Übungen zur Linearen Algebra Tutoriumsblatt 6

Dozent: Prof. M. Möller 20.11.2014

Übungen: Dr. R. Butenuth

Übung 1 Sei V ein K-Vektorraum und $v_1, \ldots, v_n \in V$. Zeigen Sie:

- (a) Für alle $\lambda \in K$ gilt $[v_1, \dots, v_i, \dots, v_j, \dots, v_n] = [v_1, \dots, v_i + \lambda v_j, \dots, v_j, \dots, v_n]$.
- (b) Für alle $\lambda \in K \setminus \{0\}$ gilt $[v_1, \dots, v_i, \dots, v_n] = [v_1, \dots, \lambda v_i, \dots, v_n]$.
- (c) $[v_1, \ldots, v_i, \ldots, v_j, \ldots, v_n] = [v_1, \ldots, v_j, \ldots, v_i, \ldots, v_n].$

Übung 2 Gegeben seien die Vektoren

$$v_1 = \begin{pmatrix} 1\\4\\0\\2 \end{pmatrix}, v_2 = \begin{pmatrix} 2\\2\\-1\\2 \end{pmatrix}, v_3 = \begin{pmatrix} -4\\2\\3\\-2 \end{pmatrix} \in \mathbb{R}^4.$$

- (a) Sind v_1, v_2, v_3 linear unabhängig im \mathbb{R}^4 ?
- (b) Bestimmen Sie eine Basis von $[v_1, v_2, v_3]$.
- (c) Ergänzen Sie die in Teil b) bestimmte Basis zu einer Basis von \mathbb{R}^4 .

Übung 3 Es sei K ein Körper und V ein K-Vektorraum. Weiter seien $v_1, \ldots, v_n \in V$. Welche der folgenden Aussagen sind richtig?

- (a) Wenn $\{v_1, \ldots, v_n\}$ linear abhängig ist, dann lässt sich jedes v_i als Linearkombination der übrigen Vektoren aus $\{v_1, \ldots, v_n\}$ darstellen.
- (b) Wenn es ein $x \in V$ gibt, so dass sich x eindeutig als Summe der v_i schreiben lässt, dann ist $\{v_1, \ldots, v_n\}$ linear unabhängig.
- (c) Wenn $\{v_1, \ldots, v_n\}$ linear unabhängig ist, so ist für jedes beliebige $x \in V$ auch $\{v_1 + x, \ldots, v_n + x\}$ linear unabhängig.

Dieses Blatt wird nur in den Tutorien besprochen und ist nicht abzugeben.