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Flat Surfaces & Teichmüller Curves
A flat surface is a pair (X,ω) where X is a compact
Riemann surface or equivalently a smooth projective irre-
ducible complex curve of genus g and ω is a holomorphic
differential, i.e. a section of the canonical bundle, on X.
Integrating ω endows X (outside of the zeros of ω) with
an atlas where all chart changes are (locally) translations.
We may therefore picture (X,ω) as a polygon in the plane,
whose sides are identified by translations.
A flat surface admits a natural SL2(R) action by affine
shearing of the flat structure. Consider now ΩMg, the
moduli space of flat surfaces, which admits a natu-
ral projection π : ΩMg → Mg to the moduli space of
genus g curves. In the rare case that the projection
π(SL2(R)(X,ω)) is a curve in Mg, we call this image a
Teichmüller curve (generated by (X,ω)).
The situation can be summarised by the following commu-
tative diagram (note that SO(2) acts holomorphically):

SL2(R) ΩMg

H ∼= SO(2)\ SL2(R) PΩMg

C = H/Γ Mg

F

f

π

where the map F is given by the action A 7→ A · (X,ω).
Note that a Teichmüller curve is never compact, but always
admits a finite number of cusps.

Main Result
Theorem ([TTZ15]). For non-square discriminant D > 12,
the Prym-Teichmüller curves WD(4) for genus 3 have orbi-
fold points of order 2 and 3. More precisely:
• for odd D, there are no points of order 2, otherwise

e2(D) = #{a, b, c ∈ Z : a2 + b2 + c2 = D}/24;

• the number of orbifold points of order 3 is

e3(D) = #{a, b, c ∈ Z : 2a2 − 3b2 − c2 = 2D, (∗)},
where condition (∗) restricts the set to those a, b, c ∈ Z
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• W8(4) has one point of order 3 and one point of order 4;
• W12(4) has a single orbifold point of order 12.
Moreover, let D = f2

0D0 where D0 is a fundamental dis-
crimant. Then the above sets are subject to the condition
gcd(a, b, c, f0) = 1.

Remark. By [LN14] and [Möl14], WD(4) is empty for
D ≡ 5 mod 8. Moreover, by [LN14], WD(4) has two compo-
nents iff D ≡ 1 mod 8.

Theorem ([Zac15]). If D ≡ 1 mod 8 and D is not a square,
the two components of WD(4) are homeomorphic.

Theorem ([TTZ16]). For non-square discriminant D > 12,
the Prym-Teichmüller curves WD(6) for genus 4 have orbi-
fold points of order 2 and 3. More precisely:
• for odd D, there are no points of order 2, otherwise

e2(D) =

{
h(−D) + h(−D

4 ), if D ≡ 12 mod 16,
h(−D), if D ≡ 0, 4, 8 mod 16,

where h(−D) is the class number of O−D;
• the number of orbifold points of order 3 is

e3(D) = #{a, i, j ∈ Z : a2 + 3j2 + (2i− j)2 = D}/12,

again subject to the condition that gcd(a, i, j) = 1;
• W5(6) has one point of order 3 and one point of order 5;
• W8(6) has one point of order 2 and one point of order 3;
• W12(6) has one point of order 2 and one point of order 6.

Remark. The cusps and connected components of WD(4)
and WD(6) are described in [LN14], while the Euler charac-
teristics are computed in [Möl14]. Thus, this completes the
topological classification of the Prym-Teichmüller curves.

Remark. For the Weierstraß curves in genus 2, the cusps
were described by McMullen [McM05], the orbifold points by
Mukamel [Muk14], and the Euler characteristic was com-
puted by Bainbridge [Bai07].
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g = 3: Choosing the side a as a complex parameter yields differentials
with a Z/6 and Z/4 action, respectively, and a single 4-fold zero.
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g = 4: Choosing the side d as a complex parameter yields differentials
with a Z/6 and Z/4 action, respectively, and a single 6-fold zero.

Idea of Proof
Let (X,ω) be an orbifold point of order 2d. Then X admits
a holomorphic automorphism σ of order 2d that fixes the
(single) zero of ω and descends to X/ρ.
Idea: study families of curves with such an automorphism
admitting an eigenform with a single zero and check when
the Prym part of such a curve admits real multiplication,
i.e. count intersections with the Teichmüller curve.
For any such family X , consider therefore the Prym-
Torelli image PT(X ), i.e. the family of abelian surfaces
with fibres P(Xt, σ

d). We must check these fibres for real
multiplication. A sketch of the situation inM3:

X
X2

Xζ6 ∼= Y1/2

Y

WD

PT

P(X )

P(Y)

P(WD)

More precisely, we obtain:
• For g(X) = 3, we have g(X/ρ) = 1, hence σ is of or-

der d = 2, 3, 4 or 6 and g(X/σ) = 0. We thus obtain
families of cyclic covers of P1 and in these cases the σ-
eigenspace decomposition of Ω(X) is understood. In fact,
all orders occur (d = 4 and 6 give 0-dimensional families).

• For g(X) = 4, we have g(X/ρ) = 1, hence σ is of order
d = 2, 3, 4, 5, 6, 8 or 10. Using Riemann-Hurwitz, one can
show that only d = 2, 3, 5 and 6 occur. The case d = 2
is special, because in this case the quotient is an elliptic
curve. But this family can be constructed as a fibre-
product of the quotient elliptic curves. Again, d = 5
and 6 give 0-dimensional families.

As the curves have many automorphisms, one can use
Bolza’s method and other tricks to calculate the endo-
morphism rings of the Prym part explicitly.
The following positive-dimensional families occur:

g(Xt) d dimX dim PT(X ) Aut(Xt) End(P(Xt, σ
d))

3 2 1 0 G order in M2(Q[i])

3 3 1 1 Z/6 order in
(

2,−3
Q
)

4 2 2 (1) 1 D8 M2(End(Et))
4 3 1 0 Z/6× Z/2 M2(Z[ζ6])

Here, G = Z/2n (Z/2×Z/4), Et : y2 = x(x−1)(x− t), and(
2,−3
Q
)
denotes the Quaternion Algebra over Q.

Remark. Note that g = 3 = d gives the Shimura curve
uniformised by ∆(2, 6, 6), explaining the hyperbolic triangle
in the theorem.
Remark. Observe that for g = 4, d = 2, the D8-family is
2-dimensional. However, restricting to curves that admit an
eigendifferential with a sixfold zero reduces the dimension.

Orbifold Points
An orbifold point of an orbifold H/Γ is the projection
of a fixed point of the action of Γ, i.e. a point s ∈ H
such that PStabΓ(s) ≤ PSL2(R) is non-trivial. We call
the cardinality of PStabΓ(s) the (orbifold) order of s.
For a Teichmüller curve, this can be expressed in terms of
the flat structure:

Lemma. Let C = H/Γ be a Teichmüller curve. Then
(X,ω) corresponds to an orbifold point on C if and only if
X admits a holomorphic automorphism σ such that

σ∗ω = λω with λ ∈ C∗ \ {±1}.

For a curve C, denote by χ the orbifold Euler Charac-
teristic, by h0 the number of connected components, by
C the number of cusps and by ed the number of points of
order d. Then this determines the genus g:

2h0 − 2g = χ+ C +
∑
d

ed

(
1− 1

d

)
.

McMullen’s Prym Construction
Not many infinite families of (primitive) Teichmüller
curves are known. For low genus, the following construc-
tion by McMullen gives a rich set of examples.
Let D be a (real) discriminant, i.e. D > 0 is not a
square and D ≡ 0 or 1 mod 4 and denote by OD the unique
quadratic order of discriminant D in Q(

√
D).

Let A = C2/Λ be a (polarised) abelian surface. Then we
say that A admits real multiplication by OD if there is
an embedding ι : OD ↪→ End(A) that is self-adjoint with
respect to the polarisation of A. Moreover, we say that
real multiplication is proper if it cannot be extended to
any larger order in Q(

√
D).

Now, let (X,ω) be a flat surface admitting a holomorphic
prym involution ρ : X → X, such that the quotient X/ρ
has genus 2. Then Ω(X), the space of differentials on X,
splits into ρ-eigen spaces, Ω(X)±. We call

P(X, ρ) = ker(Jac(X)→ Jac(X/ρ)) =
(Ω(X)∗)−

H1(X,Z)−

the associated Prym variety.

Theorem ([McM03;McM06]). Let X be of genus 2, 3 or 4
admitting a Prym involution ρ and differential ω such that
• ω has only one zero,
• ρ∗ω = −ω, and
• P(X, ρ) admits real multiplication by some OD with ω
as an eigenform.

Then (X,ω) generates a Teichmüller curve WD(2g − 2).

The curvesWD(2g−2) are known as Prym-Teichmüller
or Prym-Weierstraß curves and are non-empty for every
discriminant D unless g = 3 and D ≡ 5 mod 8.
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