Goethe-Universität Frankfurt Institut für Mathematik

Wintersemester 2015/16 25. November 2015 Algebraische Geometrie Prof. Dr. Martin Möller Matteo Costantini Jonathan Zachhuber

Übungsblatt 7

Aufgabe 1 (6 Punkte)

Sei $A \subseteq B$ eine ganze Ringerweiterung.

(a) Seien ferner $A \subseteq B$ nullteilerfrei.

Zeige: A ist genau dann ein Körper, wenn B ein Körper ist.

(b) Seien $\mathfrak{q} \subseteq \mathfrak{q}' \subset B$ Primideale, so dass $\mathfrak{p} = \mathfrak{q} \cap A = \mathfrak{q}' \cap A$ gilt.

Zeige: Dann ist $\mathfrak{q} = \mathfrak{q}'$.

Hinweis: Zeige zunächst, dass $A_{\mathfrak{p}} \to B_{\mathfrak{p}}$ eine ganze Ringerweiterung ist.

(c) Sei $\mathfrak{p} \subset A$ ein Primideal.

Zeige: Dann gibt es ein Primideal $\mathfrak{q} \subset B$, so dass $\mathfrak{p} = A \cap \mathfrak{q}$ ist.

Hinweis: Betrachte das kommutative Diagramm

$$\begin{array}{ccc} A & \longrightarrow & B \\ \downarrow & & \downarrow \\ A_{\mathfrak{p}} & \longrightarrow & B_{\mathfrak{p}} \end{array}$$

(d) Folgere, dass es zu jeder Primidealkette

$$\mathfrak{p}_0 \subseteq \mathfrak{p}_1 \subseteq \cdots \subseteq \mathfrak{p}_n \subset A$$

und jeder Primidealkette

$$\mathfrak{q}_0 \subseteq \mathfrak{q}_1 \subseteq \cdots \subseteq \mathfrak{q}_m \subset B \quad \text{mit } m < n \text{ und} \quad \mathfrak{q}_i \cap A = \mathfrak{p}_i,$$

Primideale $\mathfrak{q}_{m+1} \subseteq \cdots \subseteq \mathfrak{q}_n \subset B$ gibt, sodass $\mathfrak{q}_i \cap A = \mathfrak{p}_i$ für $i = 1, \ldots, n$.

Aufgabe 2 (4 Punkte)

Für $Y \subseteq \mathbb{P}^n$ mit $r = \dim Y$ und Hilbertpolynom P_Y definieren wir das arithmetische Geschlecht $g_a(Y) = (-1)^r (P_Y(0) - 1)$.

- (a) Zeige: $g_a(\mathbb{P}^n) = 0$.
- (b) Zeige: Ist $Y \subset \mathbb{P}^2$ eine Kurve mit $\deg Y = d$, dann ist $g_a(Y) = \frac{1}{2}(d-1)(d-2)$.
- (c) Sei Y der vollständige Durchschnitt zweier Flächen von Grad a und b in \mathbb{P}^3 . Zeige:

$$g_a(Y) = \frac{1}{2}ab(a+b-4) + 1.$$

Aufgabe 3 (4 Punkte)

- (a) Sei $\operatorname{PGL}_n(k) = \operatorname{GL}_n(k)/k^*$. Zeige: $\operatorname{PGL}_{n+1}(k) \subseteq \operatorname{Aut}(\mathbb{P}^n)$.
- (b) Sei $A \in \operatorname{PGL}_3(k)$. Zeige: $\operatorname{PGL}_3(k)$ operiert zweifach transitiv auf \mathbb{P}^2 , d.h. für gegebene Punkte x, y und p, q existiert ein $A \in \operatorname{PGL}_3(k)$, sodass A(x) = p und A(y) = q.
- (c) Sei nun $\mathcal{C} = Z(f) \subset \mathbb{P}^2$ eine Kurve und $P \in \mathcal{C}$ ein regulärer Punkt.

Zeige: Die Tangente an $\mathcal C$ durch P ist

$$\overline{T_p \mathcal{C}} = l_p = Z \left(\frac{\partial f}{\partial x}(p) x + \frac{\partial f}{\partial y}(p) y + \frac{\partial f}{\partial z}(p) z \right).$$

Hinweis: Zeige zunächst: für homogenes f ist $\deg f \cdot f = \sum_{i} \frac{\partial f}{\partial x_i} x_i$.

(d) Zeige, dass es eine Gerade in \mathbb{P}^2 gibt, die \mathcal{C} transversal (d.h. nicht tangential und in keiner Singularität) schneidet.

Aufgabe 4 (2 Punkte)

- (a) Berechne den Grad der Segre-Einbettung von $\mathbb{P}^1 \times \mathbb{P}^1$ in \mathbb{P}^3 .
- (b) Berechne den Grad der getwisteten Kubik in \mathbb{P}^3 .