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Abstract A compact Riemann surface of genus g > 1 has different uniform dessins
d’enfants of the same type if and only if its surface group S is contained in different conju-
gate Fuchsian triangle groups Δ and αΔα−1. Tools and results in the study of these conjugates
depend on whether Δ is an arithmetic triangle group or not. In the case when Δ is not arith-
metic the possible conjugators are rare and easy to classify. In the arithmetic case, i.e. for
Shimura curves, the problem is much more complicated, but the arithmetic of quaternion
algebras controls the growth of the number of uniform dessins of given type with respect
to the genus. This number grows at most as O(g1/3) and this bound is sharp. As a tool,
localization of the quaternion algebras and the representation of p-adic maximal orders as
vertices of Serre–Bruhat–Tits trees turn out to be crucial. In low genera, the results shed a
surprising new light on the uniformization of some classical curves like Klein’s quartic and
other Macbeath–Hurwitz curves.
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758 E. Girondo et al.

0 Introduction

A dessin d’enfant can be described as a finite bipartite graph embedded into a compact
orientable 2-manifold and dividing it into simply connected cells. Grothendieck [7] observed
that a dessin determines a Riemann surface structure, hence an algebraic curve. Rigidity
arguments show that the resulting curve can even be defined over a number field (for a
recent proof and more references see [6]). Conversely, a theorem of Belyı̆ states that every
smooth projective algebraic curve X defined over a number field arises in this way [1].
Unfortunately the correspondence is not unique in this direction. For every such curve or—in
another terminology—for every such Belyı̆ surface one can construct infinitely many different
dessins.

The situation is easier if one restricts to quasiplatonic surfaces and their regular dessins.
These curves can be defined in many different ways [18], e.g. as quotients Γ \H of the upper
half plane H by a torsion free normal subgroup Γ of a Fuchsian triangle group Δ. The quo-
tient Δ/Γ acts as a group of biholomorphic automorphisms on the surface and transitively
on the edges of the dessin, these edges corresponding to the residue classes of Δ mod Γ .
As shown in [3] and [5], quasiplatonic surfaces can have finitely many regular dessins only,
and these regular dessins are related to each other by conjugations in triangle groups and
inclusion relations between them.

The aim of the present paper is to extend these results to uniform dessins on Belyı̌ surfaces
X = S\H, i.e. with a (torsion free) surface group S contained in some triangle group Δ, but
no longer necessarily by normal inclusion.

The main general results are contained in Sects. 1–3. There is a remarkable contrast
between the study leading to these results in the case of arithmetic and non-arithmetic
Fuchsian triangle groups. In the non-arithmetic case, a Belyı̆ surface can have at most four
uniform dessins of the same type not equivalent under automorphisms and renormalization.
In the arithmetic case, the number of essentially different dessins on a Belyı̆ surface X of
genus g ≥ 2 depends on the number and the type of congruence subgroups of Δ containing
S. It is bounded from above by O(g1/3), and there are series of examples for which this upper
bound is attained.

In Sects. 4–7 we illustrate geometric and arithmetic aspects of these results in low genera
and describe explicit examples of curves with different uniform dessins of the same type.
In Sect. 6 congruence considerations in quaternion algebras shed a new light on Takeuchi’s
commensurability diagrams [16] for arithmetic triangle groups.

1 The main question and the answer in the easy case

To put the problem in a precise form we observe first that a surface group S contained in a
triangle group Δ is contained in all triangle groups Δ′ containing Δ (and maybe also in some
triangle subgroups of Δ) inducing dessins of different types on the surface X . All possibilities
of such inclusions are well known by work of Singerman [11], so we concentrate on dessins
of the same type (p, q, r) coming from triangle groups of this signature, i.e. on the following
question.

Let S be a Fuchsian surface group contained in a triangle group Δ(p, q, r). Under which
conditions other triangle groups Δ′(p, q, r) of the same signature contain S and how many
of them?

Any two triangle groups of a given signature are conjugate in PSL2R, so we can refor-
mulate the problem in the following way.
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Shimura curves with many uniform dessins 759

1. Let S be a Fuchsian surface group contained in a triangle group Δ = Δ(p, q, r).
Which and how many different conjugate groups α−1Δα, α ∈ PSL2R, contain S as well?

Questions concerning Galois actions on families of dessins often lead to the determination
of families of subgroups Γ in a given triangle group Δ having Galois–conjugate quotient
curves X = Γ \H with Belyı̌ function β : X → Δ\H ∼= Ĉ. To determine the moduli field
of this Belyı̆ surface X , i.e. the fixed field of all Galois automorphisms σ ∈ Gal Q/Q with
the property X ∼= Xσ one has to determine those Γ < Δ conjugate in PSL2R. Therefore the
following version of the main problem is interesting as well.

2. Let Δ be a Fuchsian triangle group and let Γ be a finite index subgroup. For which
and for how many α ∈ PSL2R do we have αΓ α−1 < Δ?

Under this condition, conjugation by α ∈ Δ induces isomorphisms of both the curve and
its dessin, so it is reasonable to count here only residue classes α ∈ PSL2R/Δ. However, for
the first version of the problem it is more natural to count residue classes α ∈ N (Δ)\PSL2R
where N denotes the normalizer in PSL2R.

Definition 1 Let Δ be a Fuchsian group with finite covolume and Γ < Δ a subgroup of finite
index. We will denote by d(Δ, Γ ) the number of all residue classes α ∈ N (Δ)\PSL2R with
the property Γ < α−1Δα (i.e. the number of all groups conjugate to Δ and containing Γ ),
and by b(Δ, m) the maximum among all d(Δ, Γ ) with index (Δ : Γ ) ≤ m.

If Γ is a surface group and Δ = Δ(p, q, r) a triangle group, then d(Δ, Γ ) is the number
of different uniform dessins of type (p, q, r) on Γ \H. The meaning of b(Δ, m) for the genus
is given by the Riemann–Hurwitz formula.

Lemma 1 Belyı̆ surfaces X of genus g can have — up to renormalization — at most b(Δ, m)

uniform dessins of type (p, q, r), where Δ is the triangle group of signature (p, q, r) and

m = 2g − 2

1 − 1
p − 1

q − 1
r

.

Note that conjugation ofΔby an elementα ∈ N (Δ) renormalizes the dessin on X = Γ \H,
i.e. permutes the critical values of the Belyı̆ function. In any case, α belongs by definition
to the commensurator group of Γ (and of Δ). Therefore the answer is easy if Δ and hence
all subgroups are non-arithmetic Fuchsian groups because then by a theorem of Margulis
[8] the commensurator Δ is a finite extension of Δ. In this case, it is well known that Δ is
itself a triangle group, and consulting Takeuchi’s list of arithmetic triangle groups [16] and
Singerman’s list of inclusion relations [11] it is easy to see that the index (Δ : Δ) is at most
6. So we have the first part of

Theorem 1 Surface groups contained in a non-arithmetic Fuchsian triangle group Δ belong
to isomorphic surfaces if and only if they are conjugate in a maximal Fuchsian triangle group
Δ extending Δ. They fall in at most 6 different conjugacy classes under conjugation by Δ.
If S is such a surface group then d(Δ, S) ≤ 4.

Proof The second part of the theorem follows from the fact that non-normal inclusions
Δ > N (Δ) of non-arithmetic triangle groups occur only with index 3 for Δ(2, 3, 2n) >

Δ(2, n, 2n) or 4 for Δ(2, 3, 3n) > Δ(3, n, 3n) , or in the composite cases Δ(2, 3, 4n) >

Δ(2, 2n, 4n) � Δ(n, 4n, 4n),Δ(2, 4, 2n) � Δ(2, 2n, 2n) � Δ(n, 2n, 2n).
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760 E. Girondo et al.

2 Arithmetic surface groups, localization

Now we concentrate on the remaining case that S and Δ are arithmetic Fuchsian groups, i.e.
commensurable to a norm 1 group M1 of a maximal order M in a quaternion algebra A
defined over a totally real number field k and having precisely one embedding into the matrix
algebra M2(R). The situation here is quite different, as indicated already by the analogous
question for normal subgroups in Theorem 3 of [5]. By [16] we know which triangle groups
can be identified with the norm 1 group of a maximal order, and most of the arguments will
be applied to these cases. However, in general Δ is only commensurable to the norm 1 group
of a maximal order in a quaternion algebra, so we will consider in Sect. 6 how far the result
is changed by passing to a commensurable group.

Since we have to work in the quaternion algebra A it is often necessary to replace all
Fuchsian groups Γ above with their preimages Γ̂ in SL2R. However, if it is clear from the
context where the groups are situated, we will often omit the hat to simplify the notation.

We consider now the norm 1 group Φ := M1 (which in most cases is a triangle group
itself [16]) and restrict our attention to common finite index subgroups S of Φ and β−1Φβ

and the possible conjugators β in this configuration. Clearly, conjugation by such a β induces
an automorphism of the quaternion algebra, therefore the Skolem–Noether theorem ([17],
Ch. I, Thm 2.1) allows to replace β with a more convenient element α ∈ A. By multiplication
with a denominator in the integers of k we can even suppose α to be in the maximal order M.

Theorem 2 Let Φ be the norm 1 group of a maximal order M as above, and suppose
β ∈ SL2R such that Φ ∩β−1Φβ have finite index in Φ and β−1Φβ. Then β can be replaced
with a scalar multiple α ∈ GL+

2 R ∩ M ⊂ A.

Under these conditions Φ ∩ α−1Φα is the norm 1 group of an Eichler order (i.e. the
intersection of two maximal orders in A [17, p. 20]) M∩α−1Mα. The index of Φ ∩α−1Φα

in Φ gives a lower bound for (Φ : S) where S denotes a surface group contained in both Φ

and α−1Φα. The program is therefore

– to understand how d(Φ, S) depends on S and
– to determine (Φ : Φ ∩ α−1Φα) =: s as a function of α.

For arithmetic triangle groups one has the additional advantage that all quaternion algebras
in question have class number 1 ([16, Prop. 3]), therefore all Eichler orders are intersections
of conjugate maximal orders ([17, Ch. I, Cor. 4.11]). So counting multiple dessins on S\H
amounts to count maximal orders containing Ŝ.
Maximal orders are easier to classify locally, i.e. over local fields, and the class number 1
property makes it easy to apply the strong approximation theorem passing to local maximal
orders because there are bijections between

– prime ideals in the ring of integers O of the center k of the quaternion algebra A
– inequivalent primes π in O generating these prime ideals (without loss of generality we

will suppose π > 0)
– inequivalent discrete valuations v of A
– inequivalent completions Av = Aπ , Mv = Mπ of the quaternion algebra and a maxi-

mal order with respect to v

– two-sided prime ideals in M, all of the form πM.

Recall that Av is a skew field if and only if π ramifies in A, i.e. if it belongs to the finite
number of discriminant divisors. In this case, Mv is the unique maximal order of Av ([17,
Ch. II, Lemme 1.5]), therefore there are no Eichler orders at all. In all other (unramified)

123

Author's personal copy



Shimura curves with many uniform dessins 761

cases we get matrix algebras Av
∼= M2(kv), Mv

∼= M2(Ov) where Ov denotes the ring of
integers in the local field kv , i.e. the completion of O in kv . This ring has the unique prime
ideal P = πOv , and all Eichler orders are conjugate to a ring of matrices(

a b
c d

)
with a, b, d ∈ Ov, c ∈ Pn

for some positive integer n (Pn is the level of the Eichler order). This local Eichler order
is in fact an intersection Mv ∩ α−1Mvα of two maximal orders conjugate by some α ∈
M∗

v

(
πn 0
0 1

)
⊂ M2(Ov).

The strong approximation theorem allows now to trace back all considerations about con-
jugations or Eichler orders to simultaneous localizations. We need in particular the following
two consequences.

Fact 1 For all inequivalent discrete valuations v of the quaternion algebra A let Mv be a
maximal order in Av . Suppose that Mv = M2(Ov) for almost all v. Then there is a maximal
order M in A such that all Mv are the localizations ( = completions in the v–adic topology)
of M.

Fact 2 For all inequivalent discrete valuations v of the quaternion algebra A let Sv be a
group commensurable to the norm 1 group M1

v . Suppose Sv = M1
v for almost all v. Then

there is a multiplicative group S ⊂ A∗ commensurable to the global norm 1 group M1 ⊂ A∗
whose localizations are the groups Sv .

Definition 2 Let the Fuchsian group Φ (more precisely, its SL2(R)–preimage) be commen-
surable to the norm 1 group M1 of a maximal order M in a quaternion algebra A of class
number 1 and let π be a prime in the totally real field k, the center of A. For a subgroup
S < Φ of finite index let Sπ := Sv and Φπ := Φv be their closure (v–completion) in Av

where v is the discrete valuation corresponding to π .
We will denote by dπ (Φ, S) the number of all local conjugates α−1Φπα containing Sπ ,

and by bπ (Φ, mπ ) the maximum of all those dπ (Φ, S) for which the v–completion Sπ of S
has index (Φπ : Sπ ) ≤ mπ .

In the case of Φ = M1 one may define dπ (Φ, S) also as the number of maximal orders
α−1Mvα containing Sπ .

For almost all π the v–completion is Sπ = Φπ , hence dπ (Φ, S) = 1. Therefore the first
product in Theorem 3 below has only finitely many factors �= 1. We will see in Remark 1 (next
section) that the same property holds for the product b(Φ, m) because for every M > 1 there
is only a finite number of possible π with 1 < mπ < M , and for mπ = 1 we have clearly
bπ (Φ, 1) = 1. Up to this finiteness property Theorem 3 follows directly with simultaneous
localization and the consequences of the strong approximation theorem stated above.

Theorem 3 For a finite index subgroup S of the arithmetically defined Fuchsian group Φ

and under these notations we have

d(Φ, S) =
∏

dπ (Φ, S) and b(Φ, m) = max∏
mπ ≤m

∏
bπ (Φ, mπ )

where all products run over the inequivalent primes of k not dividing the discriminant of A,
and the maximum runs over all infinite sequences (mπ )π of positive integers indexed by these
inequivalent primes.
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762 E. Girondo et al.

Fig. 1 Part of the tree of local maximal orders for q = 5

3 The local situation

Now we have to determine these factors in the localized quaternion algebras of type Av
∼=

M2(kv). We omit the ramified primes because for them we have dπ (Φ, S) = 1, hence
bπ (Φ, mπ ) = 1 for all mπ > 1. We begin with a study of the Eichler orders of level P
(omitting the hat again).

For this study it will be helpful to consider the tree of maximal orders as described in [17,
pp. 40–41]. Maximal orders of a split local quaternion algebra Av correspond to the vertices
of a tree. Two vertices are joined by an edge if and only if the corresponding maximal orders
are conjugate under an element whose norm is in O∗

vπ , and the tree is regular with valency
q + 1 in every vertex (see Fig. 1) where the norm q = N (π) denotes the number of elements
of the residue class field Fq = Ov/P .

We can identify Eichler orders of level P with edges and Eichler orders of level Pn with
paths of length n in the tree joining Mv with other vertices (maximal orders α−1Mvα, α of
norm πn). As can be seen in

Mv > Mv ∩
(

π 0
0 1

)−1

Mv

(
π 0
0 1

)
> · · · > Mv ∩

(
π 0
0 1

)−n

Mv

(
π 0
0 1

)n

,

an Eichler order is contained in all the maximal orders corresponding to vertices lying in the
path. By the same reason, we have

Lemma 2 Let S be a finite index subgroup of the norm 1 group Φ of the maximal order M.
Then all vertices corresponding to local maximal orders Φπ -conjugate to Mv containing
Sπ form the vertices of a finite subtree, and dπ (Φ, S) counts the vertices of this subtree.

Definition 3 Let Sπ be a finite index subgroup of Φπ . We denote by T (Sπ ) the subtree of
maximal orders of the local quaternion algebra Aπ whose vertices correspond to the maximal
orders containing Sπ .

We will see in the following how these subtrees can look like. We begin with the simplest
cases. In the rest of this section, we will consider only the local situation, so we omit the
index π as long as the groups are concerned.

Lemma 3 Let Φ be the norm 1 group of the local maximal order Mv = M2(Ov), Ov the
ring of integers in the local field kv with maximal ideal P and residue class field Ov/P = Fq .
Now we consider Φ and its subgroups as subgroups of PSL2(Ov), i.e. modulo ±Id. Then

1. the norm 1 group Φ0 = Φ0(P) of an Eichler order of level P has index q + 1 in Φ, and
for these groups, dπ (Φ,Φ0) = 2.
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Shimura curves with many uniform dessins 763

2. The norm 1 group Φ0
0 = Φ0

0 (P) of the intersection of two Eichler orders of level P has
index q(q + 1) in Φ, and for these groups,

dπ (Φ,Φ0
0 ) = 3 if q > 3,

dπ (Φ,Φ0
0 ) = 4 if q = 2 and dπ (Φ,Φ0

0 ) = 5 if q = 3.

3. The norm 1 group Φ(P) in the intersection of more than two Eichler orders of level P
is the principal congruence subgroup mod P of Φ, a normal subgroup of Φ of index
1
2 q(q2 − 1) (omit the denominator 2 if q is a 2–power). It is the intersection of all such
Eichler orders of level P and satisfies dπ (Φ,Φ(P)) = q + 2.

Proof The proof is easy if one considers the canonical operation of Φ on the projective line
P1(Fq) given by reduction mod P . In this frame, the groups Φ0 are the subgroups fixing one
point, Φ0

0 are those fixing two points, and if more than two points are fixed, all points of the
projective line are fixed, hence the last case gives already the principal congruence subgroup.
Recall that dπ is always 1+ the number of Eichler orders involved since we have to count
Mv as well. The cases q = 2 and 3 play a special role because for them Φ0

0 (π) = Φ(π):
recall that we see them as projective groups, and since the determinants are 1, in the case of
small q all matrices in Φ0

0 (π) are congruent mod π to ± the unit matrix.
For the calculation of the indices one may consult [17, p. 109] or mimic a proof from

any book about modular forms. Alternatively one may consider the groups involved as the
stabilizers of one point, two points or the whole projective line, and then the index is given
by the number of elements in the orbit of the fixpoints. �

Lemma 4 For integers n > 1 there are qn−1(q + 1) different local Eichler orders Mv ∩
α−1Mvα of level Pn. Their norm 1 groups Φ0(Pn) have index qn−1(q +1) in Φ. They satisfy

dπ (Φ,Φ0(Pn)) = n + 1 for q > 3,

dπ (Φ,Φ0(Pn)) = 3n − 1 for q = 3,

dπ (Φ,Φ0(Pn)) = 2n for q = 2, n = 2 or 3 and

dπ (Φ,Φ0(Pn)) ≥ 4n − 6 for q = 2, n ≥ 4.

The intersection of all these norm 1 groups is the principal congruence subgroup Φ(Pn) and
satisfies dπ (Φ,Φ(Pn)) = (q+1)(qn−1)

q−1 + 1.

Proof To prove that there are precisely qn−1(q + 1) such Eichler orders of level Pn with
norm 1 group Φ0(Pn) one may just count paths of length n in the tree of maximal orders,
with one end fixed in the vertex Mv . Therefore, following the unique path in the tree of
maximal orders we find a corresponding unique chain of Eichler orders proving the claim
about their numbers. For q > 3 the number q + 1 of vertices on this path gives also the
number of maximal orders containing Φ0(Pn) since otherwise Φ0(Pn) would be contained
in more than one Eichler order Mv ∩α−1Mvα of level Pm for some m ≤ n. To see that this
is impossible, one can generalize the argument sketched in the proof of Lemma 3 defining a
kind of “projective line” P1

m over the residue class ring O/πm ∼= Ov/Pm as set of pairs of
residue classes, not both in πO/πm , modulo the unit group of this residue class ring. The
norm 1 group Φ acts in a natural way on this P1

m , and its subgroup Φ0(Pn) has precisely
one fixed point on it if q > 3, in contrast to all groups of type Φ0

0 (Pm) having at least two
fixed points on P1

m . So one has in fact dπ (Φ,Φ0(Pn)) = n + 1. All but the final among
these Eichler orders belong to lower levels, so by induction on n one gets the result about
dπ (Φ,Φ(Pn)) for q > 3. For the index formula one may use the same argument of the
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764 E. Girondo et al.

Fig. 2 Subtree for Φ0(π4), in the cases q = 5, 3 and 2

previous Lemma, this time considering the action on P1
n , or use [17, p. 55]. For q = 2 and 3 it

is no longer true that Φ0(Pn) has precisely one fixed point on P1
m : an exercise in congruences

shows that

Φ0(Pn) =
{(

a b
c d

)
∈ Φ ⊂ M2(Ov) | c ≡ 0 mod πn

}

fixes not only

[
1
0

]
∈ P1

m but also all

[
1
x

]
, x ≡ 0 mod πm−1, and for q = 2, m ≥ 4

moreover

[
1
x

]
for all x ≡ 0 mod πm−2. As indicated in Fig. 2 the subtree of maximal orders

containing Φ0(Pn) is therefore larger than the simple path joining two extremal vertices as
in the case q > 3. However, the index formula and the result about dπ (Φ,Φ(Pn)) remain
true also in these cases. (A more detailed case by case analysis shows that in the case of
cocompact arithmetic triangle groups the last assertion is even true with “=” instead of “≥”.)

�

As an illustration for the result concerning the principal congruence subgroups, we give

here the picture of the subtree for Φ(π2) in the case q = 7.

Remark 1 For fixed m only a finitely many primes π in k lead to a residue class field with
q < m, so the products in Theorem 3 are well defined.

Lemma 5 Let G be a finite index subgroup of the norm 1 group Φ in a local maximal order
Mv of the quaternion algebra Av . Then the subtree T (G) is determined by two integers
n, k ≥ 0 in the following way. There is a simple path C of length k in T (G) such that the
vertices of T (G) consist precisely of those vertices in the tree of local maximal orders having
distance ≤ n from C, the “spine” of T (G).

Figure 1 gives an illustration of such a subtree for n = k = 2 and q = 5, Fig. 2 gives
such subtrees for (n, k) = (0, 4), (1, 2) and (2, 0) in the cases q = 5, q = 3 and q = 2, and
Fig. 3 gives another example of (n, k) = (2, 0), this time for q = 7.

Proof 1. Let n be the maximal integer such that there is a vertex v whose full distance n
neighbourhood belongs to T (G), in other words with the property that all other vertices
of distance ≤ n in the tree of all local maximal orders belong to T (G). If T (G) has
no other vertex outside this neighbourhood of radius n around v, the claim is true with
k = 0.

2. If T (G) contains more vertices than those of distance ≤ n from v = v0, it contains a
vertex vn+1 of distance n + 1 since T (G) is a subtree by Lemma 2. The next vertex v1

on the simple path from v0 to vn+1 has then also the property that all vertices with dis-
tance ≤ n from v1 belong to T (G). In fact, suppose that v0 corresponds to the standard
maximal order M2(Ov), then we can suppose via conjugation in Φ that G is contained
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Shimura curves with many uniform dessins 765

Fig. 3 Subtree for Φ(π2) in the
local algebra Aπ for q = 7

in Φ(πn) ∩ Φ0(π
n+1). This group is contained in qn Eichler orders Mv ∩ α−1Mvα

of level Pn+1: as in the proof of Lemma 4 consider its action on the generalized pro-
jective line P1

n+1; if a ≡ d ≡ 1 mod πn, b ≡ 0 mod πn and c ≡ 0 mod πn+1 with

ad − bc = 0, then another easy exercise in congruences shows that the matrix

(
a b
c d

)

not only fixes the point

[
1
0

]
∈ P1

n+1 but all qn points

[
1
x

]
with x ≡ 0 mod π . This

means in particular that the subtree T (Φ(πn) ∩ Φ0(π
n+1)) has qn more vertices than

T (Φ(πn)).
3. Apparently, v0 and v1 are both vertices of the spine C which may be constructed by

an obvious continuation of this idea. Suppose we have already a simple path of length
m > 0 whose vertices w j , j = 0, . . . , m, belong to T (G) together with all their neigh-
bours of distance ≤ n. If T (G) has no other vertex, we have already the desired subtree
with m = k.

4. If not, T (G) contains a vertex v′ of distance > n from all w j . Then choose that w j with
minimal distance from v′—it is in fact unique since we have a tree—join it to v′ by a
path inside T (G) and apply part 2 of the proof again to see that the neighbour of w j on
this path is again a vertex of C .

5. Now there could be two possibilities. First, w j is a boundary point of the path we already
found, say w0 or wm . In this case, the new neighbour (w−1 or wm+1, say) continues the
path C .

6. Second, the new vertex w of C could be a third neighbour of w j together with w j−1 and
w j+1. This case is impossible by a similar reason as given in the proof of Lemma 3, part
3: Let w j denote the standard maximal order M2(Ov). Since C contains three different
neighbours of w j and all their neighbours of distance ≤ n, we can suppose that G is
contained in Φ(πn)∩Φ0

0 (πn+1) and fixes—acting on P1
n+1—moreover also some point[

y
x

]
where both x and y are note divisible by π . But in that case we have G ≤ Φ(πn+1)

meaning that all vertices of distance ≤ n + 1 from w j belong to T (G) in contradiction
to our choice of n.

As a side result of this proof we note the number of vertices in T (G).
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Lemma 6 Under the same hypotheses as in Lemma 5 the number of vertices in T (G) is
dπ (Φ, G) = 1 + (q+1)(qn−1)

q−1 + kqn.

Remark 2 For q > 3 all choices of the parameters n and k are possible: take G := Φ(πn) ∩
Φ0(π

n+k) in the Lemmas 5 and 6. The cases q = 2 and 3 behave differently as already
seen in Lemma 4 and its proof: for k ≥ 2 we have Φ0(π

2) ∼= Φ(π) hence n ≥ 1; and for
q = 2, k ≥ 4 we have even n ≥ 2. In fact, one may prove that in the latter case Φ0(π

4) is
conjugate in the local algebra to Φ(π2). Take Fig. 2 as an illustration of the subtrees T (G)

for the groups G = Φ0(π
4) and Φ0

0 (π2) as well.

For the next lemma we note first—generalizing the statement of Lemma 3, part 3—that
the index of the principal congruence subgroup Φ(Pn) itself in Φ is

i(π, n) := 1

2
· q3n−2

(
1 − 1

q2

) (
without the factor

1

2
if q is a 2–power

)
.

To perform induction over the levels, observe that for all n > 0 the quotient Φ(Pn)/Φ(Pn+1)

is abelian, more precisely isomorphic to the additive group of the vector space F3
q . By the

same arguments we obtain for n, k > 0 the index formula

(Φ : (Φ(πn) ∩ Φ0(π
n+k)) = i(π, n) · qk .

Lemma 7 If q > 3,

bπ (Φ, i(π, n)) = (q + 1)(qn − 1)

q − 1
+ 1

for all positive integers n.

Proof We have to show that besides the principal congruence subgroups of level Pn all other
subgroups S ⊂ Φ of index ≤ i(π, n) are contained in a smaller number of maximal orders.
We can suppose that S is already a norm 1 subgroup G of an intersection of Eichler orders
as discussed in Lemmas 5 and 6. Since i(π, n) grows with q3n and dπ (Φ, G) for subgroups
of index i(π, n′)qk ≤ i(π, n) grows at most like (1 + k) · qn′

, the maximal dπ is certainly
obtained for n = n′, k = 0 i.e. for the principal congruence subgroups.

4 Global consequences

It remains to insert the results of the previous section in Theorem 3 and to illustrate these
by examples. We begin with an obvious necessary condition for the existence of at least two
different uniform dessins of the same type on a Riemann surface of genus > 1, crucial for
the construction of low genus examples.

Theorem 4 Let S be an arithmetic Fuchsian surface group contained in the triangle group Δ,
and suppose Δ to be the norm 1 group M1 in a maximal order M of a quaternion algebra A
defined over the totally real field k with ring of integers O. The group S is contained in more
than one group conjugate to Δ in PSL2R if and only if S is contained in a group conjugate
in Δ to

Δ0(π) =
{(

a b
c d

)
∈ Δ ⊂ M2(O) | c ≡ 0 mod π

}

where π is a prime of k not dividing the discriminant of A.
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Shimura curves with many uniform dessins 767

Given S and Δ as above one can use Theorem 3 and Lemma 6 to compute the number d(Δ, S)

of different dessins on S\H.
Now we will concentrate on a series of striking examples. Take Δ of signature (2, 3, 7).

According to [16] this is the norm 1 group of a maximal order M in a quaternion algebra
A over the cubic field k = Q(cos 2π

7 ). All primes π of k are unramified in A. By a recent
result of Džambić [2] all Macbeath–Hurwitz groups—giving the most famous examples of
Hurwitz surfaces—are principal congruence subgroups in Δ. The first cases are

– Klein’s quartic. Its surface group is Δ(π) for a prime π dividing 7, ramified of order 3
and of residue degree 1 in the extension Q(cos 2π

7 )/Q. With q = 7 we see that Klein’s
quartic has 8 non-conjugate uniform dessins of type (2, 3, 7) plus the usual regular one.

– Macbeath’s curve of genus 7 with automorphism group PSL2(F8) has the surface group
Δ(2) for the prime π = 2, inert and of residue degree 3 in the extension Q(cos 2π

7 )/Q.
With q = 8 one has 9 uniform dessins plus a regular one on the curve.

– Three non-isomorphic curves in genus 14 with automorphism group PSL2(F13) whose
surface groups are the principal congruence subgroups Δ(π j ), j = 1, 2, 3 for the (com-
pletely decomposed) primes π j dividing 13. Their residue degree is 1, hence one has
q + 1 = 14 uniform dessins of type (2, 3, 7) on each curve plus a regular one.

All dessins mentioned here are clearly not renormalizations of each other since the signature
consists of three different entries. On the other hand, in all these cases we have one regular
dessin and q + 1 uniform non-regular ones which form an orbit under the automorphism
group of the curve: the q + 1 norm 1 groups of type Δ0(π) are conjugate under the action of
Δ or—in other words—the q + 1 Eichler orders of level P form a Δ-invariant set, so these
dessins are equivalent under automorphisms of the curve.

Up to conjugation, we have therefore only the rather modest number of two essentially
different dessins of the same type. Similarly, even if Δ0(π) in Theorem 4 was torsion free, the
two different dessins on the curve Δ0(π)\H are equivalent under the action of the Fricke invo-

lution, conjugate in M2(Ov) to ρ =
(

0 π

−1 0

)
, and two among the three dessins on a curve

Δ0
0(π)\H are equivalent under an involution as well, conjugate in M2(Ov) to

(
0 −1
1 0

)
.

However replacing these congruence groups with subgroups of small index we can remove
automorphisms such that most of the uniform dessins found here become inequivalent under
automorphisms, see Remark 3 below.

Next we consider the growth of the maximal number of uniform dessins on surfaces S\H
depending on the index (Δ : S) in a given triangle group.

Theorem 5 Let the Fuchsian group Φ be the norm 1 group of a quaternion algebra. Then

b(Φ, m) = O( 3
√

m)

and this upper bound is optimal in the following sense. There are sequences of surface groups
Sn < Φ with indices (Φ : Sn) → ∞ such that for the numbers d(Φ, Sn) of all residue classes
α ∈ PSL2R/N (Φ) with the property Sn ⊂ α−1Φα we have

lim
n→∞

d(Φ, Sn)
3
√

2(Φ : Sn)
= 1.

Proof The proof follows from the last part of Theorem 3 if we use the fact that the index
m = (Φ : S) grows at least like the product of all indices mπ of the localizations, and for
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these we can apply Lemma 6 together with the formula for the indices of the principal con-
gruence subgroups. For the sequence Sn one may take any sequence of principal congruence
subgroups Φ(P) with prime ideals P = πOv such that O/π ∼= Fq , q → ∞. Observe that
only finitely many among the Sn can have torsion.

Remark 3 One may replace this sequence Sn of surface groups with a sequence Gn whose
normalizers are by far smaller. We start with the principal congruence subgroups Φ(πn)

where we suppose for simplicity (satisfied in the case of arithmetic triangle groups) that

– the center field k has class number 1,
– π is a prime in k not dividing the discriminant of the algebra A,
– dividing a prime p ∈ Z, p > 3, split in k (infinitely many such primes exist by Dirichlet’s

prime number theorem),
– hence with norm q = p,
– and n so large that Φ(πn) is torsion free of genus g = gn .

The index of Φ(πn) in the norm 1 group Φ = M1 is 1
2 (p2 − 1)p3n−2, and the normalizer in

PSL2R of any finite index subgroup Gn < Φ(πn) is contained in the unit group A∗, more
precisely in its projective image P A∗, see the Skolem–Noether arguments used in the proof
of Theorem 2. By the same reasons we can represent all elements of N (Gn) by elements of
A∗ ∩M. Dividing out unnecessary factors we can moreover suppose that these elements are
not divisible by primes ρ of Ok . If two such elements α, β fall in the same residue class in
P A∗/Φ(π), they satisfy σα ≡ τβ mod πM for some coprime σ, τ ∈ Ok not divisible by π

(otherwise α or β would be divisible by π ). The number of these residue classes is therefore
less than p4, the number of residue classes in M/πM ∼= M2(Ok/πOk).

We note first that the group isomorphism

N (Gn)Φ(π)/Φ(π) ∼= N (Gn)/(N (Gn) ∩ Φ(π))

and the above count of residue classes gives

(N (Gn) : (Φ(π) ∩ N (Gn))) ≤ (P A∗ : Φ(π)) < p4.

Second, if we succeed to construct Gn in such a way that N (Gn)∩Φ(π) = N (Gn)∩Φ(πn),
there is a bijection between the residue classes of N (Gn) mod πn and those of N (Gn) mod π .
If so, we can deduce

(N (Gn) : Gn)≤ (N (Gn) : (Φ(πn) ∩ N (Gn))) · (Φ(πn) : Gn)

≤ (N (Gn) : (Φ(π) ∩ N (Gn))) · (Φ(πn) : Gn) < p4 · (Φ(πn) : Gn).

As third step it remains therefore to construct a subgroup Gn of of small index in Φ(πn)

such that N (Gn) ∩ Φ(π) = N (Gn) ∩ Φ(πn). We begin with the observation that the group
Φ(π)/Φ(πn) is generated by three elements of order pn−1, namely(

1 0
π 1

)
,

(
1 π

0 1

)
,

(
a 0
0 d

)
with a = 1 + π, d = 1 − π + π2 − · · · ≡ a−1 mod πn .

In fact, Φ(π)/Φ(πn) is a p–group, every element γ has an order pk such that γ pk−1 ∈
Φ(πn−1)/Φ(πn) is an element of order p. As already mentioned in the last section, this
quotient group Φ(πn−1)/Φ(πn) is abelian and isomorphic to the additive group of F3

p .
Recall that Φ(πn) is torsion free, generated by a j , b j , j = 1, . . . , g with the single gen-

erating relation
∏[a j , b j ] = 1, and that these generators correspond to the generators of

the homology of the surface X1 := Φ(πn)\H, isomorphic to Z2g . Let γ1 one of the above
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Shimura curves with many uniform dessins 769

generators of of Φ(π)/Φ(πn) of order pn−1 and δ1 := γ
pn−2

1 . Conjugation of Φ(πn) by the
elements of N (Φ(πn)) induces an effective action of the automorphism group of the surface
on its homology, and since the subgroups 〈γ1〉 > 〈δ1〉 have odd order, they act effectively on
the quotient (Z/2Z)2g as well: consider the complex representation and its corresponding
modular representation over an algebraic closure of F2. Therefore there is a generator — a1,
say — sent by δ1 to some δ1(a1) �≡ a1 mod 2. Looking at generators and relations of Φ(πn)

there is hence a character

χ1 : Φ(πn) → {±1} with χ1(a1) = −1, χ1(δ1(a1)) = 1

whose kernel is not invariant under δ1, therefore not invariant under any nontrivial element of
the cyclic group 〈γ1〉. So the intersection (N (Ker χ1) ∩ Φ(πn−1))/Φ(πn) can be an at most
2-dimensional Fp–vector space. If it is nontrivial, take an element γ2 ∈ N (Ker χ1) ∩ Φ(π)

of maximal order pk > 1, define δ2 := γ
pk−1

2 ∈ Φ(πn−1) and consider its action on the
homology of the surface X2 := Ker χ1\H. Again it is effective and we can define a character
χ2 : Ker χ1 → {±1} whose kernel is not invariant under conjugation by δ2 and a fortiori not
under conjugation byγ2 nor δ1 norγ1. Now the intersection (N (Ker χ2)∩Φ(πn−1))/Φ(πn) is
at most onedimensional in F3

p and we can finish the construction by taking a γ3 ∈ N (Ker χ2)∩
Φ(π) of maximal order modΦ(πn) and defining a χ3 : Ker χ2 → {±1} as above to be sure
that N (Ker χ3) ∩ Φ(π) ≤ Φ(πn).

Define Gn := Ker χ3 (or Ker χ2 or Ker χ1 if there is no nontrivial γ3 or γ2, respectively).
This group satisfies our hypothesis in the second step, hence (N (Gn) : Gn) < 8p4. There-
fore, the surface Gn\H has less than 8p4 automorphisms and, by Theorem 3 together with
Lemma 7 more than

1

8p4

(
(p + 1) · pn − 1

p − 1
+ 1

)

uniform dessins inequivalent under automorphisms.

As in Lemma 1, we can describe the growth result given in Theorem 5 also in terms of
the genus, by Remark 3 now in a stronger version:

Corollary 1 The number of uniform dessins not equivalent under renormalization or auto-
morphisms on a Belyı̆ surface grows with the genus g at most as a multiple of 3

√
g, and this

bound is optimal.

5 A geometrical description

We explore now the examples given in Sect. 4 in a more geometrical way.

Klein’s quartic. Klein’s quartic is a genus three surface uniformized by a group S generated
by certain side-pairings in the regular 14-gon P with angle 2π/7 (see Fig. 4). The (black
and white) triangles in Klein’s original picture are related to the triangle group Δ(2, 3, 7) of
signature (2, 3, 7) in which S is normally contained with index 168.

The inclusion S�Δ(2, 3, 7) induces a regular Belyı̆ function on S. The corresponding reg-
ular dessin D can be easily depicted in P with the help of the triangle tessellation associated
to Δ(2, 3, 7) (see left picture on Fig. 5).

Rotate now D—or rather its lift to the universal covering D—by an angle 2π/14 around
the origin. The graph D′ obtained is compatible with the side-pairing identifications, hence
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Fig. 4 Klein’s surface is obtained by the side pairing 1 ↔ 6, 3 ↔ 8, 5 ↔ 10, 7 ↔ 12, 9 ↔ 14, 11 ↔
2, 13 ↔ 4

Fig. 5 Klein’s regular (2, 3, 7) dessin D and a uniform one D′

it is a well defined dessin on the surface. It is rather obvious that D′ decomposes the surface
into 24 heptagons in the same way as D does. In other words D′ is also a uniform (2, 3, 7)

dessin on S\H (see right picture on Fig. 5). Note that the rotation that transforms D into D′
does not correspond to any automorphism of the surface, and in fact both dessins are not
isomorphic since D′ is not regular.

The existence of a new uniform dessin of type (2, 3, 7) is clear if one studies all triangle
groups in which S is contained. We started with the normal inclusion S � Δ(2, 3, 7), but S is
also normally contained in the obvious group Δ(7, 7, 7) that has one seventh of the 14-gon
as fundamental domain. The corresponding regular (7, 7, 7)−dessin lies in the border of the
polygon: it has one black vertex, one white vertex, and seven edges. There is even a group
Δ(3, 3, 7) lying between Δ(7, 7, 7) and Δ(2, 3, 7) that defines another regular dessin of type
(3, 3, 7). The chain of inclusions S < Δ(7, 7, 7) < Δ(3, 3, 7) < Δ(2, 3, 7) means that the
corresponding regular dessins are related by refinement.
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The full diagram of triangle groups lying above S is nevertheless larger. Looking at
Singerman’s inclusion list we find

Δ(2, 3, 14) Δ(2, 3, 7)

Δ(2, 7, 14)

�����������
Δ(3, 3, 7)

�����������

Δ(7, 7, 7)

�����������

�����������

S

������������

(1)

The groups Δ(2, 7, 14) and Δ(2, 3, 14) are the index two (therefore normal) extensions
of Δ(7, 7, 7) and Δ(3, 3, 7) obtained by addition of a new element ρ which is a rotation of
angle 2π/14 around the origin. The corresponding dessins of type (2, 7, 14) and (2, 3, 14)

are not regular but only uniform (as already noticed in [13]), and are obtained from those of
types (7, 7, 7) and (3, 3, 7) by colouring all the vertices with the same colour, say black, and
then adding white vertices at the midpoints of the edges.

Conjugation of diagram (1) by ρ fixes all the groups except S and Δ(2, 3, 7):

Δ(2, 3, 14) Δ(2, 3, 7) ρΔ(2, 3, 7)ρ−1

Δ(2, 7, 14)

�����������
Δ(3, 3, 7)

�����������

�����������

Δ(7, 7, 7)

�����������

�����������

S

�������������
ρSρ−1

����������

(2)

The inclusion S < ρΔ(2, 3, 7)ρ−1 corresponds to the uniform dessin D′ described above.
Since the normalizer of S is Δ(2, 3, 7) the inclusion of S in ρΔ(2, 3, 7)ρ−1 is not normal,
hence D′ is not regular.

Now we focus in the group Δ(3, 3, 7) lying in the middle of diagrams (1) and (2). It is a
known fact [5] that a given triangle group of type (3, 3, 7) is contained in precisely two differ-
ent groups of signature (2, 3, 7) (Δ(2, 3, 7) and ρΔ(2, 3, 7)ρ−1 in our case). Reciprocally,
any given Δ(2, 3, 7) contains eight different subgroups of signature (3, 3, 7), all conjugate
in Δ(2, 3, 7).

Let a1Δ(3, 3, 7)a−1
1 , . . . , a7Δ(3, 3, 7)a−1

7 be the seven subgroups of Δ(2, 3, 7) conjugate
to Δ(3, 3, 7), where ai ∈ Δ(2, 3, 7).
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If we conjugate diagram (2) by ai we get

aiΔ(2, 3, 14)a−1
i Δ(2, 3, 7) aiρΔ(2, 3, 7)ρ−1a−1

i

aiΔ(2, 7, 14)a−1
i

����������
aiΔ(3, 3, 7)a−1

i

����������

�����������

aiΔ(7, 7, 7)a−1
i

����������

����������

S

������������
aiρSρ−1a−1

i

����������

(3)

Note that only Δ(2, 3, 7) and S remain fixed by this conjugation, since ai belongs to
Δ(2, 3, 7), the normalizer of S.

The inclusion S < aiρΔ(2, 3, 7)ρ−1a−1
i induces a new uniform (but not regular) dessin

of type (2, 3, 7) on S\H. It is related to the uniform dessin D′ by the automorphism induced
by ai , and to the regular dessin D by a hyperbolic rotation of angle 2π/14 around the center
of certain face of D.

Macbeath’s curve of genus seven. The description of the uniform (2, 3, 7) dessins on Mac-
beath curve goes more or less along the same lines as in the case of Klein’s quartic. Again the
surface group S is included normally in Δ(2, 3, 7). The role played by the group Δ(3, 3, 7) in
Klein’s quartic is played here by Δ(2, 7, 7). Note that the inclusion Δ(2, 7, 7) < Δ(2, 3, 7)

is also very special (cf. [5]). The number of conjugate subgroups of type (2, 7, 7) inside
Δ(2, 3, 7) is nine, and any given Δ(2, 7, 7) is contained in two different groups of type
(2, 3, 7). The normalizer of Δ(2, 7, 7) is now a (2, 4, 7)–group obtained by adding a rotation
ρ of order 4 around any of the points of order 2 in Δ(2, 7, 7).

This new element does not normalize Δ(2, 3, 7), so conjugation by ρ gives rise to the
second group ρΔ(2, 3, 7)ρ−1 in which Δ(2, 7, 7) is included:

Δ(2, 4, 7) Δ(2, 3, 7) ρΔ(2, 3, 7)ρ−1

Δ(2, 7, 7)

�����������

�����������

S

������������
ρSρ−1

											

(4)

The inclusion of S inside Δ(2, 3, 7) and ρΔ(2, 3, 7)ρ−1 determines two non-isomorphic
dessins on Macbeath’s curve. Once more the second inclusion is not normal, and accordingly
the second dessin is uniform but not regular, see Fig. 6.

We can proceed in the same way with the other eight (2, 7, 7)–groups contained inside
Δ(2, 3, 7) to get diagrams similar to diagram (3). This way we find the nine (isomorphic)
uniform dessins predicted by the arithmetic arguments of Sect. 4.

There is obviously as well a uniform dessin of type (2, 4, 7), as already noticed in [13].
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Fig. 6 Face decomposition associated to regular and uniform dessins of type (2, 3, 7) on Macbeath’s surface

Macbeath–Hurwitz curves of genus 14. The third example given in Sect. 4 arises from the
consideration of the three (torsion free) groups Si = Δ(πi ) � Δ(2, 3, 7) for inequivalent
primes π1, π2 and π3 dividing 13 in Q(cos π

7 ). These groups correspond to three Galois
conjugate curves [14] of genus 14 with a regular (2, 3, 7) dessin.

Now for each of these primes, we find Δ0(πi ) lying between Δ(πi ) and Δ(2, 3, 7). Its
index inside Δ(2, 3, 7) is 14. By Singerman’s method for the determination of signatures
of subgroups of Fuchsian groups [10] it can be seen that Δ0(πi ) is a group of signature
〈0; 2, 2, 3, 3〉.

There is again an element ρi in the normalizer of Δ0(πi ) that conjugates Δ(2, 3, 7) into
a different group. The inclusion of Δ(πi ) inside ρiΔ(2, 3, 7)ρ−1

i is no longer normal and
gives rise to a non-regular uniform dessin on the same Riemann surface.

Moreover, Δ(2, 3, 7) contains 14 different subgroups conjugate to Δ0(πi ). All of them
include Δ(πi ), therefore arguing as above we find 14 isomorphic uniform (2, 3, 7) dessins.

6 Commensurability

The previous section has given a first geometric look onto uniform dessins of arithmetic type.
Some of the triangle groups involved are not the norm 1 group of a maximal order, but only
groups commensurable to it. The number of uniform dessins on a surface S\H, where S is
contained in an arithmetic triangle group Δ, depends on the particular relation between Δ

and the corresponding norm 1 group. We shall focus on some relevant examples instead of
giving complete results for all arithmetic triangle groups.

We begin with the triangle group Δ(2, 3, 7) whose commensurable triangle groups can
be found in the graph (X) of [16] that we depict here:

Δ(2, 4, 7) Δ(2, 3, 7) Δ(2, 3, 14)

Δ(2, 7, 7)

2










9
��������

Δ(3, 3, 7)

8










2
���������

Δ(2, 7, 14)

3











Δ(7, 7, 7)

3
���������

2
���������

(5)
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Diagrams (1) and (2) of the last section are contained in (5). As we already know, the
group S uniformizing Klein’s quartic is contained in Δ(7, 7, 7). Moreover, S is a principal
congruence subgroup for the prime π ∈ O dividing the rational prime 7, or equivalently the
kernel Δ(π) of the canonical epimorphism of Δ(2, 3, 7) onto PSL2(F7) (since N (π) = 7).
Using Singerman’s procedure again and considering the (transitive) action of Δ(2, 3, 7) on
the 8 points of the projective line P1(F7) it is an easy exercise to see that Δ0(π) = Δ(3, 3, 7),
and that its commutator subgroup is precisely Δ(7, 7, 7), the preimage of the cyclic subgroup{(

1 b
0 1

)
| b ∈ F7

}
of PSL2(F7).

The remaining groups

Δ(2, 3, 14) = N (Δ(3, 3, 7)) and Δ(2, 7, 4) = N (Δ(2, 7, 7))

can be arithmetically constructed as the extensions of Δ0(π) and Δ(7, 7, 7) by the Fricke
involution.

What do these considerations mean for the existence and the number of different dessins
of the same type? First we have to note that for all discrete valuations w of O not correspond-
ing to the prime π | 7 the triangle groups Δ(2, 3, 7), Δ(3, 3, 7),Δ(7, 7, 7) have the same
completion PSL2(Ow), so the situation and in particular the local counting functions d and b
do not differ from Δ(2, 3, 7) with the single exception of the completion for π itself. Sec-
ond, recall that Δ(2, 3, 14) and Δ(7, 7, 7) are uniquely determined as the normalizer and the
commutator subgroup of Δ(3, 3, 7), and that they have three conjugate copies of Δ(2, 7, 14)

in between, so it may be sufficient to consider surfaces with different uniform dessins of
type (3, 3, 7). Groups of type (3, 3, 7) are characterized as norm 1 groups of Eichler orders
of level P = 〈π〉. Therefore the number of uniform (3, 3, 7)-dessins on the surface S\H is
given by the number of edges in the tree T (S) (see Definition 3), in contrast to the case of
(2, 3, 7)-dessins, where one must count vertices. We summarize some possible extensions of
Lemmas 4, 7 and Theorem 4 in the following Lemma.

Lemma 8 1. Let Δ := Δ(2, 3, 7) and let π be the prime in k = Q(cos π
7 ) dividing q = 7.

The surface group S is contained in more than one group conjugate to Δ(3, 3, 7) if and
only if S is contained in a group conjugate to Δ0

0(π).
2. For n > 0 we have dπ (Δ(3, 3, 7),Δ(πn)) = (q + 1)(qn − 1)/(q − 1) = 4

3 (7n − 1) =
bπ (Δ(3, 3, 7), 3 · 73n−2).

3. If S is contained in d different groups conjugate to Δ(7, 7, 7), then it is also contained
at least in d different groups conjugate to Δ(3, 3, 7). Equality holds if the minimal
congruence subgroup containing S is a principal congruence subgroup.

Remark 4 For n = 1, S = Δ(π), we have already seen that there are 8 possible dessins
of type (3, 3, 7) on Klein’s quartic. They are even regular and all equivalent under automor-
phisms of the surface, of course. As in Sect. 5, we can always pass from Δ(πn) to subgroups
of small index to obtain examples with many uniform dessins not equivalent under automor-
phisms.

In the commensurability diagram (5) there is a second branch given by

Δ(2, 4, 7) > Δ(2, 7, 7) < Δ(2, 3, 7)

already mentioned in the previous section during the construction of the uniform dessins
inside Macbeath’s curve. Now let π be the prime 2, inert in the cubic field extension
Q

(
cos π

7

)
/Q, hence with residue class field F8. Recall from Sect. 4 that Δ(2) is the sur-

face group of the Macbeath–Hurwitz curve with automorphism group PSL2(F8) of order
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Shimura curves with many uniform dessins 775

504 = 9 · 8 · 7, hence we have a natural action of Δ on the projective line with 9 elements
such that Δ0(2) will be the subgroup stabilizing one of these points on the projective line. On
the other hand, Singerman’s method gives the signature of this subgroup defining a transitive
action of Δ on nine elements by e.g.

γ0 �→ (14)(23)(67)(89), γ1 �→ (123)(456)(789), γ∞ �→ (1697543).

The result is Δ0(2) = Δ(2, 7, 7), and the extension by the Fricke involution is just its normal-
izer Δ(2, 4, 7). For the counting functions one may draw similar conclusions as in Lemma 8.
For example, the surface group S is contained in more than one triangle group of type (2, 7, 7)

if and only if it is contained in a group conjugate to Δ0
0(2). For another look onto the dessins

of type (2, 7, 7) also including noneuclidean cristallographic groups compare [12].
Our second example is given by Takeuchi’s diagram (XI). Here the norm 1 group is

Δ = Δ(2, 3, 9) containing the triangle group Δ(3, 3, 9) with index 4.

Δ(2, 3, 9) Δ(2, 3, 18)

Δ(3, 3, 9)

4











2
���������

Δ(2, 9, 18)

3

���������
Δ(3, 6, 18)

4
����������������

Δ(9, 9, 9)

3
���������

2
���������

(6)

The quaternion algebra is defined over the cubic field k := Q(cos π
9 ) and is unramified.

In k we have a ramified prime π | 3 of norm 3, and similarly to the inclusion Δ(3, 3, 7) <

Δ(2, 3, 7) studied above we have here Δ0(π) = Δ(3, 3, 9). There has to be an extension of
index 2 by the Fricke involution, and in fact Δ(3, 3, 9) is normalized by the triangle group
Δ(2, 3, 18).1 The group Δ0(π) contains Δ0

0(π) with index N (π) = 3, and there seems to
be a candidate: the subgroup Δ(9, 9, 9) < Δ(3, 3, 9). But this group is even not conjugate
to Δ0

0(π): as we have seen in Lemma 3 and its proof, Δ0
0(π) = Δ(π) and has normalizer

Δ = Δ(2, 3, 9), whereas Δ(9, 9, 9) has normalizer Δ(2, 3, 18). There is no other candidate
for a congruence subgroup contained in Δ(9, 9, 9), so this is a non-congruence subgroup
of Δ. Therefore, for all primes �= π dessins of type (9, 9, 9) behave as if Δ(9, 9, 9) were a
norm 1 group, and for the prime π it behaves like those of type (3, 3, 9) because both triangle
groups belong to an uniquely determined Eichler order. The same is true for the two other
triangle groups Δ(3, 6, 18) and Δ(2, 9, 18). They are non-congruence subgroups as well.

Finally, commensurability between triangle groups may come also from the fact that the
norm 1 group of a quaternion algebra A is not maximal. This happens if and only if the
normalizer of a maximal order M is a proper extension of the norm 1 group M1. By [16]
it is always a finite extension of 2–power index generated by totally positive units of k and
totally positive primes π ∈ k dividing the discriminant D(A). As an example, take the norm 1
group Δ = Δ(3, 3, 6) of a quaternion algebra with center Q(

√
3), extend it by elements in

1 The first and the last author have to mention that Table 1, case iv, in [5] needs a minor correction: the claim
is true that for Δ1 = Δ(3, n, 3n) there is only one supergroup conjugate to Δ2 = Δ(2, 3, 3n) if n > 3.
However, two such supergroups exist in the case n = 3, conjugate under the Fricke involution.
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GL2(O) of determinant ε = 2 + √
3, renormalize these elements dividing by

√
ε to obtain

elements in the extended triangle group Δ = Δ(2, 3, 12).

Δ(2, 3, 12)

Δ(3, 4, 12)

4
���������������

Δ(3, 3, 6)

2

���������
Δ(2, 6, 12)

3
���������

Δ(6, 6, 6)

3
���������

2
���������

Δ(3, 12, 12)

2
���������

(7)

Clearly, every uniform (3, 3, 6)–dessin on a surface with surface group S can be extended
to a (2, 3, 12)–dessin, but the converse may fail: a torsion free subgroup S ⊂ Δ is a subgroup
of Δ if and only if it consists of norm 1 elements in M. However, the intersection with Δ

has index at most 2 in S, so we may use the fact that Δ is the unique index 2 subgroup of Δ

to conclude

Lemma 9 1. For a surface group S ⊂ Δ we have d(Δ, S) = d(Δ, S).
2. For a surface group S ⊂ Δ we have d(Δ, S ∩ Δ) = d(Δ, S) where

(S : S ∩ Δ) ≤ 2.

As an exercise, the reader may prove that the triangle group Δ(3, 4, 12), an index 4
subgroup of Δ, is an index 2 extension of the congruence subgroup Δ0(

√
3). The group

Δ(6, 6, 6) is the unique index 3 normal subgroup of the norm 1 group Δ = Δ(3, 3, 6), there-
fore it must be the principal congruence subgroup Δ(1 + √

3) since the prime 1 + √
3 is the

unique discriminant divisor of the associated quaternion algebra [16]. It is a prime of norm 2,
therefore the residue class field of the (unique!) maximal order is F4, and Δ/Δ(1 + √

3)

has to be isomorphic to its multiplicative group. An obvious variant of Theorem 4 for this
triangle group is therefore

Lemma 10 A Fuchsian group S is contained in more than one conjugate of the triangle
group Δ(6, 6, 6) if and only if it is contained in a congruence subgroup Δ(1 +√

3)∩Δ0(π)

of the group Δ = Δ(3, 3, 6) for a prime π of the field Q(
√

3) not equivalent to 1 + √
3.

The triangle groupΔ(2, 6, 12) can be obtained extendingΔ(6, 6, 6)by elements of norm ε.
It is a congruence subgroup of Δ(2, 3, 12), whereas Δ(3, 12, 12) seems to be a non-
congruence subgroup.

7 A genus 2 surface with two uniform dessins

A complete list of all (isomorphism classes of) uniform dessins in genus 2 is given in [13].
It is however not obvious if and when two such dessins—even if they are of the same type—
may belong to the same surface. The arithmetic considerations of Sect. 6 about the Δ(2, 3, 9)

group will allow to construct an example of a genus 2 surface with two non-isomorphic
uniform dessins of the same type.

Let us consider the ramified prime π ∈ Q(cos π
9 ) dividing 3.

For Δ = Δ(2, 3, 9) we have the following chain of inclusions:

Δ
4
> Δ0(π)

3
> Δ(π),
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Shimura curves with many uniform dessins 777

where Δ0(π) = Δ(3, 3, 9) and Δ(π) is the principal congruence subgroup of level π , a
Fuchsian group of signature 〈0 ; 3, 3, 3, 3〉. Moreover, since q = 3 we have Δ(π) � Δ0(π

2)

(see Remark 2).
By the arithmetic theory developed before, the Fricke involution conjugates Δ(2, 3, 9)

into another group ρΔ(2, 3, 9)ρ−1 such that:

Δ(2, 3, 18) Δ(2, 3, 9) ρΔ(2, 3, 9)ρ−1

Δ0(π) = Δ(3, 3, 9)

�������������

�������������

Δ(π)

(8)

Once again ρ is an extra rotation—of order 2 around a fixed point of order 9—inside
Δ(2, 3, 18), the normalizer of Δ(3, 3, 9). Let us note that conjugation by the Fricke involu-
tion gives precisely the isomorphism between Δ(π) and Δ0(π

2) = ρΔ(π)ρ−1.
Now by Theorem 4 every surface group inside Δ(3, 3, 9) will have at least two (2, 3, 9)

dessins. By the list in [13] we know that in genus 2 there are 4 different dessins of this type.
For two of them it can be seen, by computing the monodromies and constructing a funda-
mental domain, that the Fricke involution is an automorphism of the surface, and so the two
dessins arising from the arithmetic construction are isomorphic (see also [4]).

The other two are the dual dessins considered in [13], Section 11(d). To find its surface
group we can follow once more Singerman’s procedure, and it can be seen that it is possible to
find a (normal) torsion free subgroup S of index 3 in Δ(π). The indices (Δ(3, 3, 9) : S) = 9
and (Δ(2, 3, 9) : S) = 36 tell us that it corresponds indeed to a genus 2 surface.

The monodromies of the two dessins induced by Δ(2, 3, 9) and ρΔ(2, 3, 9)ρ−1 are non-
conjugate inside S36 so they are not isomorphic as we already knew, neither are they even
equivalent under automorphisms or renormalization. (David Singerman kindly informed the
authors that this uniform non-regular dessin and the uniform non-regular dessin on Klein’s
quartic given in Fig. 5 were already found by R.I. Syddall in his unpublished PhD thesis
[15].)

By [4] we know that the automorphism group of this surface Aut(S\H) � N (S)/S is
generated by the hyperelliptic involution J and two automorphisms τ and σ3 of order 2 and 3
respectively. From the arithmetic point of view, we can even say that 〈S, σ̃3〉 � Δ(π), where
σ̃3 denotes the lift of σ3 to H.

The lifts of all these automorphisms lie inside Δ(2, 3, 9), but J̃ , τ̃ , J̃τ ∈ N (S) do not
belong to ρΔ(2, 3, 9)ρ−1. Conjugation of ρΔ(2, 3, 9)ρ−1 by each of these elements will
determine another (2, 3, 9)-dessin isomorphic to the second one.
The same can be applied to Δ(3, 3, 9) and Δ(2, 3, 18). In particular Δ(3, 3, 9), J̃ (Δ(3, 3, 9))

J̃−1, τ̃ (Δ(3, 3, 9))̃τ and J̃τ(Δ(3, 3, 9))( J̃τ)−1 are the four different (3, 3, 9) groups lying
below a given Δ(2, 3, 9) ([5], p. 9, Thm. 6).

The following diagram of inclusions shows all the dessins (modulo renormalization) in
this surface. The notation Gσ stands for conjugation by σ :
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778 E. Girondo et al.

Δ(2, 3, 18)Jτ Δ(2, 3, 18)τ Δ(2, 3, 18)J Δ(2, 3, 18)

Δ(2, 3, 9)ρ Jτ Δ(2, 3, 9)ρτ
Δ(2, 3, 9)ρ J Δ(2, 3, 9)ρ Δ(2, 3, 9)

Δ(3, 3, 9)Jτ

�����������������
Δ(3, 3, 9)τ

�����������������
Δ(3, 3, 9)J

����������������
Δ(3, 3, 9)

�����������������

���������
N (S)

Δ(π)

���������

������������������

������������������������������

���������

S

����������������

(9)

By localization, the different (2, 3, 9) and (3, 3, 9) groups can be seen as generating the
local maximal orders and Eichler orders of level P respectively, containing Sπ � (Δ(π))π
(see the vertices and edges of the subtree in Figs. 7, 8).

To sum up, there are (up to renormalization) four different (3, 3, 9) dessins on the surface
S\H studied here, forming one orbit under the automorphism group N (S)/S � D3 ×C2 act-

Fig. 7 Two non-isomorphic uniform dessins of type (2, 3, 9) in the same surface

Fig. 8 Subtree T (Δπ (π)) and the image of the second dessin under the hyperelliptic involution J
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Shimura curves with many uniform dessins 779

ing on the edges of the subtree given in Fig. 8. On the other hand one has four (2, 3, 9) dessins
equivalent under the automorphism group plus one stabilized by N (S)/S, corresponding to
the mid-vertex of the subtree, not isomorphic to the others.

Remark 5 According to [13] an equation for S\H is y3 = (x − 1)(x3 − 1). We have found
that y2 = x6 + 8x3 + 4 is a hyperelliptic model of this surface.
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