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7

8

E-mail: dolaptchiev@iau.uni-frankfurt.de9

Generated using v4.3.2 of the AMS LATEX template 1



ABSTRACT

Motions on planetary spatial scales in the atmosphere are governed by the

planetary geostrophic equations. However, not much attention has been paid

to the interaction between the baroclinic and barotropic flow within the plan-

etary geostrophic scaling. This is the focus of the present study by utiliz-

ing planetary geostrophic equations for a Boussinesq fluid supplemented by

a novel evolution equation for the barotropic flow. The latter is effected by

meridional momentum flux due to baroclinic flow and drag by the surface

wind. The barotropic wind on the other hand affects the baroclinic flow

through buoyancy advection. By relaxing towards a prescribed buoyancy pro-

file the model produces realistic major features of the zonally symmetric wind

and temperature fields. We show that there is considerable cancelation be-

tween the barotropic and the baroclinic surface zonal mean zonal wind. The

linear and nonlinear model response to steady diabatic zonally asymmetric

forcing is investigated. The arising stationary waves are interpreted in terms

of analytical solutions. We also study the problem of baroclinic instability on

the sphere within the present model.
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1. Introduction26

Using scale considerations Burger (1958) suggested that for atmospheric motions on planetary27

scales, i.e., scales comparable with the radius of the Earth, the vorticity is quasi-stationary and the28

vorticity equation takes the form of a balance between the divergence of the horizontal wind and29

the advection of planetary vorticity. Later Phillips (1963) proposed for the description of plan-30

etary scale dynamics the planetary geostrophic equations (PGE), or geostrophic motions of type31

two. In the PGE the pressure is hydrostatically balanced and the horizontal wind is in geostrophic32

balance, where the full variations of the Coriolis parameter f are considered. The vertical velocity33

in the anelastic approximation of the PGE results solely from variations of f and there is only one34

prognostic equation, namely for the temperature. Because of their reduced complexity the PGE35

are part of the atmospheric module in some Earth system models of intermediate complexity (e.g.36

Petoukhov et al. 2000; Totz et al. 2018), allowing numerically efficient long-term climate simula-37

tions (for examples see Ganopolski and Rahmstorf (2001); Claussen et al. (2002); Petoukhov et al.38

(2005)).39

Only recently, the range of validity of the PGE has been revised using currently available re-40

analysis data (Egger and Hoinka 2017) and simplified GCM simulations (Dolaptchiev and Klein41

2013). The latter authors found from spectrally decomposed fields, that the horizontal fluxes of42

relative and planetary vorticity are nearly divergence free on the planetary scale. Egger and Hoinka43

(2017) showed that the vertical velocity from the PGE captures the stationary features in the tropo-44

spheric zonal perturbations. However, the standard deviation of the vertical velocity was consider-45

ably underestimated, due to the missing synoptic scale dynamics in the PGE. The important effect46

of the synoptic eddies has been incorporated in the PGE using multiple scale asymptotics (Ped-47
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losky 1984; Dolaptchiev and Klein 2013; Boljka and Shepherd 2018) and statistical-dynamical48

approach (Petoukhov et al. 2003; Coumou et al. 2011; Totz et al. 2018).49

Despite the popularity of the PGE not much attention has been paid to the evolution of the50

barotropic flow under the planetary geostrophic scaling. As stated by Bresch et al. (2006) the PGE51

do not represent a closed set of equations and an additional evolution equation for the barotropic52

pressure has been proposed there to close the system. Using asymptotic expansion Dolaptchiev53

and Klein (2009) have generalized the closure to the case of fully compressible flow with variable54

Coriolis parameter. The derived closure has the form of prognostic equation for the barotropic vor-55

ticity and is a dynamical alternative to other diagnostic closures (e.g. Petoukhov et al. 2000). This56

study is a first attempt to address the effect of the closure on the planetary geostrophic dynamics57

by utilizing numerical simulations of a Boussinesq fluid on the sphere.58

In addition, in the present study the linear and nonlinear response of the PGE model to steady59

diabatic forcing is considered. The arising stationary waves are interpreted in terms of analytical60

solutions. We also study the problem of baroclinic instability within the PGE. This was first done61

by Wiin-Nielsen (1961), but to our knowledge the problem on the sphere has not been considered62

yet. The latter is in contrast to quasi-geostrophic or primitive equations dynamics, where a large63

body of theoretical work exists on the topic (e.g. Hollingsworth 1975; Simmons and Hoskins 1976;64

Baines and Frederiksen 1978).65

This paper is organized as follows: In Sec. 2 an asymptotic derivation of the PGE and the66

equation for the barotropic dynamics is presented. The representation of diabatic and frictional67

effects as well as a summary of the nonlinear and linear model equations can be found in Sec. 3.68

The nonlinear model simulations are discussed in Sec. 4 for different model configurations. In69

Sec. 5 analytical wave solutions are presented and compared with the linear/nonlinear numerical70

4



simulations, also the problem of baroclinic instability is studied there. Concluding discussions can71

be found in Sec. 6.72

2. Asymptotic derivation73

Using asymptotic analysis the PGE were derived in Dolaptchiev and Klein (2009) from the full74

compressible fluid flow equations, here for the first time the evolution equation for the barotropic75

pressure is studied within the PGE. In order to simplify the analysis we consider as a starting point76

the hydrostatic Boussinesq equations. These equations are isomorphic to the primitive equations in77

pressure coordinates (Vallis 2006). Although the Boussinesq approximation is limited to vertical78

scales smaller than the scale height of the atmosphere, e.g. see the recent work by Egger and79

Hoinka (2018) on the validity of the incompressibility assumption, the Boussinesq equations are80

widely used for studying the large-scale circulation (e.g. Held and Hou 1980; Vallis 2006). The81

nondimensional governing equations for a Boussinesq fluid on the sphere are82

∂~u
∂ t

+~u ·∇~u+w
∂~u
∂ z

+
1
ε
~f ×~u =−1

ε
∇Φ+~Su , (1)

∂Φ

∂ z
= b , (2)

∇ ·~u+ ∂w
∂ z

= 0 , (3)

∂b
∂ t

+~u ·∇b+w
∂b
∂ z

= Sb , (4)

where~u = (u,v) denotes the horizontal velocity vector, w vertical velocity, Φ pressure fluctuations83

divided by reference density, b buoyancy, ~f =~er f with the Coriolis parameter f and the radial84

unit vector ~er. The source terms due to friction and diabatic effects are denoted by ~Su and Sb,85

respectively. The vertical coordinate is indicated by z and in the following λ is longitude and φ86

latitude. The horizontal Nabla operator is defined as ∇ = ( 1
acosφ

∂

∂λ
, 1

a
∂

∂φ
) and for the horizontal87

divergence of ~u we have ∇ ·~u = 1
acosφ

( ∂u
∂λ

+ ∂ cosφv
∂φ

), where a is the radius of the Earth. For88
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the nondimensionalization of the variables a reference horizontal velocity of U = 10ms−1 and a89

planetary horizontal length scale of L = 107 m is used. With the above scales the Rossby number90

ε = U/ f0L, where f0 denotes the Coriolis parameter at 45◦ N, takes a value of about 10−2. The91

reference value for the vertical velocity W is set to the standard value W = HU/L, where H =92

104 m is the scale height of the atmosphere. The normalized pressure Φ and the buoyancy are93

nondimensionalized using P = LU f0 and B = P/H, respectively, in order to assure geostrophic94

and hydrostatic balance to leading order. The potential temperature θ can be computed from95

buoyancy using b = g(θ − θ0)/θ0, where g is gravity acceleration and θ0 a constant reference96

potential temperature. Note that the small parameter ε and the characteristic scales used in this97

paper differ from the ones in Dolaptchiev and Klein (2009, 2013). In the latter studies an unified98

asymptotic approach is utilized, where the characteristic quantities for nondimensionalization are99

valid for a variety of flow regimes. To keep the present asymptotic analysis concise, here we start100

with characteristic scales, as described above, appropriate for planetary scale motions.101

We assume that each dependent variable from (1)- (4) can be represented as an asymptotic series102

in terms of ε103

U (λ ,φ ,z, t;ε) =
∞

∑
i=0

ε
iU (i)(λ ,φ ,z, t) , (5)

where U = (u,v,w,b,Φ,Sb,~Su). Substituting the ansatz above in (1)- (4), we obtain as leading104

order nontrivial asymptotic equations the planetary geostrophic equations105

~f ×~u =−∇Φ , (6)

∂Φ

∂ z
= b , (7)

∇ ·~u+ ∂w
∂ z

= 0 , (8)

∂b
∂ t

+~u ·∇b+w
∂b
∂ z

= Sb , (9)
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where the zero superscript in all dependent variables was dropped. Next, the flow is separated into106

barotropic and baroclinic part. E.g. for the horizontal wind we write107

~u = 〈~u〉z +~u′ , (10)

where the baroclinic part is marked by a prime and the barotropic one is defined as108

〈~u〉z =
1
za

za∫
0

dz~u , (11)

with za denoting the height of the atmosphere. Averaging vertically (8) and applying rigid lid109

boundary conditions one obtains110

∇ · 〈~u〉z = 0 . (12)

By taking the curl of (6), one obtains vanishing divergence of the planetary vorticity flux111

∇ · f~u = 0 , (13)

which reads for the barotropic component112

∇ · f 〈~u〉z = 0 . (14)

From (12) and (14) it follows that 〈v〉z vanishes and 〈u〉z does not depend on longitude113

〈u〉z = 〈u〉z (φ , t) , (15)

〈v〉z = 0 . (16)

From (6), (8) and (10) the baroclinic wind satisfies114

~u′ =
~er

f
×∇Φ

′ , (17)

w′ = w =−
z∫

0

∇ ·~u′ dz , (18)
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where in the last equation w = 0 at z = 0 was used. For a given buoyancy field the baroclinic part115

of Φ can be found by integrating the hydrostatic balance (7)116

Φ
′(λ ,φ ,z, t) =

z∫
0

b(λ ,φ ,η , t) dη− 1
za

za∫
0

dz
z∫

0

b(λ ,φ ,η , t) dη . (19)

Thus, (9) gives a prediction of b from which ~u′ and w can be determined. However, in order117

to determine the evolution of the vertically averaged zonal wind field 〈u〉z, we have to consider118

the next order asymptotic equations. From (1) and (3) we obtain for the O(1) zonal momentum119

equation and the O(ε) continuity equation120

∂u
∂ t

+~u ·∇u+w
∂

∂ z
u− uv

a
tanφ − f v(1) =− 1

acosφ

∂

∂λ
Φ

(1)+S(0)u , (20)

∇ ·~u(1)+ ∂w(1)

∂ z
= 0 . (21)

Averaging (21) over λ and z and applying vanishing vertical velocity at the top and at the bottom121

yields122 〈
v(1)
〉

z,λ
= 0 . (22)

Here the vertical and zonal mean of v(1) is defined as123 〈
v(1)
〉

z,λ
=

1
2πza

za∫
0

dz
2π∫
0

dλ v(1) . (23)

By applying− 1
acosφ

∂ cosφ

∂φ
(20), averaging the result zonally and vertically and making use of (22),124

we derive a vorticity equation for the barotropic component of the flow125

∂

∂ t
〈ζ 〉z,λ +∇ · 〈~uζ 〉z,λ +~er ·∇×

〈
w

∂

∂ z
~u
〉

z,λ
=
〈
Sζ

〉
z,λ , (24)

where the vorticity is defined as ζ =~er ·∇×~u and the source term on the right-hand-side is given126

by Sζ = ~er ·∇×~S(0)u . Expressing all nonlinear terms on the left-hand-side of (24) in terms of127

meridional momentum flux yields128

∂

∂ t
〈ζ 〉z,λ −

1
acosφ

∂

∂φ

1
acosφ

∂

∂φ
cos2

φ
〈
u′v′
〉

z,λ =
〈
Sζ

〉
λ ,z . (25)
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From the last equation one can determine the evolution of 〈u〉z: due to (12) one can introduce a129

streamfunction Ψ such that130

〈~u〉z =~er×∇Ψ , (26)

〈ζ 〉z,λ = ∆Ψ =
1

acosφ

∂

∂φ

(
cosφ

a
∂Ψ

∂φ

)
. (27)

In (27) ∆ = ∇2 denotes the horizontal Laplace operator in spherical coordinates and Ψ does not131

depend on λ due to (15).132

Using asymptotic analysis it was shown by Boljka and Shepherd (2018) that there is a connection133

between the planetary scale barotropic flow equation and the preservation of angular momentum.134

An alternative to (25) can be derived by multiplying (20) with acosφ and averaging again zonally135

and vertically in order to obtain an equation for the vertical mean of the axial angular momentum136

M = acosφu137

∂

∂ t
〈M〉z,λ +

1
acosφ

∂

∂φ
cosφ

〈
u′M′

〉
z,λ = 〈Sm〉z,λ , (28)

where Sm = acosφS(0)u . In the last equation the angular momentum M lacks the planetary com-138

ponent (Ωa2 cos2 φ ), since the zonally and vertically averaged transport of planetary angular mo-139

mentum by v(1) from (20) vanishes anyway due to (22).140

3. Model description141

In this section we discuss the parameterization of diabatic and frictional effects, for that purpose142

the redimensionalized variables are considered.143
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a. Adiabatic processes144

The adiabatic processes described by the term Sb in (9) are modeled with simple relaxation145

ansatz and diffusion146

Sb =
beq−b

τ
+κb∆b , (29)

where τ is a relaxation time scale and κb a diffusion constant. The prescribed buoyancy profile beq147

is separated into zonally symmetric part and deviations from it148

beq =
〈
beq
〉

λ
+b∗eq . (30)

Here
〈
beq
〉

λ
accounts for the meridional temperature differences in a radiative equilibrium atmo-149

sphere. We utilize a relaxation profile of the form (Held and Hou 1980)150 〈
beq
〉

λ
=

g
θ0

{
−2

3
δhP0

2 (φ)+δv

(
z
za
− 1

2

)}
, (31)

where Pm
n (λ ,φ) denotes the associated Legendre polynomial, corresponding to zonal wavenumber151

m and total wavenumber n. The constants δh = 100 K and δv = 40 K are measure for the meridional152

and vertical temperature gradient, respectively 1. To the buoyancy profile
〈
beq
〉

λ
corresponds a153

zonal jet in thermal-wind-balance with the form154 〈
ueq
〉

λ
=− 1

f a
∂

∂φ

∫ z

0

〈
beq
〉

λ
dz , (32)

if zero surface wind
〈
ueq(z = 0)

〉
λ

is assumed.155

The zonally asymmetric part b∗eq from (30) models the differential heating of the atmosphere due156

to the land-see thermal contrast. Here we choose an idealized representation of this effect by pre-157

scribing a buoyancy anomaly which is the sum of two spherical harmonics with zonal wavenumber158

two159

b∗eq = δp
g
θ

2
7
(
P2

3 (φ)+P2
5 (φ)

)
cos(2λ )exp(−αz) . (33)

1Eq. (31) is similar to a Held-Suarez type relaxation profile if we set δh = 60 K and δv = 10 K.
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The magnitude of the zonally asymmetric perturbation is set to δp = 5 K. b∗eq has its maximum at160

the surface at around 50◦ latitude and decays in the vertical with exponential decay length scale161

α−1 = 1 km. The relaxation profile from (31), (33) is shown in Fig. 1. Note that this profile is162

characterized by super-rotation at the equator.163

b. Frictional effects164

The frictional effects on the baroclinic flow are incorporated by including turbulent eddy diffu-165

sion in the momentum equation166

~f ×~u′ =−∇Φ
′+

∂

∂ z

(
K

∂~u′

∂ z

)
, (34)

where K is an eddy diffusivity constant. Without frictional effects the baroclinic wind from (17)167

will diverge at the equator, if the gradient of Φ′ does not vanish faster than the Coriolis parameter168

f as φ → 0. Thus, the inclusion of diffusion acts as regularization for the PGE. We have to stress,169

that those frictional effects are not accounted for in the present asymptotic derivation. However,170

when considering the equatorial region with small f , it is natural to expect that higher order effects171

(such as eddy dissipation) will modify the geostrophic balance. Such effects are often taken into172

account in studies on the tropical circulation by adding Rayleigh drag to the geostrophic balance173

(Matsuno 1966; Gill 1980) or diffusion (Schneider and Lindzen 1977). The value of K used in our174

model was set uniformly to 5 m2s−1, a value used in other idealized studies of the atmospheric175

circulation, e.g., Held and Hou (1980).176

The baroclinic wind stress at the surface is parameterized using the drag coefficient CD177

K
∂~u′

∂ z
=CD~u′ at z = 0 . (35)

With the inclusion of vertical diffusion in (34) even if 〈Φ′〉z = 0, in general 〈~u′〉z 6= 0. Because of178

this, the condition 〈~u′〉z = 0 is imposed in the model by setting the baroclinic horizontal velocity179
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at the upper model level zs to180

~u′(zs) =−
1

∆zs

zt∫
0

dz~u′(z) . (36)

In (36) ∆zs is the thickness of the upper layer, we refer to this layer as the stratosphere (however181

note that in (31) no separate assumptions on the stratification within this layer are made), and zt182

marks the troposphere height. Similar boundary condition is used in other PGE based models, e.g.183

see Petoukhov et al. (2000) and eq. (15), (22) there. Eq. (36) is a considerable limitation of the184

dynamics at zs, but as discussed in Sec. 4d this has no pronounced effect on the major features of185

the tropospheric dynamics.186

Consistent with the eddy diffusion closure (34) and (35) , the frictional effects in the vorticity187

source term
〈
Sζ

〉
z,λ from (25) are represented by Ekman friction188

〈
Sζ

〉
z,λ =−CD

za
〈ζ (0)〉

λ
, (37)

where ζ (0) denotes ζ at the lowest model level.189

c. Summary of the model equations and numerical implementation190

The dimensional governing equations of the planetary geostrophic model take the form of two191

prognostic equations for the buoyancy and barotropic vorticity192

∂b
∂ t

+~u ·∇b+w
∂b
∂ z

=
beq−b

τ
+κb∆b , (38)

∂

∂ t
〈ζ 〉z,λ −

1
acosφ

∂

∂φ

1
acosφ

∂

∂φ
cos2

φ
〈
u′v′
〉

z,λ =−CD

za
〈ζ (0)〉z,λ , (39)
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and diagnostic relations for Φ′ and baroclinic/barotropic wind components193

Φ
′ =

z∫
0

b dη− 1
za

za∫
0

dz
z∫

0

b dη . (40)

~f ×~u′ =−∇Φ
′+

∂

∂ z

(
K

∂~u′

∂ z

)
, (41)

w =−
z∫

0

∇ ·~u′ dz , (42)

〈u〉z =−
1
a

∂

∂φ
∆
−1 〈ζ 〉z,λ . (43)

In (39)-(42) the primed variables indicate deviations from the vertical, as defined in (10) and (11).194

We use (unless otherwise stated) horizontal spectral discretization with a triangular truncation of195

T21 and five equidistant layers in the vertical with layer thickness of ∆z = 2 km. The variables196

b,ζ and ~u are defined at the centers of the layers and w at the interfaces. Centered differences are197

used for the vertical discretization. As initial condition we set b to the relaxation profile
〈
beq
〉

λ
198

with superimposed small zonal perturbation (33) with δp = 1 K and α = 0. The initial barotropic199

wind 〈u〉z is determined from the vertical integral of (32). The model parameters are summarized200

in table 1. We integrate the model for 104 days, after 300 days a steady state is reached and we use201

for the analysis data from this state only.202

d. Linear model203

We linearize (38) around a zonally symmetric stationary basic state given by204

b = b̄(φ ,z) , (44)

u = ū(φ ,z) , (45)

v = w = 0 , (46)
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and obtain205

∂b∗

∂ t
+

ū
acosφ

∂b∗

∂λ
+

v∗

a
∂ b̄
∂φ

+w∗
∂ b̄
∂ z

=
b∗eq−b∗

τ
+κb∆b∗ , (47)

where an asterisk denotes the perturbations from the basic state. In (47) we neglected the tendency206

of the basic state due to frictional and diabatic source terms. Note that without source terms the207

zonally symmetric basic state from (44)-(46) is a stationary solution of the model equations. If208

source terms are omitted in the linearization of the barotropic vorticity equation, the tendency of209

〈ζ ∗〉z,λ disappears as well due to (46). In this case (47) describes the complete linear dynamics210

of the system. We look for normal mode solutions of the horizontally and vertically discretized211

version of (47). All fields are represented as a truncated series of spherical harmonics, e.g. for b∗212

at vertical level zl this series reads213

b∗(λ ,φ ,zl, t) =
T

∑
k=−T

T

∑
n=|k|

bk
n(zl)Pk

n (φ)exp{i(kλ −ωt)} ,

with T denoting the spectral truncation, ω frequency and bk
n(zl) the spectral coefficients. Thus,214

(47) is written as system of linear equations215

−iω~b = L~b+
~beq

τ
, (48)

where the vector ~b has as entries the coefficients bk
n(zl), L is a matrix dependent on the basic216

state and~beq describes the inhomogeneity of the equation. We refer to (48) as the linear model217

associated with the PGE model from Sec. 3c.218

4. Numerical simulations219

a. Standard setup220

In the following, we refer to the setup of the source terms, described in the previous section, as221

standard setup. The resulting stationary zonally averaged circulation in the model shows realistic222

14



key features of the temperature and wind fields as displayed in Fig. 2a. The westerly jets are in223

thermal wind balance and have a jet maximum of 40 ms−1 at around 30◦, at the model top. At the224

surface weak easterlies in the tropics and westerlies in mid-latitudes are visible. The baroclinic225

wind u′ (not shown) is easterly in the lower atmosphere, westerly in the upper atmosphere and has a226

linear vertical shear. In order to study the meridional overturning circulation we introduce a stream227

function ψ satisfying 〈v〉
λ
=− 1

cosφ

∂ψ

∂ z ,〈w〉λ = 1
acosφ

∂ψ

∂φ
. The Hadley cell depicted in Fig. 2b is too228

broad and extends into high-latitudes. Note, that due to (41) the meridional circulation is explained229

entirely in terms of viscous axisymmetric models (e.g. Schneider and Lindzen 1977) and misses230

the important effect by the advection of relative angular momentum (see Held and Hou (1980) for231

a discussion).232

The stationary zonal anomaly of the temperature field in the lower and upper atmosphere is dis-233

played in Fig. 3. Each individual extremum can be associated with an extremum in the forcing234

and there is no generation of wave trains as in the quasi-geostrophic dynamics. There is nearly235

no vertical tilt of the disturbances but there is a phase shift of about 30◦ to the east with respect236

to the forcing. The stationary wave amplitude is small and decays rapidly with height. The wave237

amplitude is considerably underestimated when comparing with quasi-stationary waves in the at-238

mosphere. This discrepancy might result from the Boussinesq approximation and from the vertical239

profile of the forcing considered here.240

The time averaged meridional momentum transport is analyzed in Fig. 4a. For that purpose241

the zonally and vertically averaged momentum flux 〈u′v′〉z,λ , entering the barotropic equation242

(39), is separated into a contribution from the zonally symmetric circulation (mean meridional243

overturning circulation) and from zonally asymmetric part, defined as eddies. Fig. 4a shows that244

the meridional momentum transport by the eddies is not significant. Whereas the magnitude of245
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the momentum flux by the zonally symmetric circulation is realistic, the one by the eddies is246

considerably underestimated when comparing with observations (Peixoto and Oort 1992).247

Next, we consider the budget in the barotropic momentum equation, which determines the zon-248

ally averaged surface zonal wind. By dividing (28) by acosφ and substituting the source term249

Sm corresponding to (37), one obtains the following barotropic momentum equation for stationary250

motion251

1
acos2 φ

∂

∂φ
cos2

φ
〈
u′v′
〉

z,λ =−CD

za

(
〈u〉z +

〈
u′(0)

〉
λ

)
. (49)

The term on the left-hand-side describes the contribution from the momentum flux divergence and252

from the metric term ( 4.th term on the left-hand-side of (20)), whereas the two terms on the right-253

hand-side account for Ekman friction by the barotropic and baroclinic flow. The contributions254

of the different terms are displayed in Fig. 4b. The barotropic wind and the baroclinic surface255

wind have opposite signs everywhere outside the tropics and there is considerable cancellation256

between the two components. The Ekman friction by the full surface zonal wind 〈u(0)〉
λ
= 〈u〉z+257

〈u′(0)〉
λ

balances the momentum flux term on the right-hand-side of (49) (except at the poles due258

to interpolation errors).259

The PGE generate transient disturbances by baroclinic instability (see Sec. 5e), which propagate260

with the mean flow and are concentrated in the subtropical and tropical region. Those transients261

are damped in the standard model configuration by choosing sufficiently high diffusivity κb
2. We262

also performed simulations allowing for baroclinic eddies with zonal wavenumber 10 and obtained263

qualitatively similar results (not shown) as described in this section.264

2The value of κb considered here, see tab. 1, corresponds to a damping time scale of 3/4 day of the spherical harmonics with the highest total

wavenumber.
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b. The effect of the barotropic closure265

In order to assess the effect of the evolution equation for the barotropic flow on the circulation,266

we perform simulation where the closure (39) is omitted. Without closure 〈u〉z does not change267

from its initial value and the total zonal mean zonal wind in the model is too strong and shows268

super-rotation at the equator, see Fig. 5. Whereas the zonally symmetric baroclinic flow remains269

unchanged, the amplitude of the stationary zonal perturbations is reduced by a factor of 50 %, if270

the temperature fields are considered (not shown). The latter are affected by the barotropic wind271

through buoyancy advection.272

c. Sensitivity with respect to the diffusion coefficient K273

Since in the free atmosphere the effect due to eddy dissipation should be negligible, we per-274

form simulation with nonuniform diffusion coefficient K in (41). In particular, we choose for the275

meridional dependence of K a Gaussian-profile centered at the equator276

K(φ) = K0e
− φ2

2σ2
K (50)

with K0 = 5m2s−1, corresponding to the uniform K value in the standard setup. By setting σK = 4◦,277

K decreases rapidly away from the equator. Note, that the equatorial region should have non-278

vanishing K to prevent the singularity of the PGE discussed earlier. Nearly no difference is visible279

in the zonally averaged temperature and wind fields from Fig. 6a compared to the standard setup280

(Fig. 2a). There is some weakening of the Hadley cell observed, see Fig. 6b and 2b .281

We have also performed simulations with uniform K, but taking 1
10 th of the reference magnitude282

5m2s−1. The resulting circulation (not shown) was nearly unaltered compared to the standard283

setup and we conclude that the results are not sensitive with respect to the diffusion coefficient284
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K. Simulations were also carried out by replacing the diffusion in (41) by Rayleigh friction and285

qualitatively similar results (not shown) were obtained.286

d. Sensitivity with respect to resolution287

The effect of the upper boundary condition (36) on the dynamics is studied by performing a288

model simulation with doubled number of vertical levels (10 levels with ∆z = 1 km), where the289

stratosphere is resolved by two layers instead of a single layer in the standard setup. In the strato-290

sphere the vertical structure of the baroclinic winds ~u′ is set to a linear profile. The latter is deter-291

mined by imposing 〈~u′〉z = 0 and requiring continuity of ~u′ at the tropopause. In the special case292

of single stratospheric layer this approach reduces to the one described by (36). The convergence293

of the results with respect to horizontal resolution was verified by considering T42 spectral reso-294

lution. The zonally averaged circulation in the model is summarized in Fig. 7. All main features295

in the circulation remain the same as in the standard setup. The maximum of the stream function296

ψmax from the meridional overturning circulation (Fig. 7b) is slightly reduced from 2172.2m2/s297

(standard setup) to 1999.8m2/s. No changes in the zonally asymmetric disturbances are observed298

(not shown).299

In addition, model run with an extended height of the troposphere to zt = 10 km (za = 12 km)300

was performed, where the number of vertical levels was increased to 12 (∆z = 1 km). In the301

simulation the westerly jets increase further above 10 km and reach maximum of about 52 m/s302

(not shown). There is an intensification of the Hadley cell (ψmax = 2306.8 m2/s), where the upper303

branch shifts to higher altitudes (not shown).304

18



5. Linear analysis305

Many aspects of the forced stationary waves in the atmosphere can be explained using linear306

theory within the quasi-geostrophic framework (e.g. Held 1983; Pedlosky 1987). For the PGE307

topographically and thermally forced stationary wave solutions were recently presented by Egger308

and Hoinka (2017). Here wave solutions of the linear PGE Boussinesq model are used to interpret309

the results from the numerical simulations in Section 4.310

In the following we consider the linearized equations with κb = K = CD = 0 and a basic state311

from (44)-(46) with ū = ū(φ), ∂ b̄
∂ z = const and ∂ b̄

∂φ
= 0. Differentiating (47) with respect to z, using312

the thermal wind relation and hydrostatic balance, yields313

∂

∂ t
∂ 2

∂ z2 Φ
∗+

ū
acosφ

∂

∂λ

∂ 2

∂ z2 Φ
∗+

β

acosφ f 2
∂ b̄
∂ z

∂

∂λ
Φ
∗ =

∂

∂ z
S∗b , (51)

where Φ∗ denotes the perturbation of Φ′ from Φ̄′ and S∗b = (b∗eq−b∗)/τ .314

a. Free waves315

Looking for solutions of the form Φ∗ = Φ̂(φ)exp{i(kλ +mz−ωt)} (k zonal-, m meridional316

wavenumber and ω frequency) and setting S∗b = 0, one obtains the dispersion relation317

ω =
1

acosφ

(
ūk− βk

m2 f 2
∂ b̄
∂ z

)
. (52)

This corresponds to the long-wavelength limit of Rossby waves from the quasi-geostrophic the-318

ory. The waves become stationary if ū = β

m2 f 2
∂ b̄
∂ z . Note, that the left-hand-side of (51) does not319

involve any meridional derivatives of Φ∗ and the equation decouples in meridional direction. As a320

consequence the waves can have arbitrary meridional structure.321
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b. Forced stationary waves: general case322

We consider forcing of the form323

S∗b =
b∗eq− ∂

∂ zΦ∗

τ
, (53)

with b∗eq = B(φ)cos(k0λ )e−αz, which has the form of the zonally asymmetric forcing (33). The324

stationary form of eq. (51) divided by ū/acosφ is325

∂

∂λ

∂ 2

∂ z2 Φ
∗+n

∂

∂λ
Φ
∗+ γ̂

∂ 2

∂ z2 Φ
∗ = Q(φ)cos(k0λ )e−αz , (54)

where the following definitions were introduced326

n =
β

ū f 2
∂ b̄
∂ z

, (55)

γ̂ =
acosφ

ūτ
, (56)

Q(φ) =−αacosφB(φ)
τ ū

. (57)

The rigid lid boundary conditions for Φ∗ are given by the linearized version of (47) under the327

assumption of ∂ ū
∂ z = 0 and κb = 0328

ū
acosφ

∂

∂λ

∂

∂ z
Φ
∗ = S∗b at z = 0,za . (58)

A particular solution of the inhomogeneous equation (54) reads329

Φ
∗
p = Qe−αz

(
Ar cos(k0λ )−Ai sin(k0λ )

)
(59)

where330

Ar =
γα2

k0((α2 +n)2 + γ2α4)
, Ai =

−α2 +n
k0((α2 +n)2 + γ2α4)

(60)

γ =
γ̂

k0
. (61)
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The homogeneous solution to (54) takes the form331

Φ
∗
h =eµrz

(
a1 cos(kλ +µiz)+a2 sin(kλ +µiz)

)
+ e−µrz

(
a3 cos(kλ −µiz)+a4 sin(kλ −µiz)

)
,

(62)

where the real numbers µr,µi satisfy µ = µr + iµi with µ2 =− n
1+γ2 (1+ iγ).332

The particular solution (59) alone does not fulfill the boundary conditions (58), but together with333

the homogeneous solution they can be satisfied by setting k = k0 in (62) and choosing appropriate334

constants a j. However, the explicit form of the constants becomes soon tedious and we introduce335

in the following section an approximation in order to simplify the analytical expressions.336

c. Forced stationary waves: no-relaxation-case337

Neglecting the damping term in the buoyancy forcing, we consider here338

S∗b =
b∗eq

τ
. (63)

In this case we can set in (54) γ̂ to zero and the particular solution has the form339

Φ
∗
p =

Q
k0(α2 +n)

e−αz sin(k0λ ) . (64)

Again we have to add the corresponding homogeneous solution in order to satisfy the boundary340

conditions. The full solution takes the form341

Φ
∗ =


b1emz sin(k0λ )+b2e−mz sin(k0λ )+Φ∗p , for n =−m2 < 0 ,

c1 sin(mz)sin(k0λ )+ c2 cos(mz)sin(k0λ )+Φ∗p , for n = m2 > 0 ,

(65)
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where342

b1 = Γ
e−αza− e−mza

emza− e−mza
, (66)

b2 = Γ
e−αza− emza

emza− e−mza
, (67)

c1 =−Γ , (68)

c2 = Γ
e−αza− cos(mza)

sin(mza)
, (69)

Γ =
mQ(φ)

k0α(α2 +n)
. (70)

d. Forced stationary waves: comparison with the nonlinear model343

We compare the solutions of the linearized equations, described in this Sections 5b&c, with344

the full nonlinear stationary model response form Sec. 4a. We consider altogether three models345

describing linear dynamics. The first model is the analytical solution (65) evaluated by setting the346

basic state zonal wind ū(φ) to the time averaged zonal mean zonal wind at 3 km height from the347

nonlinear simulation and setting the buoyancy vertical gradient ∂ b̄
∂ z to

∂〈beq〉
λ

∂ z = δv/za. The second348

model is described by (54), but instead of solving (54) for Φ∗, we solve the equivalent equation349

for b∗. This has the form of (48) with ω = 0, where the basic state entering L is the same as for the350

analytical solution (65) and κb =K =CD = 0. We refer to the resulting model as the linear inviscid351

model. Note, that there is no vertical shear in the basic state zonal wind in this model. The third352

model is the stationary solution of the linear model (48) but with vertically varying basic state,353

where (b̄,〈ū〉z) are set to the time averaged profiles (〈b〉
λ
,〈u〉z) from the nonlinear simulation. In354

addition, effects due to friction and diffusion are taken into account in the linear model by using355

the values of κb,K and CD from the standard setup. Due to numerical reasons the solution of the356

linear inviscid model is computed with T42 spectral resolution, whereas for the full linear model357

T21 resolution is sufficient.358
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The results for the different models are summarized in Fig. 8 and 9. The linear model (Fig. 8d,359

9d) reproduces the meridional and vertical structure of the stationary waves in the nonlinear sim-360

ulation (Fig. 8a, 9a) . Small deviations in the meridional structure are visible only equatorward of361

30◦. The analytical solution (65) captures the large-scale structure of the stationary waves pole-362

ward of 30◦ but produces spurious oscillations in the tropics (Fig. 8b). Similar oscillations are363

observed in the inviscid linear model due to the neglected frictional effects (Fig. 8c).364

Fig. 10 shows the stationary linear solutions, when the relaxation time scale τ is reduced from the365

standard value of 15 to 5 days. For τ = 5 days the full linear model reproduces again accurately the366

nonlinear response (not shown). The magnitude of the analytical solution increases for smaller τ367

in accordance with the nonlinear solution. Further inspection showed that there is a slight increase368

by about 5◦ in the phase lag of the analytical solution with respect to the nonlinear solution. The369

inviscid linear model captures the nonlinear response to diabatic forcing for τ = 5 days. The exact370

match of magnitudes at 50◦, is to some extent by chance (but not the phase match). The reason371

is, that the basic state wind in the inviscid linear model was set to the stationary wind field at 3372

km height from the nonlinear simulation, which is an arbitrary level choice. From Fig. 10 we373

conclude that for smaller τ the difference between the linear inviscid model and the analytical374

solution increases. At the same time the effect of the vertical shear (present in the linear model375

and not included in the linear inviscid model) becomes less important over the relaxation effect376

(included in both linear models).377

e. Baroclinic instability within the PGE on the sphere378

Up till now we considered disturbances generated by adiabatic heating, but even in the absence379

of forcing the PGE can produce exponentially growing disturbances by the mechanism of baro-380

clinic instability. To study the latter process we utilize the linear model from (48) without forcing381
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and dissipation, i.e., κb,K,CD and 1/τ are set to zero. As a basic state we set (b̄,〈ū〉z) to the382

time averaged profiles (〈b〉
λ
,〈u〉z) from the nonlinear simulation. The results reported here are383

computed using T85 spectral resolution for convergence reasons.384

Growth rates of the most unstable modes are shown in Fig. 11a. The growth rates increase385

linearly with zonal wavenumber without any bound. This is consistent with previous β -plane386

analysis of the PGE (Wiin-Nielsen 1961; Colin de Verdiere 1986). Since the PGE are valid on the387

very large spatial scales, only the results for the lowest wavenumbers should be relevant for the388

atmosphere. E.g. for wavenumber 3 the growth rate corresponds to e-folding time scale of about389

one week, which is comparable with the time scale of radiative processes. As shown in Fig. 11b the390

phase speed of the unstable modes nearly does not depend on the wavenumber and takes values391

between 1 and 4 ms−1. Due to the meridional decoupling of the inviscid eigenvalue problem,392

as discussed below (52), the horizontal structure of the unstable modes cannot be determined.393

The disturbances show a westward vertical tilt of about quarter of a wavelength in the lowest394

atmosphere, see Fig. 12.395

6. Conclusions396

We present numerical simulations of the PGE for Boussinesq fluid on the sphere supplemented397

by a novel evolution equation for the barotropic flow. The latter is effected by meridional mo-398

mentum flux due to baroclinic flow and drag by the surface wind, see (39). The barotropic wind399

on the other hand affects through buoyancy advection the baroclinic flow. In order to remove the400

singularity of the PGE at the equator, the geostrophic balance is modified by including turbulent401

eddy diffusion. This is a different approach compared to other PGE type models, where f is fixed402

at a constant value f (±15◦) in the tropical region of each hemisphere (Petoukhov et al. 2000). The403

model is forced by relaxation towards a prescribed buoyancy profile.404
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The model climatology shows westerly jets and surface tropical easterlies consistent with other405

Boussinesq simulations (e.g. Held and Hou 1980). Due to the inclusion of turbulent eddy momen-406

tum diffusion, the model produces a viscous Hadley cell. This overturning circulation is respon-407

sible for the meridional momentum transport, whereas the flux due to eddies is negligible. The408

stationary zonally averaged surface zonal wind is determined entirely by the baroclinic meridional409

momentum flux 〈u′v′〉z,λ (see (49)). There is considerable cancellation between the barotropic410

wind and the baroclinic surface zonal wind when time and zonal averages are considered (see411

Fig. 4b). It is observed that the barotropic wind affects only the zonally asymmetric part of the412

baroclinic flow (see Sec. 4b).413

We study the response of the model to an idealized land-sea thermal forcing with exponential414

vertical decay. The stationary waves observed in the simulation are confined to the lower atmo-415

sphere and have no vertical tilt. It is shown that the response can be understood entirely in terms416

of linear dynamics. Forced stationary wave solutions within the PGE were derived by Egger and417

Hoinka (2017). Here we consider analytical solutions but for different forcing profile and under418

the Boussinesq assumption. It is shown that those solutions reproduce key features of the vertical419

and horizontal structure of the model response in mid-latitudes.420

The analysis of Wiin-Nielsen (1961) on baroclinic instability within the PGE on a β -plane is ex-421

tended to the sphere by considering growth rate, phase speed and the vertical structure of the most422

unstable modes. The growth rates increase linearly with wavenumber. This unbounded increase is423

due to the neglected relative vorticity advection in the PGE (Wiin-Nielsen 1961; Colin de Verdiere424

1986) and makes the numerical treatment of the equations challenging, since the highest resolved425

scales are most unstable. In our model the inclusion of buoyancy diffusion introduces a cut-off in426

the growth rates. In the standard model configuration the baroclinic eddies are suppressed using427

25



sufficiently high diffusion. But simulations with baroclinic eddies indicate qualitatively similar428

results for the zonally averaged circulation.429

Due to the Boussinesq assumption the wave disturbances (forced and baroclinic) in our model430

do not show an increase of amplitude with height as typically observed in the atmosphere. Con-431

sequently, momentum and temperature transport by the waves is underestimated. In future we432

plan to relax the Boussinesq approximation to account for the missing effect. This requires further433

analysis to pose an appropriate upper boundary condition for the model.434

Another important ingredient absent in the present model is the mid-latitude synoptic-scale dy-435

namics. In the case of small-amplitude eddies Boljka and Shepherd (2018); Boljka et al. (2018)436

provide a framework for studying interactions of the mean flow with planetary and synoptic scales.437

In the case of large-amplitude eddies, the two-scale model of Dolaptchiev and Klein (2013) would438

be the asymptotic consistent extension of the present planetary scale model to the synoptic scale.439

Interestingly, the planetary barotropic flow equation provides there the only feedback mechanism440

from the synoptic scale to the planetary scale. This stresses the importance for the dynamics of441

the barotropic closure equation considered here.442
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TABLE 1. Model parameters from the standard setup

δh 100 K

δv 40 K

δp 5 K

α 1 km−1

za 10 km

zs 9 km

∆zs 2 km

τ 15 days

κb 1.356 106 m2 s−1

CD 0.005 m s−1

K 5 m2/s

g 9.81 m s−2

a 6371 km

θ0 288.15 K
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a b

FIG. 1. (a) Zonally symmetric potential temperature (shading) and zonal wind (contours) corresponding

to the relaxation profile from (31). (b) Zonally asymmetric potential temperature distribution at 1 km height

corresponding to the relaxation profile from (33).
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a b

FIG. 2. Time mean zonal mean circulation in the PGE model: (a) zonal wind (contours) and potential temper-

ature (shading); (b) stream function of the meridional overturning circulation.
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FIG. 3. Time mean zonally asymmetric potential temperature at 1 km (a) and at 9 km (b) height.
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FIG. 4. (a) Zonally and vertically averaged time mean meridional momentum flux 〈u′v′〉z,λ by the mean merid-

ional overturning circulation (MMC) and by the eddies (104EDD), where the magnitude of the eddy flux was

multiplied by the factor 104 to make it visible on the scale. (b) Contributions in the stationary barotropic mo-

mentum equation (49): Ekman friction by the baroclinic (EKZ) and barotropic (EKB) surface wind, contribution

from momentum flux divergence and metric term (MFD) and residuum (RES). See text for details.
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FIG. 5. Time mean zonal mean zonal wind (contours) and potential temperature (shading) in a simulation

without the closure equation (39).
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FIG. 6. Same as in Fig. 2 but for a simulation with diffusion coefficient K confined in the tropics, see eq. (50).
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FIG. 7. Same as in Fig. 2 but for a simulation with T42 spectral resolution and ten vertical levels.
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a b

c d

FIG. 8. Time mean zonally asymmetric potential temperature at 1 km height: (a) nonlinear simulation, (b)

analytical solution (65), (c) inviscid linear model and (d) the linear model. See text for explanation of the

different models. Note that in Fig.8 b also the ±2 contour line is drawn to indicate the large amplitudes around

15◦.
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c d

FIG. 9. Longitude-height cross-section at 50◦ N of time mean zonally asymmetric potential temperature: (a)

nonlinear simulation, (b) analytical solution (65), (c) inviscid linear model and (d) the linear model.
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a b

FIG. 10. Time mean zonally asymmetric potential temperature as a function of longitude at 50◦ N and 1 km

height from the nonlinear model (solid line), linear inviscid model (dotted line) and analytical solution (dashed

line): for a relaxation time scale of 15 days (a) and of 5 days (b).
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a b

FIG. 11. (a) Growth rate [day−1] and (b) phase speed [ms−1] corresponding to the most unstable mode as a

function of zonal wavenumber.
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FIG. 12. Longitude-height cross-section at 50◦ N of the real part of most unstable mode with zonal wavenum-

ber 3, in units of θ0.
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