. Bestimmen Sie das asymptotische Wachstum der Gitterpunkte in einem Kreis $B_0(r)$ von Radius r um $0 \in \mathbb{C}$, d.h. geben Sie ein Polynom $f \in \mathbb{R}[x]$ an, so dass

$$\lim_{r \to \infty} \frac{\#\{\mathbb{Z}[i] \cap B_0(r)\}}{f(r)} = 1.$$

Aufgabe 3 (4 Punkte)

Wir betrachten den quadratischen Torus als Quotienten $\pi\colon\mathbb{C}\to T\coloneqq\mathbb{C}/\mathbb{Z}[i]$. Weiterhin betrachten wir den zu einem Winkel $0\leq\theta<2\pi$ gehörigen Strahl $S_\theta\coloneqq\{r\mathrm{e}^{\mathrm{i}\theta}:r\in\mathbb{R}_{\geq0}\}\subset\mathbb{C}$.

- (a) Zeigen Sie, dass $\tan \theta$ genau dann rational (d.h. in \mathbb{Q}) ist, wenn $\pi(S_{\theta})$ geschlossen ist, d.h. falls es ein $r_0 \in \mathbb{R}_{>0}$ gibt, so dass $\pi(r_0 e^{i\theta}) = \pi(0)$ ist.
- (b) Zeigen Sie, dass $\pi(S_{\theta})$ andernfalls dicht liegt, d.h. dass es zu jedem $z \in \mathbb{C}$ und zu jeder offenen Umgebung $z \in U_z \subseteq \mathbb{C}$ ein $r_z \in \mathbb{R}_{>0}$ gibt, so dass $\pi(r_z e^{i\theta}) \in \pi(U_z)$ ist.

Hinweis: Verwenden Sie den Dirichlet'schen Approximationssatz: Für eine irrationale Zahl $x \in \mathbb{R}$ liegt die Folge $\{\{nx\} : n \in \mathbb{N}\}$ dicht im Einheitsintervall. Dabei bezeichnet $\{x\} := x - \lfloor x \rfloor$ den gebrochenen Anteil von x.