Goethe-Universität Frankfurt Institut für Mathematik Sommersemester 2017

27. Juni 2017

Geometrie L2/L5Prof. Dr. Martin Möller
Jonathan Zachhuber

Übungsblatt 5

Aufgabe 1 (4 Punkte)

Gegeben sei die Ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, sowie $P = (x_0, y_0) \in E$.

Zeigen Sie, dass die Tangente an E durch den Punkt P die Gleichung $T_P: \frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$ erfüllt.

Aufgabe 2 (5 Punkte)

Gegeben sei die Ellipse $E(a,b): \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$

- (a) Bestimmen Sie die Koordinaten der Brennpunkte $F_1(a,b) = (e(a,b),0)$ und $F_2(a,b) = (-e(a,b),0)$ in Abhängigkeit von a und b.
- (b) Geben Sie die Exzentrizität $\varepsilon(a,b)$ in Abhängigkeit von a und b an.
- (c) Zeigen Sie, dass die Leitgeraden durch

$$l_1 = \left\{ (x, y) \in \mathbb{R}^2 : x = \frac{a^2}{e(a, b)} \right\} \quad \text{und} \quad l_2 = \left\{ (x, y) \in \mathbb{R}^2 : x = -\frac{a^2}{e(a, b)} \right\}$$

gegeben sind.

(d) Zeigen Sie, dass Leitgeraden, Brennpunkt und Exzentrizität eine Ellipse eindeutig bestimmen: Zu gegebenen $a,b\in\mathbb{R}$, so dass $a>0,\ b>0$ und $0<\varepsilon(a,b)<1$ gilt, ist

$$\left\{ P = (x,y) \in \mathbb{R}^2 : \frac{|Pl_1(a,b)|}{|PF_1(a,b)|} = \varepsilon(a,b) \right\} = \left\{ (x,y) \in \mathbb{R}^2 : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}.$$

Aufgabe 3 (4 Punkte)

Gegeben sei die Hyperbel

$$H: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,$$

mit Asymptotengeraden $y=\pm \frac{b}{a}x$. Für $P\in H$ bezeichnen wir die Tangente an H durch P mit T_P .

Zeigen Sie, dass der Flächeninhalt des Dreiecks, das durch T_P und die Asymptotengeraden gebildet wird, unabhängig von P ist.

Aufgabe 4 (3 Punkte)

Gegeben sei die Parabel $P: y = ax^2 + bx + c$ mit $a \neq 0$.

Zeigen Sie, dass der Brennpunkt ${\cal F}$ und die Leitgerade ${\cal L}$ durch

$$F = \left(-\frac{b}{2a}, \frac{1 - b^2}{4a} + c\right) \quad \text{und} \quad L = \left\{(x, y) \in \mathbb{R}^2 : y = -\frac{1 + b^2}{4a} + c\right\}$$

gegeben sind.