Real-valued valuations defined on the space of quasi-concave functions

Nico Lombardi University of Florence (Italy)

We are going to present results from my PhD thesis concerning the study of valuations on the space of quasi-concave functions.

Valuations Theory arose from the resolution of the third Hilbert problem and it was basically introduced for the space of convex bodies, \mathcal{K}^n , i.e. compact and convex subsets of \mathbb{R}^n .

We are going to present valuations defined on function space. Let X be a generic space of real-valued functions defined on \mathbb{R}^n , then a real-valued valuations is a functional $\mu: X \to \mathbb{R}$ with the following property:

$$\mu(f) + \mu(g) = \mu(f \lor g) + \mu(f \land g),$$

for all $f, g \in X$ such that $f \lor g$ and $f \land g \in X$, where

$$f \lor g(x) = \max\{f(x), g(x)\}, \quad f \land g(x) = \min\{f(x), g(x)\}$$

for all $x \in \mathbb{R}^n$.

We studied the space of quasi-concave functions, i.e. $f \colon \mathbb{R}^n \to \mathbb{R}_+$ such that, for all t > 0,

 $L_t(f) = \{ x \in \mathbb{R}^n | f(x) \ge t \} \in \mathcal{K}^n \cup \{ \emptyset \}.$

We are going to present some basic results we obtained, for example characterization results of continuous, with respect to appropriate convergences, and invariant, with respect to several groups that act on \mathbb{R}^n , valuations, focusing on the connection with \mathcal{K}^n .