
Climate-Dependence in Empirical Parameters of Subgrid-Scale1

Parameterizations using the Fluctuation-Dissipation Theorem2

Martin Pieroth∗, Stamen I. Dolaptchiev, and Matthias Zacharuk3
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ABSTRACT

Many subgrid-scale (SGS) parameterizations in climate models contain em-

pirical parameters and are thus data dependent. In particular, it is not guaran-

teed that the SGS parameterization still helps the model to produce the cor-

rect climate projection in the presence of an external perturbation (e.g., due

to climate change). Therefore, a climate dependence of tuning parameters is

proposed, using the fluctuation-dissipation theorem (FDT). The FDT provides

an estimation of the changes in the statistics of a system, caused by a small

external forcing. These estimations are then used to update the SGS param-

eterization. This procedure is tested for a toy atmosphere given by a quasi-

geostrophic three-layer model (QG3LM). We construct a low-order climate

model for this toy atmosphere, based on a reduced number of its empirical

orthogonal functions (EOFs), equipped with either an empirical deterministic

or an empirical stochastic SGS parameterization. External forcings are con-

sidered that are either a local anomalous heat source in the extratropics or

a global dynamical forcing represented by individual EOF patterns. A quasi-

Gaussian variant of the FDT is able to successfully update the SGS parameter-

ization leading to an improvement in both amplitude and correlation between

the low-order climate model and the QG3LM, in case of a perturbed sys-

tem. The stochastic closure exhibits nearly no improvement compared to the

deterministic parameterization. The application of a more sophisticated non-

Gaussian FDT algorithm (i.e., the blended Short-time/quasi-Gaussian FDT)

yields only marginal improvement over the simple quasi-Gaussian FDT.
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1. Introduction36

One key problem in climate modeling is the response of the climate system to an external forc-37

ing. In particular, the anthropogenic influence on the climate is of interest. This includes the global38

mean temperature, the sea level, precipitation patterns, or atmospheric phenomena such as ENSO.39

The current procedure to estimate such a response is by means of sensitivity studies using general40

circulation models (GCMs). However, due to the complexity of GCMs, those sensitivity studies41

are quite expensive.42

It might be tempting to use alternatively so-called low-order climate models, based, for example,43

on optimal basis patterns (Achatz et al. 1995; Kwasniok 1996; Selten 1997; Achatz and Schmitz44

1997; Achatz and Opsteegh 2003a,b; Kwasniok 2004, 2007). The result is a reduction of dimen-45

sion while the overall quality is supposed to stay comparable to that of a regular GCM. Due to their46

lower state-space dimension such models are potentially less demanding on computing power than47

the latter. The dimension reduction also entails, however, as in any multi-scale system, the use of48

additional subgrid-scale (SGS) parameterizations that take the effect of neglected basis patterns49

into account.50

Such SGS parameterizations are often data-driven (e.g., Achatz and Branstator 1999; Achatz and51

Opsteegh 2003a,b; Kravtsov et al. 2009). That is, a suitable function is tuned against simulated52

data (or real observations) to minimize the residual error between the low-order climate model and53

the data. However, such a data-driven SGS parameterization is inherently dependent on the data54

against which it is tuned. This was shown by Achatz and Branstator (1999) for a low-order model55

consisting of a filtered two-layer model projected onto empirical orthogonal functions (EOFs) of56

a GCM and a simple linear SGS parameterization. The reduced model was successful in captur-57

ing the characteristics of the GCM dynamics, such as the average transient eddy fluxes and the58
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statistics of the first and second moment. However, the low-order model was not able to capture59

the dynamical changes due to the presence of a local anomalous heating in the tropics. A similar60

result was found by Achatz and Opsteegh (2003b) for a reduced EOF model based on the primitive61

equations.62

This problem is not limited to low-order models. Even state-of-the-art GCMs contain empir-63

ical parameters. Those models also employ SGS parameterizations, partially based on physical64

considerations, but nonetheless are usually highly tuned to the present-day climate. Consequently,65

they suffer from data dependence as well. One could argue that the effect of data dependence in66

a physical SGS parameterization is negligible. However, the fact that the tuning of GCMs and67

climate models is a common and even necessary step underlines the impact of the empirical pa-68

rameters. One example for the dependence on the empirical parameters is the study of Rockel69

and Geyer (2008) which shows that regional climate models cannot be transferred to a different70

climatic zone without retuning.71

There are approaches to derive SGS parameterizations directly from model equations. Verkley72

and Severijns (2014) introduced a SGS parameterization based on maximum entropy principle73

(Verkley et al. 2016) which does not require any fitting. In the stochastic mode reduction (Majda74

et al. 2001, 2003) the nonlinear self-interaction of the SGS processes is described by an empirical75

Ornstein-Uhlenbeck process. This Ornstein-Uhlenbeck process is then used to derive a stochastic76

SGS parameterization explicitly from the model equations. Franzke et al. (2005) introduced a77

seamless variant of the stochastic mode reduction which drops the assumption of an empirical78

Ornstein-Uhlenbeck process. Consequently, the required lag correlations for the stochastic SGS79

closure cannot be calculated analytically from the Ornstein-Uhlenbeck process but are obtained80

directly from data. Either way, while there is still some tuning involved, this explicitly derived SGS81

closure should be more robust to climate change than traditional parameterizations. Nevertheless,82
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the stochastic mode reduction requires a strict time-scale separation which is not necessarily given83

in (atmospheric) GCMs (Franzke and Majda 2006). An alternative method based on response84

theory, which instead of a time-scale separation relies on weak coupling, was proposed by Wouters85

and Lucarini (2012) and used to derive parameterizations (Wouters et al. 2016; Demaeyer and86

Vannitsem 2017). Recently, Lucarini and Wouters (2017) derived explicit expressions on how this87

parameterization changes when the background state of the system is perturbed. This response-88

theory ansatz is conceptually close to the approach we take in this study.89

In particular, in this paper we follow the route of Achatz et al. (2013). For cases where the tuning90

parameters of the SGS parameterization are based on the statistics of the system in question, the91

authors propose to use the fluctuation-dissipation theorem (FDT, see Marconi et al. 2008, for92

a recent review) to estimate the change of the statistics due to an external forcing. In general,93

the FDT connects a suitable covariance function of a dynamical system at statistical equilibrium94

with the response of the system, caused by a small external forcing or a sufficiently small change95

in model parameters (Risken 1984). Since the FDT only depends on a covariance function no96

detailed knowledge of the governing equations of the system is required. However, for the FDT97

to work several constraints have to be fulfilled. In general, the system in question must be in98

statistical equilibrium and have a time-invariant probability density function (PDF) which must be99

differentiable. Although extensions to nonequilibrium systems (Lucarini and Sarno 2011; Ragone100

et al. 2016) and to time periodic cases are possible (Majda and Wang 2010; Gritsun 2010), the101

condition of differentiability is generally violated in systems which exhibit deterministic chaos.102

Usually, the system attractor of such systems is fractal. The differentiablity can be ensured if103

some suitable random noise is added to the system to smooth the PDF (Zeeman 1988).104

Even though the atmosphere and the climate system are not strictly consistent with the con-105

ditions above, Leith (1975) suggested the use of the FDT for an approximation of the climate106
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response. Since then numerous studies have applied the so-called quasi-Gaussian FDT (qG-FDT,107

Majda et al. 2005, where the equilibrium PDF is assumed to be close to Gaussian) to data from108

various idealized climate models (e.g, Bell 1980; North et al. 1993; Gritsoun and Dymnikov 1999;109

Gershgorin and Majda 2010; Achatz et al. 2013; Fuchs et al. 2015; Lutsko et al. 2015), simple110

GCMs (Gritsun and Branstator 2007; Gritsun et al. 2008; Ring and Plumb 2008), and even cou-111

pled atmosphere-ocean GCMs (Gritsun and Branstator 2016). However, all studies showed mixed112

results regarding the FDT performance. It remains unclear why this is the case. A recent study113

of Hassanzadeh and Kuang (2016) indicated that this could be due to nonnormal response opera-114

tors. This nonnormality might lead to a strong interaction between resolved and unresolved EOFs115

which cannot be captured by an FDT-response operator in an EOF subspace. Another possibility116

is that the forcing might project onto a stable direction of the attractor, resulting in a response117

that is not covered by the unperturbed model PDF (Gritsun and Lucarini 2017). Furthermore, it is118

possible that the Gaussian assumption may contribute to the error more than expected. Therefore,119

Cooper and Haynes (2011) suggest to relax the Gaussian approximation of the equilibrium PDF120

by the use of a nonparametric kernel method. Alternatively, Abramov and Majda (2007, 2008,121

2009) introduced a blended Short-time/quasi-Gaussian (ST/qG-FDT) algorithm which avoids the122

differentiation of the PDF by use of a tangent linear model. Extensions of non-Gaussian response123

theory to higher orders in the perturbation amplitude are possible as well (Lucarini and Wouters124

2017). While those methods generally yield superior results, compared to the simple qG-FDT,125

they are significantly more expensive.126

Therefore, Achatz et al. (2013) decided to use the qG-FDT. The authors considered a toy atmo-127

sphere based on the barotropic vorticity equation on the sphere and a corresponding reduced model128

based on EOFs. The linear SGS parameterization of the latter model is determined completely by129

first and second moments of the toy atmosphere. In addition, they used a local anomalous heating130
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located in the midlatitudes to investigate the robustness of the closure due to a changing climate.131

Their qG-FDT estimations of the first moments were reasonably good. However, the second mo-132

ments exhibited a considerably higher error. Consequently, the resulting changes in the tuning133

parameters of the closure were not usable. Therefore, Achatz et al. (2013) introduced a reduced134

form of qG-FDT, basically discarding the estimations for the second moments, resulting in rea-135

sonably good closure updates. Furthermore, they showed that the use of the reduced-qG-FDT136

(rqG-FDT) modified closure yielded a better agreement with the reference model than the un-137

modified reduced model, in the case of a perturbed climate. Moreover, for sufficiently high EOF138

dimension the reduced model with modified SGS parameterization even outperformed the direct139

qG-FDT estimation. Nevertheless, due to the negligence of the qG-FDT estimation of the second140

moments, only a part of the SGS parameterization could be updated. The failure of the qG-FDT141

could be associated with the constraints of the theorem. The nonlinear dynamics of the smallest-142

scale processes might not act as a stochastic forcing and thus a sufficiently smooth PDF may not be143

given, since the toy atmosphere has no clear time-scale separation. Furthermore, only barotropic144

Rossby waves and no fast synoptic-scale processes (e.g., baroclinic instability) or gravity waves145

are present in this model.146

Consequently, the present study pursues the approach of Achatz et al. (2013) further, however,147

now applies it to a baroclinic toy atmosphere, given by a quasi-geostrophic three-layer model148

(QG3LM). As it turns out, the increased complexity of the model and the presence of baroclinic149

instability leads to an overall better performance of the qG-FDT, allowing a successful update of150

the closure parameters.151

This paper is organized as follows. In section 2 the QG3LM and the low-order climate model,152

based on the leading EOFs of the QG3LM, are introduced. Furthermore, data-driven SGS parame-153

terizations are constructed. The models are perturbed by both local anomalous forcings and global154
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anomalous forcings presented in section 3. Moreover, we recapitulate the qG-FDT and explain the155

climate-dependence of the SGS parameterization in more detail. Afterwards we present the results156

of the experiments in section 4. Section 5 summarizes and discusses the findings and gives some157

conclusions.158

2. Models159

a. The quasi-geostrophic three-layer model160

In this paper the QG3LM of Marshall and Molteni (1993) is considered as a toy atmosphere.161

The QG3LM is a model of medium complexity containing baroclinic Rossby waves. The model162

is governed by the quasi-geostrophic potential vorticity equation on the sphere163

∂qi

∂ t
= −J(Ψi,qi)+Di(Ψi−1,Ψi,Ψi+1)+Si (1)

qi = ∇
2
Ψi +ηi + f

(
1+δi,3

h
H

)
, (2)

at the pressure levels 200 hPa, 500 hPa, and 800 hPa, denoted by i = 1,2,3, respectively. Here164

q is the quasi-geostrophic potential vorticity; Ψ is the streamfunction; J(·, ·) denotes the standard165

Jacobian operator; D is a function containing temperature relaxation, Ekman friction, and hyper-166

diffusion. Furthermore, η denotes the stretching vorticity, f is the Coriolis parameter, and h/H167

is the normalized orography (cf., Marshall and Molteni 1993). The constant vorticity forcing S is168

tuned against 10 winter seasons of reanalysis data from ECMWF (Liu and Opsteegh 1995) which169

enables the model to simulate a realistic northern hemispheric winter.170

The QG3LM has a spectral discretization with a triangular truncation of T21. This leads to N =171

1449 degrees of freedom. The model is integrated forward in time using the leapfrog scheme with172

a time step of ∆t = 1/36 days. For all following results a daily model output is used. Furthermore,173

for all integrations the first 10,000 days have been discarded to eliminate spinup effects.174
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Equation (1) can be rewritten by the introduction of a state vector x ∈ RN , i.e.175

dx
dt

= G(x) , (3)

where the function G(·) represents the right-hand side of (1).176

b. The low-order climate model177

For the construction of the low-order climate model the QG3LM is projected onto EOF space.178

In particular, the deviation x′ of the state vector from its time-mean 〈x〉 (i.e., x′ = x−〈x〉, where179

〈·〉 denotes a time average) is projected onto the leading M (M < N) EOFs. Therefore, the state180

vector is expressed as181

x = 〈x〉+x′ (4)

= 〈x〉+
M

∑
k=1

ak(t)ek +ε(t) (5)

= 〈x〉+PPPa(t)+ε(t) , (6)

where a ∈ RM is the so-called principal component vector, PPP ∈ RN×M is a matrix containing the182

leading M EOFs e as columns, and ε ∈ RN is the time-dependent truncation error.183

The EOFs are defined by the eigenvalue problem184

〈
x′x′T

〉
MMMek = λkek , (7)

where λk denotes the explained energy variance of the QG3LM by the kth EOF and MMM is the total185

energy metric of Ehrendorfer (2000). The exact formula of MMM is given in appendix A. The EOFs186

have been calculated from a 100,000 day integration of the QG3LM. It turns out that 540 EOFs187

suffice to explain 90% of the variance of the analyzed data. Spectra with this kind of flatness are188

typical when an energy metric is applied to data which is not filtered in time (e.g., Achatz and189

Branstator 1999; Achatz and Opsteegh 2003a).190
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Using the decomposition of (6) in the QG3LM (3) yields191

da
dt

=PPPTMMMG(〈x〉+PPPa)+ s(a,x) , (8)

where s is the SGS tendency error resulting from the truncation error within G(·).192

A suitable parameterization p(a) is required to address the SGS error. This results in the low-193

order model equation194

da
dt

= G̃(a)+ p(a)+ εp(a,x) , (9)

where G̃(a) = PPPTMMMG(〈x〉+PPPa) and εp(a,x) denotes the parameterization error (i.e., εp(a,x) =195

s(a,x)− p(a)). To address the SGS error, we choose a linear deterministic parameterization196

(Achatz and Branstator 1999; Achatz and Opsteegh 2003a), i.e.197

pdet(a) = r+LLLa , (10)

where r ∈RM and LLL ∈RM×M are a constant vector and matrix, respectively. Minimizing the norm198

of the parameterization error (i.e., 〈‖ εp ‖2〉) yields as optimal closure parameters199

LLL = 〈s′a′T〉〈a′a′T〉−1

r = 〈s〉−LLL〈a〉 , (11)

where s(t) = [a(t +∆t)−a(t−∆t)]/(2∆t)− G̃(a(t)) denotes the SGS tendency error approxi-200

mated by centered differences in time. Thus, the closure is completely determined by first and201

second statistical moments of the QG3LM. For the calculation of the closure parameters r and LLL, a202

6 ·106 day integration of the QG3LM is used to safely exclude sampling errors. This huge amount203

of data is not necessary for a reliable application of the FDT, but needed for the convergence of204

the response due to the external forcing (see section 5). Hence only for consistency we use a time205

series of the same length here.206
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Furthermore, we consider a stochastic parameterization given by an Ornstein-Uhlenbeck process207

pstoch(a) = r+LLLa+ΣẆ , (12)

where Σ ∈ RM×M is a constant diagonal matrix and Ẇdt = dW ∈ RM denotes an increment of208

a Wiener process. The noise in (12) (and in all following equations) is interpreted in the sense209

of Stratonovich (i.e., as a limit of physical noise with vanishing memory). Using a maximum210

likelihood approach (Honerkamp 1994) to estimate the closure parameters, we obtain for the de-211

terministic part of (12) the same equations as for pdet(a) (11), whereas the optimal noise amplitude212

is given by213

Σii =

√√√√2∆t

〈
[si− (ri +∑

k
LLLikak)]2

〉
. (13)

In conclusion, the low-order climate model with parameterization reads214

da
dt

= G̃(a)+ r+LLLa+ΣẆ , (14)

where Σ = 0 in the case of a deterministic closure pdet and Σ given by (13) in the case of a215

stochastic parameterization pstoch. Thus, for the remainder of this paper we write the reduced216

model in this general form.217

Generally, such semi-empirical low-order models tend to overestimate the variance (Achatz and218

Branstator 1999; Achatz and Opsteegh 2003a). To counter this behavior, we tune the hyperdiffu-219

sion of the reduced model by adjusting the diffusion time scale τH (see Marshall and Molteni 1993)220

to minimize the relative error (25) of the variance. The numerical values for both the deterministic221

and stochastic parameterization are given in Table 1.222

Figure 1 displays the performance of the reduced model with deterministic parameterization223

in the 500 EOF case, in terms of both mean (top) and variance (bottom) of streamfunction. In224

particular, Figure 1 a) and c) show the result of the QG3LM at 200 hPa (where the response is225
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strongest among all three layers) projected onto the 500 EOF space, whereas Figure 1 b) and d)226

show the equivalent result of the reduced model (14). In general, the parameterization works quite227

well: The mean is virtually identical, whereas in the variance only minor differences are visible.228

For smaller EOF truncations of the low-order models as well as for the models with stochastic229

parameterization the results are qualitatively similar (not shown).230

3. Climate-dependent parameterization231

a. External anomalous forcing232

The low-order model with parameterization reproduces both qualitatively and quantitatively the233

QG3LM. However, it remains to be seen how well the reduced model responds to an external234

forcing. For this purpose we use a time-independent local anomalous heating, representing the235

effect of a sea surface anomaly due to a change in the ocean circulation (Branstator and Haupt236

1998; Achatz and Branstator 1999; Achatz and Opsteegh 2003b; Achatz et al. 2013). As a quasi-237

geostrophic potential vorticity forcing δS, the discretized heating can be written as238

δSi =−
AR∆p

f0

(1−δi,3)

sin
(

π p
i+ 1

2
ps

)
r2

i+ 1
2

pi+ 1
2

− (1−δi,1)

sin
(

π p
i− 1

2
ps

)
r2

i− 1
2

pi− 1
2

cos2
(

λ −λc

∆λ

)
cos2

(
φ −φc

∆φ

)
,(15)

where A = 1.25 K day−1 is the amplitude of the heating, R is the universal gas constant, ∆p = 300239

hPa denotes the pressure difference of the respective layers, ps = 1000 hPa is the surface pressure,240

f0 is the Coriolis parameter at 45N, λc,φc denote the position at which the forcing is centered,241

and ∆λ = ∆φ = 20◦ is the horizontal extension of the forcing. For λ /∈ [λc−∆λ/2,λc +∆λ/2]242

and φ /∈ [φc−∆φ/2,φc +∆φ/2] the anomalous forcing is set to zero. The pressure in between the243

layers are given by p1 1
2
= 350 hPa and p2 1

2
= 650 hPa, respectively. Furthermore r denotes the244

Rossby deformation radius (see Marshall and Molteni 1993, for the exact values).245
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In contrast to Branstator and Haupt (1998), the anomalous heating is placed in the midlatitudes246

since the QG3LM exhibits relatively small variances at the equator, resulting in a poor EOF repre-247

sentation of an anomalous forcing placed there. Therefore, for all following experiments the lati-248

tude position is fixed at φc = 45◦, whereas the longitude position varies at λc = {0◦,30◦, . . . ,330◦}.249

The most compact model to be investigated is the 20-EOF model. Hence, the anomalous forcing250

has always been projected onto the first 20 EOFs. Projection onto more EOFs also increases the251

response amplitude, resulting in nonlinear behavior of the response, especially in the second mo-252

ments. Perturbing the system with the same external forcing but with opposite signs (i.e., ±δS)253

should result in a pattern correlation of -1 if the response is purely linear. However, even with re-254

striction onto the first 20 EOFs, this test shows an average pattern correlation of only about −0.75255

for the second moments. On the other hand, the first moments exhibit on average a correlation256

stronger than −0.95.257

The left column of Figure 2 shows the equilibrium response of the QG3LM at 200 hPa due to a258

local anomalous heating at λc = 60◦, calculated from a 6 ·106 day time series. Panel a) displays the259

response in mean streamfunction, whereas panel c) shows the response in mean zonal wind. The260

maximum values in wind speed are about 2 m s−1 which is comparable to the expected change in261

mean zonal wind speed due to anthropogenic climate change (Lorenz and DeWeaver 2007).262

It might be a strong simplification to model a climate change by a single local anomalous forcing263

placed in the extratropics. One would rather expect that climate change manifests on a global264

scale. Therefore, in order to drop the locality in the external forcing and thus be more realistic, we265

are also considering global anomalous forcings given by individual EOFs multiplied by a small266

constant, i.e. (14) is supplemented by267

δ f = εkek , (16)
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where εk > 0 and k = 1,2, . . . ,5. The εk’s are chosen in such a way that the turbulent energy x′TMMMx′268

in the response of the global anomalous forcing is comparable to that of the local anomalous269

forcing (Eturb ≈ 470 TJ kg−1). The exact numerical values are given in Table 2.270

The right column of Figure 2 shows, as a representative example, the response to the global271

anomalous forcing of EOF 1. The response is similar to the response of the local anomalous272

forcing. Overall, the amplitude is slightly weaker with maximum zonal wind speeds of about 1.5273

m s−1.274

b. The perturbed low-order climate model275

The simplest ansatz to implement an anomalous forcing in the reduced model is the à-priori (i.e.,276

the naı̈ve) low-order model277

da
dt

= G̃(a)+ r+LLLa+ΣẆ+δ f, (17)

where δ f is either given by (16) or δ f = PPPT
20MMMδS (where PPP20 denotes projection onto the first 20278

EOFs) in the case of a global anomalous forcing or local anomalous forcing, respectively.279

The performance of the à-priori model is illustrated in Figure 4. Shown is the response in280

variance of streamfunction for a local anomalous forcing placed at λc = 270◦. Panel a) shows281

the result of the QG3LM projected onto the first 500 EOFs; panel b) shows the result of the 500282

EOF à-priori low-order model (17). In the response of the à-priori low-order model the minima283

over the Pacific ocean and Atlantic ocean are barely visible. Furthermore, the amplitude of the284

maxima over the Pacific ocean are too strong. On the other hand, the minimum over Greenland is285

too pronounced. Still, the pattern correlation is reproduced well. Qualitatively similar results are286

found for the global anomalous forcings (not shown).287
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The reason for the incorrect response of the à-priori low-order model is the dependence of the288

closure parameters on the training data-set, which is from the unperturbed model (Achatz et al.289

2013; Lucarini and Wouters 2017). The actual reduced climate model is given by290

da
dt

= G̃(a)+ r+δr+(LLL+δLLL)a+(Σ+δΣ)Ẇ+δ f , (18)

where δr and δLLL are the changes in the SGS parameterization due to the altered climate of the291

model. In particular, the updated closure parameters read292

LLL+δLLL =
(
〈s′a′T〉+δ 〈s′a′T〉

)(
〈a′a′T〉+δ 〈a′a′T〉

)−1
(19)

r+δr = 〈s〉+δ 〈s〉− (LLL+δLLL)(〈a〉+δ 〈a〉) (20)

Σii +δΣii =

{
2∆t
{(
〈s2

i 〉+δ 〈s2
i 〉
)

−2

[
(ri +δ ri)(〈si〉+δ 〈si〉)+∑

k
(LLLik +δLLLik)(〈siak〉+δ 〈siak〉)

]
+(ri +δ ri)

2 +2∑
k
(LLLik +δLLLik)(ri +δ ri)(〈ak〉+δ 〈ak〉)

+∑
k, j

(LLLik +δLLLik)
(
LLLi j +δLLLi j

)(
〈aka j〉+δ 〈aka j〉

)}} 1
2

, (21)

where δ 〈s′a′T〉 = δ 〈saT〉− δ 〈s〉δ 〈a〉T and δ 〈a′a′T〉 = δ 〈aaT〉− δ 〈a〉δ 〈a〉T. Consequently, if the293

changes in the statistical moments (i.e., δ 〈a〉,δ 〈s〉,δ 〈s2
i 〉,δ 〈aaT〉, and δ 〈saT〉) are known, it will294

be easy to update the SGS parameterization.295

One way to obtain the changes in the statistical moments is to directly analyze data from the296

perturbed QG3LM. Using the resulting à-posteriori parameterization clearly fixes the issues of the297

à-priori model. This can be seen in panel c) of Figure 4. Similar results as for the response in the298

variance are found for the response in the mean streamfunction (not shown), although, in this case,299

already the à-priori low-order model reproduces the response quite well.300
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Nevertheless, a recalculation of the QG3LM with the anomalous forcing contradicts the very301

idea behind efficient low-order climate models. In addition, the problem outlined in Figure 4302

(panels a) and b)) is not only limited to low-order climate models. All models containing empirical303

tuning parameters suffer from data dependence, including state-of-the-art GCMs, paleoclimate304

models, and many SGS parameterizations. However, for climate projections it is impossible to305

retune the empirical parameters against a new data-set. Therefore, other approaches are necessary.306

c. Fluctuation-Dissipation Theorem307

The climate-dependence of the SGS parameterization (18) is introduced by the FDT, as sug-308

gested by Achatz et al. (2013). In this study we focus mainly on the conventional qG-FDT. How-309

ever, to evaluate the approximation of Gaussianity we additionally investigate selected cases with310

the more sophisticated ST/qG-FDT.311

The qG-FDT states for the steady state response of an arbitrary function of the state h(a) in the312

reduced EOF space (Gritsun et al. 2008)313

δ 〈h(a)〉=
∞∫

0

〈h[a(τ)]a′T(0)〉dτ〈a′(0)a′T(0)〉−1
δ f , (22)

where δ f is a constant forcing. A detailed derivation of expression (22) can be found, for example,314

in Risken (1984). For practical purposes we integrate (22) up to 100 days. The calculation of315

the lag integral is done via the efficient “Cooper-Haynes” algorithm presented in the appendix of316

Lutsko et al. (2015), however, here applied to the Simpsons rule.317

In addition to the qG-FDT, we also apply the blended ST/qG-FDT algorithm of Abramov and318

Majda (2008) to selected cases. In contrast to the qG-FDT, the ST-FDT makes no assumption on319

the shape of the PDF of the system. Thus, the resulting response is generally more accurate than320

(22). The price for the higher accuracy, however, is the need of the tangent linear model. However,321
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since the tangent linear model is inherently unstable the ST-FDT response is only useful for short322

times (up to τ∗). Therefore, Abramov and Majda (2008) propose to combine the ST-FDT and qG-323

FDT by replacing the qG-FDT response operator (22) with the ST-FDT response operator at short324

times, while keeping the qG-FDT operator for longer times. The resulting blended ST/qG-FDT325

reads326

δ 〈h(a)〉=

 τ∗∫
0

〈∇h[a(τ)]TTTτ

a(t)〉dτ +

∞∫
τ∗

〈h[a(τ)]a′T(0)〉dτ〈a′(0)a′T(0)〉−1

δ f , (23)

where the tangent linear model TTTτ

a(t) ∈ RN×M, initialized with a(t) and integrated to time τ , is327

calculated solving328

dTTTτ

a(t)

dt
= ∇G[a(t + τ)]TTTτ

a(t) , (24)

and ∇G[a(τ)] ∈ RN×N is the Jacobian of the right-hand side of the QG3LM (3) in the full EOF329

space. Furthermore, in (23) ∇h ∈ R•×N , where • depends on the dimension of h. Both the330

instability of the tangent linear model and the ambiguous choice of the parameter τ∗, however,331

limit the robustness of the blended ST/qG-FDT algorithm. Here τ∗ = 2 days, determined by trial332

and error (i.e., by comparing the response of the qG-FDT and ST-FDT for various τ∗).333

4. Experiments334

a. Setup335

For the test of the FDT-adjusted closure we consider 12 different cases, corresponding to the336

different positions of the local anomalous forcing (see section 3 a). In the case of the global337

anomalous forcing we use the first five EOFs as stated in (16). For the computation of the FDT338

response operators the same 6 · 106 day time series is used as for the calculation of the closure.339

Furthermore, we run the QG3LM with the anomalous forcing for each case. With the resulting340
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perturbed time series the actual response of the respective moments are calculated to quantify the341

performance of the FDT algorithms. We restrict our investigation to five low-order models with342

truncations of 20 (30% explained variance), 50 (46%), 100 (60%), 200 (73%), and 500 (89%)343

EOFs, respectively.344

For the evaluation of the FDT-adjusted closure we consider four different low-order models345

• à-priori: no climate-dependence (δr = δL = δΣ= 0) as in (17).346

• qG-FDT: closure corrections calculated by qG-FDT.347

• à-posteriori: the true closure corrections, obtained from a run of the QG3LM with anomalous348

forcing.349

• rqG-FDT: as the qG-FDT but with δL = 0 (see Achatz et al. 2013).350

As it turns out, no useful closure updates can be obtained for Σ for the local anomalous forcing.351

In this case, we could keep Σ constant and set δΣ= 0. However, this might suppress the effect of352

the update of the remaining part of the closure with the FDT. Therefore, for the local anomalous353

forcing we consider only reduced models with a deterministic parameterization (i.e., Σ= δΣ= 0).354

To test the effect of the stochasticity we focus on the cases with the global anomalous forcing.355

For the quantification of the results we calculate for a,b ∈RM and AAA,BBB ∈RM×M a relative error356

given by357

ε(a,b) =
‖a−b‖2

‖a‖‖b‖
ε(AAA,BBB) =

‖AAA−BBB‖2

‖AAA‖‖BBB‖
, (25)

where the norm ‖ ·‖ is either the 2-norm (if the argument is a vector) or the Frobenius norm (if the358

argument is a matrix).359
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b. Results360

1) LOCAL ANOMALOUS FORCING361

Figure 3 (top) shows a boxplot of relative error of the various statistical moments entering (20),362

summarizing the qG-FDT predictions for all local anomalous forcing cases and each EOF trunca-363

tion. Clearly the qG-FDT is unable to provide a correct estimate of δ 〈s2
i 〉 for any EOF truncation.364

Apart from that, the remaining first moments (i.e., δ 〈a〉 and δ 〈s〉) are predicted remarkably well365

with an average median of around 0.1 for all truncations. The median of relative error of the second366

moments (i.e., δ 〈aaT〉 and δ 〈saT〉) are on average with 0.3 to 0.4 considerably higher. In general,367

the performance of the qG-FDT for δ 〈a〉 and δ 〈aaT〉 is independent of the EOF truncation. In fact,368

for higher EOF truncations the spread of relative error decreases for both moments (although, for369

δ 〈a〉 this is not visible). However, all moments containing the discretized SGS error s (i.e., δ 〈s〉,370

δ 〈s2
i 〉, and δ 〈saT〉) exhibit an increase in both median and spread with rising EOF truncation.371

Figure 3 (bottom) shows the equivalent evaluation of the closure corrections (20) resulting from372

the qG-FDT estimation of the statistical moments. The constant term δr has the best result with an373

average median of 0.15 for all EOF truncations. In contrast, the linear term δLLL has a considerably374

higher error in the median which even reaches ε ≈ 1 for the 500 EOF low-order model. Generally,375

the quality of the qG-FDT predicted closure corrections decrease with increasing EOF dimension.376

This is due to the increase of the error of δ 〈saT〉 (see Figure 3, top) which directly influences δLLL.377

Consequently, this trend translates to δr as well, since it is dependent on δLLL (20). The same holds378

for δΣ, although the high error of δ 〈s2
i 〉 renders the closure update of the noise amplitude useless379

for all EOF truncations.380

Figure 3 is not sufficient for a final evaluation of the qG-FDT-predicted closure corrections. The381

utility of the method is eventually decided by the performance of the reduced models including the382
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adjusted closures. However, before showing summarizing plots, we first focus on a representative383

example, given by the 500 EOF low-order model with a local anomalous forcing located at λc =384

270◦.385

Figure 4 shows the response in variance of streamfunction of a) the QG3LM projected onto 500386

EOFs, b) - d) three low-order models with different deterministic SGS parameterizations, and e)387

the direct qG-FDT estimation. The QG3LM shows mainly a response in the northern (winter)388

hemisphere. In particular, the response of the QG3LM exhibits a band of maxima at roughly389

60◦N, spanning nearly the whole globe. Furthermore, multiple minima are located over the Pacific390

ocean, the Atlantic ocean, and Greenland. Overall, the pattern correlation of all reduced models391

and the direct qG-FDT estimation are, with about 0.90, quite high. Yet, prominent differences392

are visible in the amplitude. The à-priori low-order model (Figure 4 b)) has a distinct maximum393

over the Pacific ocean. Furthermore, the minimum over Greenland is too pronounced, whereas the394

remaining minima are too weak in amplitude. Consequently, the relative error reads ε = 0.24. The395

à-posteriori low-order model (Figure 4 c)) fairs better with ε = 0.17, due to stronger minima and396

a slightly reduced maximum over the Pacific ocean. The response of the low-order model with397

the qG-FDT-adjusted SGS parameterization (Figure 4 d)) is virtually identical to the à-posteriori398

low-order model which can also be seen from the relative error of ε = 0.18. In contrast, the direct399

qG-FDT estimation (Figure 4 e)) overestimates the amplitude of the response by a factor of two400

resulting in a relative error of ε = 0.40.401

Similar results are found for the meridional momentum flux 〈u′v′〉 (Figure 5) and the meridional402

entropy flux (not shown), although for these fluxes the estimation using the qG-FDT directly also403

provides useful results.404

Finally, we summarize the results of the reduced models with adjusted closures in Figure 6.405

Figure 6 has a similar structure as Figure 3, however, it shows the performance of the response406
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of the first moment (δ 〈a〉, left panel) and covariance (δ 〈a′a′T〉, right panel) of streamfunction of407

the reduced models with the various adjusted deterministic closures and the direct qG-FDT es-408

timation, compared to the QG3LM. In general, for the response in the first moment the à-priori409

low-order model with the unmodified closure performs worst for all EOF truncations, whereas410

the à-posteriori model yields generally the best result of all low-order models. Furthermore, we411

see a systematic improvement for the low-order model with qG-FDT-adjusted SGS parameteriza-412

tion compared to the à-priori low-order model and the model with the rqG-FDT-adjusted closure.413

Still, for EOF truncations smaller than 500 EOFs, the direct qG-FDT yields by far the best corre-414

spondence with the actual response. However, the higher the EOF truncation, the better fair the415

reduced models in general. In fact, the qG-FDT-adjusted low-order model with 500 EOFs yields416

a comparable result to the direct qG-FDT estimation.417

The findings of the response of the covariance (right panel) is qualitatively similar, indepen-418

dently of the EOF truncation. However, only for low-order models with more than 200 EOFs the419

results are useful (i.e., ε < 1). Additionally, for 500 EOFs we find that the reduced model with420

adjusted closure begins to outperform the direct qG-FDT estimation of the response in covariance.421

Although, in those cases even the à-priori low-order model yields a better result than the qG-FDT.422

Even though the FDT estimations of the change of the statistics are linear, we can significantly423

improve the description of the perturbed dynamics by the low-order model compared to the à-priori424

case. In particular, we do not use the FDT estimations directly but apply them on the empirical425

parts of the SGS closure. This allows us to account for the nonlinearity explicitly when running426

the low-order model.427
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2) GLOBAL ANOMALOUS FORCING428

Figure 7 shows the qG-FDT estimation of the changes in the statistical moments and the skill429

of the resulting closure updates, in the case of the global anomalous forcing. Qualitatively the430

findings in the case of the local anomalous forcing are reproduced. However, the overall perfor-431

mance of the qG-FDT estimations is increased. In general, the spread of estimates is significantly432

reduced for all statistical moments. In the second moments, the average median of the relative433

error of δ 〈aaT〉 is below 0.2, whereas the relative error of δ 〈saT〉 is basically unchanged in com-434

parison to the local anomalous forcing case. In addition, the estimation of δ 〈s2
i 〉 is with an average435

median of 0.15 comparable to the second moments. Furthermore, the remaining first moments436

exhibit on average an relative error below 0.1. Interestingly, the quality of the resulting closure437

corrections are (apart from δΣ) nearly identical compared to the local anomalous forcing case.438

This indicates that the considered SGS parameterization is highly sensitive to δ 〈saT〉. Neverthe-439

less, the good estimation of δ 〈s2
i 〉 allows a useful update of δΣ which was not possible for the440

local anomalous forcing case. Consequently, the stochastic parameterization (12) can be studied441

under the perturbation with a global forcing.442

For direct comparison we first show in Figure 8 the results of the low-order models with adjusted443

deterministic closures in the case of the global anomalous forcing. In general, the results of the444

local anomalous forcing are reproduced, however, the performance of all low-order models and the445

direct qG-FDT is systematically better. In particular, the spread is significantly reduced. Figure446

9 shows the reduced models with adjusted stochastic parameterization in the case of the global447

anomalous forcing. Overall, the performance is qualitatively similar to the deterministic case. A448

slight improvement in terms of spread is visible for all reduced models and all EOF truncations.449

Nevertheless, the net effect by the introduction of the noise term is quite small. The results of the450
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low-order models with à-posteriori and rqG-FDT closure are not shown, since their behavior is451

qualitatively the same as in Figure 6.452

3) ST/QG-FDT453

In order to estimate the error of the Gaussian approximation in the qG-FDT, we predict the454

changes in the statistical moments of the 20 EOF and 200 EOF case using the ST/qG-FDT by455

Abramov and Majda (2007). The result is given in Figure 10 (top). Generally, the performance456

of the ST/qG-FDT is qualitatively similar to that of the qG-FDT (Figure 7). For both FDT al-457

gorithms the first moments are significantly better estimated compared to the second moments.458

Furthermore, the quality of the response of the first moments are equivalent. Nevertheless, we459

see an improvement in the ST/qG-FDT estimations in terms of spread for the second moments,460

in particular for δ 〈aaT〉. However, running the reduced models with ST/qG-FDT-adjusted clo-461

sure yield similar results compared to the models with qG-FDT-updated closure in Figure 6 (not462

shown). This might indicate an inherent issue of the ST/qG-FDT. However, the median of δ 〈saT〉463

estimated by ST/qG-FDT (Figure 10) stays roughly the same compared to the qG-FDT estimation464

(Figure 7). It turns out that for our simulations the deterministic part of the SGS parameterization465

is highly sensitive towards this specific moment. Thus, this might explain the lack of improvement466

in the low-order models with ST/qG-FDT adjusted closures.467

5. Summary and Discussion468

In this study we addressed the problem of data dependence of empirical tuning parameters and469

the resulting inability of models containing such parameters to respond correctly to external per-470

turbations. We considered the QG3LM of Marshall and Molteni (1993) as a toy atmosphere. In471

addition, we constructed a low-order climate model based on EOFs and equipped with a purely472
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data-driven deterministic or stochastic SGS parameterization. While the low-order model with473

both closures reproduced the statistics (in terms of both amplitude and correlation) of the QG3LM474

correctly, it generated an incorrect response if the system was perturbed by an anomalous forcing.475

This is a known issue of (semi) empirical low-order models (Achatz and Branstator 1999; Achatz476

and Opsteegh 2003b) which is due to the fact that the parameterization is tuned to the unperturbed477

statistics. Consequently, such low-order models are unsuitable for climate projections. However,478

we want to emphasize that this is a fundamental problem in climate modeling which is not only479

limited to low-order climate models. Even physical parameterization schemes such as radiation480

or convection contain to some degree empirical components (e.g., aerosol distribution, vegetation,481

or entrainment of convective cells). One could hope that the physical basis should make those482

closures more robust to climate change than their purely data-driven counterparts. However, there483

are indications that physical SGS closures suffer from data-dependence as well. Rockel and Geyer484

(2008), e.g., show that a regional climate model, tuned to simulate regional climate over middle485

Europe well, yields incorrect results if applied over Southern America without retuning. Schirber486

et al. (2015) show that several gravity-wave parameterization schemes can be tuned successfully487

to help a GCM simulate a realistic quasi-biennial oscillation. Yet, in a climate-change experiment488

the response of the quasi-biennial oscillation depends strongly on the chosen scheme.489

The present study follows the ansatz of Achatz et al. (2013) by tackling the problem by means490

of the FDT which is related to a corresponding response-theory approach of Lucarini and Wouters491

(2017). If the empirical parameters are based on a minimization of an objectively formulated error492

(i.e., it depends on the statistics of the system), à-priori estimations of the changes in the corre-493

sponding statistics could help reducing the data dependence. The study of Achatz et al. (2013),494

however, potentially suffered from the barotropic toy atmosphere used there, with relatively weak495

high-frequency variability, and hence limited applicability of stochastic approaches. The hypothe-496
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sis is that a setting with baroclinic instability and corresponding synoptic-scale activity should be497

better suited to an FDT ansatz. For a corresponding test, this study focusses on the most simple498

form of FDT: the qG-FDT. In addition, we considered two types of perturbations, namely local499

anomalous forcings (localized heat sources) and global anomalous forcings, represented up to a500

factor by individual EOFs.501

For both anomalous forcing types the estimations of the response of the first moments were502

remarkably accurate. The estimations of the second moments exhibited a systematically higher er-503

ror. This is consistent with Gritsun et al. (2008) who also show a generally higher error for second504

moments. In contrast to the literature (e.g., Gritsun and Branstator 2007; Gritsun et al. 2008), the505

problem in this study is even more challenging, since the reference used for the evaluation of the506

FDT is the true à-posteriori response of the perturbed QG3LM, including all nonlinearities. The507

large amount of data used in this study allows us to exclude a convergence problem. Moreover,508

we analyzed the response in the second moments with respect to its linearity. There we found no509

link between the (non)linearity of the response and the quality of the FDT estimations. At least for510

a transient response Majda et al. (2005, page 68) proved that the qG-FDT estimation of the first511

moment (δ 〈a〉) is more accurate than that of the second moment (δ 〈aaT〉).512

Furthermore, we found that the statistical moments containing the discretized SGS error s (i.e.,513

δ 〈s〉, δ 〈s2
i 〉 and δ 〈saT〉) experienced a trend, that is the error of the qG-FDT estimation increased514

with higher EOF truncations. This could be due to a larger contribution of the stable manifold515

(Gritsun and Lucarini 2017) at higher EOF truncations. On the other hand, it can also be under-516

stood by observing that the size of the SGS error gets smaller as the EOF truncation is relaxed.517

This results in a small signal-to-noise ratio for moments containing the discretized SGS error.518

Repeating the experiments with only half of the time series shows an increase in this trend.519
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The qG-FDT estimations of the statistics were used to update the closures. Here we distin-520

guished four cases: the à-priori low-order model (no change in the parameterization), the à-521

posteriori low-order model (retuned parameterization), the qG-FDT low-order model (closure up-522

dated with the qG-FDT estimations), and the rqG-FDT low-order model (closure updated with523

qG-FDT estimations of first moments only, see Achatz et al. 2013, for details).524

In general, for the response in mean and covariance of streamfunction the update of the deter-525

ministic closure by the qG-FDT yielded a better agreement with the QG3LM compared to the526

à-priori low-order model. However, for the response in covariance of streamfunction the result527

of the low-order models with EOF truncations below 200 EOFs were not useful (i.e., ε > 1). In528

those cases, the simple linear closure does not suffice to describe the SGS processes. For the 500529

EOF low-order models we found that the qG-FDT-updated closure starts to outperform the direct530

qG-FDT estimation of the response in both mean and covariance. Nevertheless, even a comparable531

quality to the direct qG-FDT result is already a success, since the low-order model provides a time532

series which can be further analyzed, whereas the FDT only provides a response.533

Overall, the qG-FDT estimations of the changes of the statistics worked better than in Achatz534

et al. (2013). This was to be expected since the QG3LM with its relatively fast baroclinic instability535

better fulfills the constrains of the qG-FDT. Consequently, our simulations show that discarding536

the FDT estimations of the second moments (i.e., using the rqG-FDT low-order model) yields537

inferior results compared to the qG-FDT low-order model, for all considered cases.538

If the forcing projects only on one of the first five EOFs (i.e., global anomalous forcing) instead539

of a combination of the first 20 EOFs (i.e., local anomalous forcing), the FDT performs signif-540

icantly better. Lutsko et al. (2015) argue that taking more EOFs into account results in higher541

uncertainty of the response operator, since higher EOFs are inherently more noisy. However, we542

consider quite long time series, so one would expect that the first 20 EOFs are sufficiently well543
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sampled. Furthermore, we are confident that enough data was used to construct the FDT response544

operators. In fact, using only 3 · 106 (or even less) days to generate the qG-FDT operators and545

comparing them to the 6 · 106-days-à-posteriori response yielded nearly the same results as pre-546

sented in this paper. Moreover, if we split up the 6 · 106 days time series into six parts and thus547

generate an ensemble of qG-FDT operators we can show that the mean operators are quite similar548

to the operators used in this study, while the ensemble spread is quite small. Thus, it seems that549

the worse performance of the FDT in case of the local anomalous forcing is due to its “hot-spot”550

nature which is in agreement with findings of Fuchs et al. (2015).551

Due to the overall worse performance of the FDT in the case of the local anomalous forcing,552

we were unable to obtain useful updates for the noise amplitude in the stochastic closure. There-553

fore, only for the global anomalous forcing a stochastic parameterization could be considered.554

Qualitatively, the reduced models with stochastic closure produce similar results compared to the555

deterministic case described above. However, quantitatively no significant improvement is evi-556

dent.557

The superior ST/qG-FDT blended algorithm, which was exemplary applied on the 20 EOF and558

200 EOF case, yielded an improvement, especially for δ 〈aaT〉. However, the SGS parameteriza-559

tion used in this study is highly sensitive to δ 〈saT〉. Therefore, the resulting closure correction was560

only marginally better compared to the qG-FDT result. Apparently, the derivations from Gaus-561

sianity are negligible in our study. Yet, because of the calculation of the tangent linear model, the562

computational cost of the ST/qG-FDT algorithm is significantly higher than that for the simple563

qG-FDT. Thus, we see our comparatively simple approach (i.e., using the qG-FDT) supplemen-564

tary to the more sophisticated ST/qG-FDT, at least if one is interested in the equilibrium response565

of the model.566

27



All in all, the FDT provides useful estimations of the changes of the statistics in a perturbed cli-567

mate which allows for a successful update of the empirical parameters in an atmospheric model.568

However, since the FDT is a linear response theory, this method can only be applied to small forc-569

ings. Furthermore, it is restricted to forcings which project into unstable directions of the attractor570

(Gritsun and Lucarini 2017). Still, FDT offers a first step towards climate-dependent tuning pa-571

rameters in data-driven SGS parameterizations. One possible route to reduce further the climate572

dependence of parameterizations would be to apply the present approach within the stochastic573

mode reduction procedure (Majda et al. 2001, 2003). If instead of the seamless approach (Franzke574

et al. 2005; Franzke and Majda 2006) the coefficients of the Ornstein-Uhlenbeck process are esti-575

mated directly (Dolaptchiev et al. 2013a,b; Zacharuk et al. 2018), the latter can be updated using576

the FDT. For future studies more complex models (e.g., GCMs), containing unbalanced motion577

(e.g., gravity waves), or moisture should be considered. In addition, it might be interesting to578

study whether the FDT is able to estimate the changes due to a realistic external forcing. A re-579

lated open issue is how the FDT (or other response-theory approaches) might be used to predict580

the sensitivity of tuning parameters of standard physical SGS parameterizations (e.g., convection,581

turbulence, gravity waves, clouds, etc.) to external conditions. Since climate change might oper-582

ate to a considerable degree via such SGS processes, this could eventually be quite relevant for583

sensitivity studies of the climate system as a whole.584

Acknowledgments. The authors thank Valerio Lucarini and the two anonymous reviewer for their585

helpful comments which led to an improvement of this manuscript. MP thanks Erwan Brisson for586

the useful discussion. MP and UA thank German Research Foundation (DFG) for partial support587

through grant AC 71/7-1. SD and MZ thank the DFG for partial support through grant DO 1819/1-588

1. AG received support from the Russian Foundation for Basic Research (grant 16-55-12015).589

28



APPENDIX A590

Total Energy Metric591

The state vector is defined as592

x =


νxm

n,1

νxm
n,2

νxm
n,3

≡


νψm
n,i=1

νψm
n,i=2

νψm
n,i=3

 , (A1)

where νψm
n,i is the spectral expansion coefficient of the streamfunction Ψ, m is the zonal wavenum-593

ber, n is the total wavenumber, and ν = 1 (ν = 2) denotes the real (imaginary) part of the coef-594

ficient, respectively. Furthermore, the boundary conditions of the QG3LM leads to trivial com-595

ponents for m = n = 0 and zero imaginary components for m = 0 and n ≥ 1 (Ehrendorfer 2000).596

Consequently, the state vector can be reduced to597

x =



x1

x2

...

xN


≡



1ψ0
1,1

1ψ0
1,2

...

2ψ21
21,3


, (A2)

where the maximum wavenumbers of 21 are given by the spectral truncation of T21. The total598

energy metric by Ehrendorfer (2000) is defined as599

MMM=



M̂MM0,1 0

M̂MM0,2

. . .

0 M̂MM21,21


, (A3)
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where the matrices on the diagonal are given by600

M̂MMm,n =
δm

3


n(n+1)+a2R−2

1 −a2R−2
1 0

−a2R−2
1 n(n+1)+a2R−2

1 +a2R−2
2 −a2R−2

2

0 −a2R−2
2 n(n+1)+a2R−2

2

 . (A4)

Here δm = 0.5 for m = 0 and equal to one otherwise, a = 6370 km is the earth’s radius, and601

R−2
1 = 700 km and R−2

2 = 450 km are the Rossby radii of deformation of the 200-500 hPa and602

500-800 hPa layer, respectively. In combination with the state vector (A2) this energy metric603

yields604

E = xTMMMx , (A5)

i.e., the total energy of the flow.605
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TABLE 1. Adjusted diffusion time scale [days] used in the low-order models (original value 2 days).

number of EOFs deterministic τH stochastic τH

20 1.0 0.4

50 1.3 0.6

100 1.2 0.6

200 1.9 1.1

500 2.6 2.2
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TABLE 2. Constant factors used for the calculation of the global anomalous forcing in units of 4Ω2 where

Ω = 2π day−1.

769

770

ε1 ε2 ε3 ε4 ε5

1√
45
·10−5 1√

10
·10−5 1√

3
·10−5 1

2 ·10−5 1√
2
·10−5
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c) the à-posteriori closure; d) with qG-FDT predicted closure corrections. For comparison790

the direct qG-FDT estimation of the response in variance of streamfunction is given in e).791

ε denotes the relative error (25) and cor is the pattern correlation calculated between the792

low-order model and the QG3LM, respectively. . . . . . . . . . . . . . 45793

Fig. 5. As Figure 4 but for response in meridional momentum flux [m2 s−2]. . . . . . . . . 46794

Fig. 6. Boxplot of the relative error of the response of the first moment (left) and covariance of795

streamfunction (right) between the low-order climate model with adjusted closures and the796

QG3LM with local anomalous forcing against the number of EOFs. For comparison also the797

direct qG-FDT estimation of the respective moment is plotted. The statistics for the boxplot798

come from the different forcing positions λc ∈ {0◦,30◦, . . . ,330◦}. . . . . . . . . 47799

Fig. 7. Same as Figure 3 but for the global anomalous forcings represented by EOFs ek with k ∈800

{1,2, . . . ,5}. For comparison with the local anomalous forcing case the results are shown as801

a boxplot. . . . . . . . . . . . . . . . . . . . . . . . 48802

Fig. 8. As Figure 6 but for the global anomalous forcings represented by EOFs ek with k ∈803

{1,2, . . . ,5}. For comparison with the local anomalous forcing case the results are shown as804

a boxplot. . . . . . . . . . . . . . . . . . . . . . . . 49805

Fig. 9. As Figure 8 but for the stochastic parameterization. . . . . . . . . . . . . 50806

Fig. 10. Same as Figure 3, however, showing the result of the ST/qG-FDT algorithm. . . . . . . 51807

41



FIG. 1. Mean streamfunction (upper row, 108 [m2 s−1]) and variance of streamfunction (lower row, 1013 [m4

s−2]) at 200 hPa. Panels a) and c) show the result of the QG3LM projected onto the first 500 EOFs; panels b) and

d) show the result of the 500 EOF low-order climate model with deterministic parameterization. ε denotes the

relative error (25) and cor is the pattern correlation calculated between the low-order model and the QG3LM,

respectively. Note that the color shading is adjusted and the same units are used for each row.
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FIG. 2. Response of the QG3LM at 200 hPa due to the local anomalous forcing at λc = 60◦ in a) mean

streamfunction 106 [m2 s−1] and c) zonal wind [m s−1]. Panels b) and d) show the response due to the global

anomalous forcing using the first EOF. The color shading is adjusted and the same units are used for each row.
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FIG. 3. Boxplot of the relative error between the qG-FDT and the true response of the moments (top) and

à-posteriori closure corrections (bottom) to the local anomalous forcing, against the number of EOFs. The

statistics for the boxplot come from the different forcing positions λc ∈ {0◦,30◦, . . . ,330◦}. The median is given

by the horizontal black line and the colored area denotes the interquartile range (25% to 75% percentile).
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FIG. 4. Response in variance of streamfunction 1013 [m4 s−2] at 200 hPa due to a local anomalous forcing

located at λc = 270◦. a) shows the response of the QG3LM projected onto 500 EOFs. The response of the

500 EOF low-order model with b) the à-priori SGS parameterization; c) the à-posteriori closure; d) with qG-

FDT predicted closure corrections. For comparison the direct qG-FDT estimation of the response in variance

of streamfunction is given in e). ε denotes the relative error (25) and cor is the pattern correlation calculated

between the low-order model and the QG3LM, respectively.

820

821

822

823

824

825

45



FIG. 5. As Figure 4 but for response in meridional momentum flux [m2 s−2].
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FIG. 6. Boxplot of the relative error of the response of the first moment (left) and covariance of streamfunction

(right) between the low-order climate model with adjusted closures and the QG3LM with local anomalous forc-

ing against the number of EOFs. For comparison also the direct qG-FDT estimation of the respective moment

is plotted. The statistics for the boxplot come from the different forcing positions λc ∈ {0◦,30◦, . . . ,330◦}.
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FIG. 7. Same as Figure 3 but for the global anomalous forcings represented by EOFs ek with k ∈ {1,2, . . . ,5}.

For comparison with the local anomalous forcing case the results are shown as a boxplot.
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FIG. 8. As Figure 6 but for the global anomalous forcings represented by EOFs ek with k ∈ {1,2, . . . ,5}. For

comparison with the local anomalous forcing case the results are shown as a boxplot.
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FIG. 9. As Figure 8 but for the stochastic parameterization.
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FIG. 10. Same as Figure 3, however, showing the result of the ST/qG-FDT algorithm.
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