Goethe-Universität Frankfurt Institut für Mathematik

Wintersemester 2015/16

7. Dezember 2015

Algebraische Geometrie Prof. Dr. Martin Möller Matteo Costantini Jonathan Zachhuber

Übungsblatt 9

Aufgabe 1 (4 Punkte)

Sei X ein topologischer Raum und \mathcal{F} eine Prägarbe auf X. Dann definieren wir

$$\pi \colon \mathcal{F}^{\text{\'et}} = \bigsqcup_{p \in X} \mathcal{F}_p \to X$$

und versehen $\mathcal{F}^{\text{\'et}}$ mit folgender Topologie: Für $U \subseteq X$ offen definiert jedes $s \in \mathcal{F}(U)$ eine Teilmenge $\{s_x : x \in U\} \subset \mathcal{F}^{\text{\'et}}$ und wir versehen $\mathcal{F}^{\text{\'et}}$ mit der kleinsten Topologie, sodass diese Teilmengen offen sind (d.h. diese Mengen bilden eine Basis der Toplogie). Für jedes offene $U \subseteq X$ definieren wir

$$\widehat{\mathcal{F}}(U) = \{s \colon U \to \mathcal{F}^{\text{\'et}} : s \text{ ist ein stetiger Schnitt, d.h. } \pi \circ s = \text{id} \}$$

und mit den offensichtlichen Restriktionen ist dies eine Prägarbe.

Sei weiterhin \mathcal{F}^{sh} die Garbifizierung von \mathcal{F} .

- (a) Zeige: $\mathcal{F}^{\mathrm{sh}} \cong \widehat{\mathcal{F}}$, insbesondere ist $\widehat{\mathcal{F}}$ also eine Garbe.
- (b) Zeige, dass \mathcal{F}^{sh} universell in dem Sinne ist, dass es für jede Garbe \mathcal{G} und jeden Morphismus von Prägarben $\mathcal{F} \to \mathcal{G}$ genau einen Garbenmorphismus $\mathcal{F}^{sh} \to \mathcal{G}$ gibt, so dass das folgende Diagramm kommutiert:

(c) Sei $\varphi \colon \mathbb{A}^1 \setminus \{0\} \to \mathbb{A}^2 \setminus \{0\}$ wie in der Vorlesung. Was sind die globalen Schnitte der Bildgarbe von φ^{\sharp} ?

Aufgabe 2 (4 Punkte)

(a) Seien X, Y topologische Räume, $f: X \to Y$ eine stetige Abbildung und \mathcal{F} eine Garbe auf X.

Zeige: $f_*\mathcal{F}$ ist eine Garbe auf Y.

(b) Sei nun G eine abelsche Gruppe, $\{p\} \subset X$ mit konstanter Garbe \underline{G} versehen und ι die Inklusion $\{p\} \hookrightarrow X$.

Beschreibe die Schnitte der "Wolkenkratzer"-Garbe $\iota_*\underline{G}$ auf offenen Mengen, sowie ihre Halme.

Aufgabe 3 (4 Punkte)

Sei X ein topologischer Raum und seien $\mathcal{F}, \mathcal{G}, \mathcal{H}$ Garben auf X.

(a) Sei $\varphi \colon \mathcal{F} \to \mathcal{G}$ ein Morphismus von Garben.

Zeige: Für alle p ist $\operatorname{Kern}(\varphi)_p = \operatorname{Kern}(\varphi_p)$ und $\operatorname{Bild}(\varphi_p) = \operatorname{Bild}(\varphi)_p$.

- (b) Seien $0 \to \mathcal{F} \to \mathcal{G}$ Garbenmorphismen. Zeige, dass die folgenden Aussagen äquivalent sind:
 - (i) $0 \to \mathcal{F} \to \mathcal{G}$ ist exakt.
 - (ii) $0 \to \mathcal{F}(U) \to \mathcal{G}(U)$ ist exakt für jedes $U \subseteq X$ offen.
 - (iii) $0 \to \mathcal{F}_p \to \mathcal{G}_p$ ist exakt für alle $p \in X$.
- (c) Seien $\mathcal{F}, \mathcal{G}, \mathcal{H}$ Garben. Zeige: Die Sequenz

$$0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$$

ist genau dann exakt, wenn die entsprechenden Sequenzen

$$0 \to \mathcal{F}_p \to \mathcal{G}_p \to \mathcal{H}_p \to 0$$

für jedes $p \in X$ exakt sind.

(d) Finde Prägarben \mathcal{F}, \mathcal{G} auf X, sodass $\mathcal{F}_p \cong \mathcal{G}_p$ für alle p aber \mathcal{F} nicht isomorph zu \mathcal{G} ist. Finde eine exakte Sequenz von Garben $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$, die nicht auf allen offenen Teilmengen exakt ist.

Aufgabe 4 (4 Punkte)

Sei X ein topologischer Raum, sei $j: U \hookrightarrow X$ eine Teilmenge. Zu einer Garbe \mathcal{F} auf U definieren wir die Fortsetzung durch $0, j_!(\mathcal{F})$, als die zu der Prägarbe

$$V \mapsto \begin{cases} \mathcal{F}(V), & \text{für } V \subseteq U, \\ 0, & \text{sonst} \end{cases}$$

assoziierte Garbe.

- (a) Sei U abgeschlossen. Beschreibe die Halme $(j_!\mathcal{F})_p$ und $(j_*\mathcal{F})_p$ für $p \in X$.
- (b) Sei nun U offen. Beschreibe die Halme $(j_!\mathcal{F})_p$ und $(j_*\mathcal{F})_p$ für $p \in X$.
- (c) Sei nun \mathcal{F} eine Garbe auf X, $\iota \colon Z \hookrightarrow X$ eine abgeschlossene Teilmenge und $j \colon U = X \setminus Z \hookrightarrow X$ ihr Komplement. Zeige, dass die Sequenz

$$0 \to j_!(\mathcal{F}|_U) \to \mathcal{F} \to \iota_*(\mathcal{F}|_Z) \to 0$$

eine exakte Sequenz von Garben (auf X) ist.