
ORBIFOLD POINTS ON PRYM-TEICHMÜLLER CURVES IN
GENUS THREE – PARI FILE

DAVID TORRES-TEIGELL AND JONATHAN ZACHHUBER

Abstract. The following PARI code computes the orbifold type (i.e. num-
ber and type of orbifold points, cusps and Euler characteristic) of Prym-
Teichmüller curves in M3.
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1. Introduction

The following PARI code calculates the number and type of orbifold points on
Prym-Teichmüller curves WD inM3, see [TZ15] for details. By implementing the
algorithm of Lanneau-Nguyen [LN14] for the number of cusps and using Möller’s
formula for the Euler characteristic [Möl14] (see e.g. [Bai07] for details how to
compute this), we can give the complete orbifold classification for all D.

As neither of the authors can honestly call himself a programmer, we hold no
claims for efficiency or “clean” programming. Moreover, we are grateful for any
comments or feedback.

While there can be no doubt that the efficiency can be improved, the programme
runs in a reasonable time for D up to around 10000.

The code should work with [Par] and (hopefully) all newer versions.

2. Usage

To extract the PARI file (and this pdf file), run
pdflatex ptmcorbiptsg3.dtx
bibtex ptmcorbiptsg3
pdflatex ptmcorbiptsg3.dtx

and then in PARI, e.g.
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? \r ptmcorbiptsg3.pari
? printsignature(50)
D D(8) Chi cusps g p2 p3 p4 p6
8 0 -5/12 1 0 0 1 1 0
12 4 -5/6 2 0 0 0 0 1
17 1 -5/3 3 0 0 1 0 0
20 4 -5/2 4 0 1 0 0 0
24 0 -5/2 4 0 1 0 0 0
28 4 -10/3 4 0 0 2 0 0
32 0 -5 7 0 0 0 0 0
33 1 -5 7 0 0 0 0 0
40 0 -35/6 6 0 1 2 0 0
41 1 -20/3 8 0 0 1 0 0
44 4 -35/6 6 0 1 2 0 0
48 0 -10 10 1 0 0 0 0
? ##

*** last result computed in 5 ms.

The default value for printsignature is 100.
To obtain the signature for a single D:

? getsignature(10540)
30 = [-25110, 368, 12361, 12, 24, 0, 0]
? ##

*** last result computed in 57 ms.

3. Implementation

We assume always that D is a (non-square!) quadratic discriminant, i.e. 0 or 1
mod 4.

3.1. Cusps. We begin by computing the number of cusps, C(WD) of WD. By
[LN14, Thm C.1], we have

C(WD) = 2|QD|+ |P ′D|,
where QD and P ′D are sets of prototypes. More precisely, we have

QD =

(w, h, t, e, ε) ∈ Z5 :
w > 0, h > 0, 0 ≤ t < gcd(w, h),
gcd(w, h, t, e) = 1, D = e2 + 8wh,
e+ 2h < w, and ε = ±1.

 ,

while P ′D is given by

P ′D =

(w, h, t, e) ∈ Z4 :

w > 0, h > 0, 0 ≤ t < gcd(w, h),
gcd(w, h, t, e) = 1, D = e2 + 8wh,

0 < e+
√
D

4 < w < e+
√
D

2 .

 .

To enumerate these prototypes, we loop over the possible values of e, setting r =
8wh. Then we loop over the possible values for h and finally over t. Note that the
choice of ε leads to each Q-prototype being counted twice.

1 cusps(D) = { \\ count cusps of W_D(4) (LN)
2 local(h,r,P,Q);
3 P=0; Q=0;
4 for (e=0,sqrt(D),
5 r=D-e^2;
6 if( r%8 != 0, next());
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7 fordiv(r/8,w,
8 h=r/(8*w);
9 for(t=0,gcd(w,h)-1,

10 if(gcd(w,gcd(h,gcd(t,e)))!=1, next());
11 if(e+2*h<w, Q+=2);
12 if(e!=0 && -e+2*h<w, Q+=2);
13 if((e+sqrt(D))/4<w && w<(e+sqrt(D))/2, P++);
14 if(e!=0 && (-e+sqrt(D))/4<w && w<(-e+sqrt(D))/2, P++);
15 );
16 );
17 );
18 return(P+Q);
19 }

3.2. Euler characteristic. By [Möl14, Thm 4.3], for D ≡ 5 mod 8, the locusWD

is empty and for D ≡ 0, 4 mod 8, we have

χ(WD) = −5

2
χ(XD,(1,2)),

where XD,(1,2) is the Hilbert modular surface parametrising abelian twofolds with
a (1, 2)-polarisation admitting proper real multiplication by the order OD. In the
case D ≡ 1 mod 8, there are two components to WD, but for each component the
same formula holds as above.
20 geteulercharWP(D) = { \\ calculate chi(W_D(4) (genus 3)
21 return(-5/2*geteulercharXP(D));
22 }

By [Möl14, Prop 1.2], if we writeD = f2D0, whereD0 is a fundamental discriminant
and f is the conductor of D, we have the relationship

χ(XD,(1,2))

χ(XD)
=

{
1 if 2 6 | f , and
3/2 if 2 | f.

This leads to
23 geteulercharXP(D) = { \\ calculate chi(X_D,(1,2))
24 local(DD,f,z);
25 if (D%8==5, return(0));
26 z=coredisc(D,1);
27 DD=z[1]; f=z[2]; \\ split into fundamental discriminant and square
28 if (f%2!=0, return(geteulercharX(D)), return(3/2*geteulercharX(D)));
29 }

Luckily, the Euler characteristic of the “normal” Hilbert modular surface XD is
known. Siegel and, later, Cohen gave explicit expressions for it in terms of zeta
functions and divisor sums, see [Bai07, Thm 2.12, 2.15 and 2.16] for a detailed
discussion. First, we must calculate certain divisor sums

H(D) = −1

5

∑
e≡D(2)

σ1

(
D − e2

4

)
.

Here:
30 H (D) = { \\ calculate H(2,D)
31 local(HH,e);
32 HH=0;
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33 forstep (e=D%2,sqrt(D),2,
34 if (e==0,
35 HH+=mysigma((D-e^2)/4),
36 HH+=2*mysigma((D-e^2)/4));
37 );
38 HH/=-5;
39 if (issquare(D),HH-=D/10);
40 return(HH);
41 }

Note that we slightly modified PARI’s sigma function to accept 0:
42 mysigma (n) = {\\ return sigma_1 for >0, -1/24 for 0
43 if (n==0, return (-1/24));
44 return(sigma(n));
45 }

By exploiting the fact that ζD, the Dedekind zeta function of Q(
√
D) satisfies

ζD(−1) = − 1

12
H(D),

we can finally calculate the Euler characteristic:
46 geteulercharX(D) = { \\ calculate chi(X_D) for D
47 local (DD,f,z,chi);
48 z=coredisc(D,1);
49 DD=z[1]; f=z[2]; \\ split into fundamental discriminant and square
50 chi=sumdiv(f,r,kronecker(DD,r)*moebius(r)/r^2);
51 chi*=-H(DD)/12;
52 chi*=2*f^3;
53 return(chi);
54 }

3.3. Orbifold points. By [TZ15, Thm 5.1 and 5.6], orbifold points occuring on
WD are necessarily of order 2, 3, 4 or 6. Moreover, W8 is the only curve with a
point of order 4 and W12 is the only curve with a point of order 6. Points of order
2 occur only for even D and for D > 12, their number is equal to the cardinality of

H2(D) = {(a, b, c) ∈ Z3 : a2 + b2 + c2 = D, gcd(a, b, c, f) = 1}

divided by 24, where f is the conductor of D.
This is implemented by a simple combination of loops. Note that, as D ≡ 0

mod 4, any valid a, b, c must all be even. By definition of the conductor, any other
common divisor of a, b, c will also divide f and, by reducing the equation mod 16, it
is not difficult to see that the case gcd(a, b, c, f) = 2 does not occur. Therefore, the
condition gcd(a, b, c) = 2 is indeed equivalent to the “proper” condition in [TZ15].
55 countpointsC4(D) = {\\ count C4 orbifold points, D non-square
56 local(c,C);
57 C=0;
58 if(D%4==1,return(0)); \\ no endomorphism (sqrt(D)+1)/2
59 for (a=0,sqrt(D),
60 for (b=0,sqrt(D),
61 if(issquare(D-a^2-b^2),
62 c=sqrtint(D-a^2-b^2);
63 if(mygcd(a,b,c)==2, \\ 0 mod 4, otherwise not maximal!
64 if((a==0 || b==0 || c==0),C+=4,C+=8);
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65 );
66 );
67 );
68 );
69 return(C/24);
70 }

To simplify notation, we expanded PARI’s gcd function to accept three variables:

71 mygcd(a,b,c) = {\\ gcd for three values ....
72 return(gcd(a,gcd(b,c)));
73 }

Next, we count points of order 3. Their number may be determined, for D 6= 12 by
the cardinality of

H3(D) =

(a, b, c) ∈ Z3 :
2a2 − 3b2 − c2 = 2D , gcd(a, b, c, f) = 1 ,

−3
√
D < a < −

√
D , c < b ≤ 0 ,

(4a− 3b− 3c < 0) ∨ (4a− 3b− 3c = 0 ∧ c < 3b)

 ,

where, again, f is the conductor of D.
This is implemented by first looping over a (note that we replace a, b, and c

by −a, −b, and −c so that all integers are positive) and distinguishing the case
b = 0. In this case, as D is not a square, c is never 0 and, using the bound on
a, it is not difficult to see that 3c − 4a < 0. For b 6= 0, these conditions must
be checked separately. Observe that the first condition implies that b is bounded
by 1

3

√
6
√
a2 −D. Note also that the gcd condition prevents 3b = c in the case

4a− 3b− 3c = 0.

74 countpoints(D) = {\\ count C6 orbifold points, D non-square
75 local(z,c,p,f);
76 p=0;
77 z=sqrtint(D)+1;
78 f=coredisc(D,1)[2]; \\ f^2*D_0=D
79 for (a=z,3*sqrt(D),
80 if(issquare(2*(a^2-D)),
81 c=sqrtint(2*(a^2-D));
82 if(mygcd(a,c,f)==1, \\proper
83 p+=1;
84 );
85 );
86 for(b=1,sqrt(6)*sqrt(a^2-D)/3,
87 if(b>=sqrt(2*a^2-3*b^2-2*D),next());
88 if(-4*a+3*b+3*sqrt(2*a^2-3*b^2-2*D)>0,next());
89 if(issquare(2*a^2-3*b^2-2*D),
90 c=sqrtint(2*a^2-3*b^2-2*D);
91 if(gcd(mygcd(a,b,c),f)==1, \\ proper
92 if(! (-4*a+3*b+3*c==0 && 3*b>c), p+=1);
93 );
94 );
95 );
96 );
97 return(p);
98 }
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3.4. Orbifold signature. We combine all this data to give the orbifold signature,
using the formula

2− 2g = χ+ C +
∑
d

hd

(
1− 1

d

)
,

where g denotes the genus ofWD, χ the Euler characteristic, C the number of cusps
and hd the number of orbifold points of order d.

Note that whenever WD has two components (i.e. D ≡ 1 mod 8, cf. [LN14]),
these two components are in fact homeomorphic (cf. [Zac15]), so we may simply
divide all values by 2.
99 getsignature(D) = {

100 local(chi,gg,g,c,P2,p2,p3,p6,G);
101 p2=0; p3=0; p4=0; p6=0;
102 if(D%8==1,c=cusps(D)/2,c=cusps(D));
103 chi=geteulercharWP(D);
104 if(D==12,p6=1,p3=countpoints(D));
105 if(D==12,p2=0,if(D==8,p4=1,p2=countpointsC4(D)));
106 if(D%8==1,p3/=2); \\ two components
107 G=(2-chi-c-(1/2*p2+2/3*p3+3/4*p4+5/6*p6))/2;
108 return([chi,c,G,p2,p3,p4,p6]);
109 }

Finally, we provide a macro printing a table of the orbifold signature of WD for D
up to n (default n = 100).
110 printsignature(n=100) = {
111 local(sig);
112 print("D\tD(8)\tChi\tcusps\tg\tp2\tp3\tp4\tp6");
113 forstep(D=5,n,[3,1],
114 if(issquare(D),next()); \\ D non-square
115 if(D%8==5,next()); \\ empty
116 sig=getsignature(D);
117 print1(D,"\t",D%8);
118 for(i=1,7,print1("\t",sig[i]));
119 print1("\n");
120 );
121 }
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