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Abstract

An ensemble Kalman filter approach for improving the WaterGAP Global Hydrology

Model (WGHM) has been developed, which assimilates Gravity Recovery And Climate

Experiment (GRACE) data and calibrates the model parameters, simultaneously. The

method uses the model-derived states and satellite measurements and their error information

to determine updated water storage states. However, due to the fact that hydrological models

do not provide any error information, an empirical covariance matrix needs to be calculated.

In this paper, therefore, we analyse the combined state and parameter covariance matrix of

WGHM. We found that high correlations of up to 0.75 exist between calibration parameters

and storage compartments, and that these allow for an efficient calibration. In addition, a

sensitivity analysis is performed to identify those parameters that the water compartments

are most sensitive to. The performed analysis is important, since GRACE cannot observe

the model parameters directly. We found that those parameters, which the water storage is

most sensitive to, differ not only regionally, but also with respect to the water compartments.

Not unexpected, some climate input multipliers implemented in our model version have an

overall strong influence. We also found that the degree of sensitivity changes temporally,

e.g. between 0 (in summer) and 0.5 (in winter) for the snow storage.
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1 Introduction

The global water cycle is one of the most important pro-

cesses that ensure life on Earth. Modelling of continental

hydrology contributes to its understanding and quantifica-

tion. A global representation of the terrestrial water cycle

is, e.g. provided by the WaterGAP Global Hydrology Model
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(WGHM), which models the vertical and horizontal water

fluxes on a 0.5ı grid over the land area. A detailed description

of the model can be found e.g. in Döll et al. (2003) and

Müller Schmied et al. (2014). However, the degree of a

successful representation of the reality is limited due to

the simplified representation of hydrological processes and

due to the uncertainties of input data, e.g. empirical model

parameters, climate forcing and water use data. On the

other hand, the Gravity Recovery And Climate Experiment

(GRACE) satellite mission (Tapley et al. 2004) observes

the Earth’s time variable gravity field and methods have

been developed that allow one to separate the column-

integrated sum of the terrestrial water storage from the total

mass signal. Therefore, these measurements can be used to

improve hydrological models by calibrating their parameters

or adjusting their states to the observations.
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Two main approaches exist so far for the improvement of a

hydrological model by using GRACE measurements. Werth

and Günthner (2009) used filtered basin means of GRACE

total water storage (TWS) changes to improve WGHM.

Their aim was the calibration of the model parameters.

Zaitchik et al. (2008) used the same kind of observations to

improve NASA’s catchment land surface model (CLSM) by

assimilating GRACE data into it. To this end, they used an

ensemble Kalman smoother method.

An ensemble Kalman filter (EnKF) that simultaneously

calibrates the parameters of WGHM and assimilates GRACE

data into it has been proposed in Schumacher (2012). In

contrast to the previous studies, the approach presented

here uses TWS changes from GRACE defined on a grid

for the calibration and assimilation. Furthermore, the full

spatio-temporal GRACE TWS changes error information

was considered in the method. For implementing a Kalman

filter approach, an empirical model covariance matrix of

WGHM has to be determined. This is due to the fact that

hydrological models do not provide error information by

default. A detailed description of the method is given by

Eicker et al. (2014) in which investigations on the Kalman

filter gain matrix are presented.

In this paper, we focus on the analysis of the combined

model parameter-state covariance matrix to identify those

parameters that the water compartments are most sensitive

to. The results are presented with respect to the Mississippi

River Basin. In addition, a detailed sensitivity analysis was

performed with the aim (a) to assess the results of the local

model covariance matrix and (b) to identify those parameters

with the highest model sensitivity for the 33 largest river

basins in the world. These results are compared to those

in Werth and Günthner (2009). Additionally, we carried

out investigations on the water compartments and on the

evolution of sensitivity over time.

2 Data

2.1 WGHM

Within the EnKF approach, the modeled water storages

of canopy, snow, soil, river, surface water bodies and

groundwater from the current WaterGAP version 2.2 (Müller

Schmied et al. 2014) are integrated with the observed TWS

changes from GRACE. To determine improved water storage

values, the error information of model and measurements

are weighted against each other (Schumacher 2012). Since

WGHM does not provide error information, an empirical

model covariance matrix has to be determined. Here, the

influence of the empirical model input parameters on

the modeled water storages is considered. Some of these

parameters describe physio-geographic characteristics, e.g.

Table 1 Calibration parameters of WGHM with identification num-

ber (IN) and original value

IN Calibration parameter Value

1* Root depth multiplier 1

2* River roughness coefficient multiplier 1

3 Lake depth 5 m

4 Wetland depth 2 m

5 Surface water outflow coefficient 0.01/day

6* Net radiation multiplier 1

7 Priestley-Taylor coefficient (humid) 1.26

8 Priestley-Taylor coefficient (arid) 1.74

9 Max. daily potential evapotranspiration 15 mm/day

10 Max. canopy water height per leaf area 0.3 mm

11* Specific leaf area multiplier 1

12 Snow freeze temperature 0ıC

13 Snow melt temperature 0ıC

14* Degree day factor multiplier 1

15 Temperature gradient 0.006ıC/m

16* Groundwater factor multiplier 1

17* Max. groundwater recharge multiplier 1

18 Critical precipitation for groundwater recharge 10 mm/day

19 Groundwater outflow coefficient 0.01/day

20* Net abstraction surface water multiplier 1

21* Net abstraction groundwater multiplier 1

22* Precipitation multiplier 1

Parameters, marked with (*), are not integrated in the original

WaterGAP 2.2 version, but are extra parameters within the adapted

version used here

the lake depth. Other parameters are conceptual, such

as the groundwater outflow coefficient. Whereas it is

common that only one parameter associated with the soil

compartment (runoff coefficient 
 ) is used for calibration

to fit mean annual discharge to observed one (Döll et al.

2003), Werth and Günthner (2009) used the six to eight most

sensitive ones per river basin. Those calibration parameters,

which are considered in our EnKF approach, are listed in

Table 1.

2.2 GRACE TWS Changes

For the calibration and assimilation approach the ITG-

GRACE2010 monthly GRACE solutions were used for

which the full error information is available (http://www.

igg.uni-bonn.de/apmg/index.php?id=itg-grace2010). 0.5ı
�

0.5ı TWS grids are derived following Wahr et al. (1998).

The full monthly covariances of potential coefficients were

propagated to TWS. A suitable filter technique and an

approach to account for leakage effects due to filtering

are under investigations and will be reported in future work.

However, these choices do not affect the results presented

here.
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3 Method

3.1 Empirical Model Covariance Matrix

To estimate a combined empirical covariance matrix of

the states and parameters, first of all, a priori probability

density functions (PDF) have been chosen based on literature

(Kaspar 2004) and our own experience of more than 10 years

of model development for the model parameters. One of

the parameters was assumed to be uniformly distributed,

the others were assumed to have a triangular distribution,

which can be symmetric or asymmetric. An ensemble of

N D 60 calibration parameter sets was generated by

using a Monte Carlo approach taking into consideration

the above mentioned PDFs. For each ensemble member,

the model was run globally from 2002 to 2009 for which

ITG-GRACE2010 solutions are also available. Identical start

values of the cell water storage compartments were used

for each run. Time series of monthly averaged water storage

states corresponding to each grid cell were obtained as model

output for each ensemble member. The monthly regional

empirical covariance matrix Ce for one specific river basin

was calculated by using the parameter p and model state s

ensembles (e.g., Evensen 2009)

Ce D

1

N � 1
X0.X0/T : (1)

The mean reduced model prediction matrix X0 contains the

storage in all compartments for each grid cell in the specific

basin and the calibration parameter values for each of the

ensemble members in its columns. The covariance matrix

consists of three blocks

Ce D

�

Ce.s
�; s�/ Ce.s

�; p�/

Ce.p
�; s�/ Ce.p

�; p�/

�

: (2)

The first block Ce.s
�; s�/ contains the error information

with respect to the predicted model states, the second block

Ce.p
�; p�/ is related to the parameters. The last block

Ce.s
�; p�/ contains the relation between the model states

and parameters. To determine those parameters, which the

model compartments are most sensitive to, the correlations

between each parameter and the basin averaged water

compartments were calculated. Since GRACE does not

observe the parameters directly, the correlations justify

whether the observations will contribute in calibrating the

model parameters.

3.2 Sensitivity Analysis

Another possibility to identify those conceptual parame-

ters that relate to large model sensitivities can be derived

by performing a sensitivity analysis (e.g., Hamby 1994).

Here, the sensitivity index (SI), which is a simple approach,

and the Spearman’s rank correlation coefficient (SRCC),

which was used in Güntner et al. (2007), are chosen as

a measure of sensitivity. To determine the SI, first reali-

sations of a single model parameter are generated while

considering the others as constant. The SI measures the

influence of one single input parameter on the model output.

Therefore, the interpretation of the SI is straight forward:

It corresponds to a model covariance matrix for which

only one calibration parameter set is introduced while the

others are constant (not shown here). Note that in con-

trast, ensembles of all model parameters were generated

simultaneously when using the SRCC for assessment of

sensitivity. Here, the correlations of the model parameters

are considered. This corresponds to the information in the

empirical model covariance matrix, which is calculated after

running the model with an ensemble of all input parameters

(Sect. 1).

3.2.1 Sensitivity Index

The SI is a measure that reflects the relative difference

between the minimum and maximum model outputs Smin

and Smax when generating an ensemble of one model input

parameter with the others being constant (Hoffman and

Gardner 1983). SI is calculated by scaling the difference

between the minimum and maximum water storage output

within the ensemble as

SI D

Smax � Smin

Smax

: (3)

Although SI is a simple approach to identify parameters,

which the water compartments are most sensitive to, its

disadvantage is that it does not take the correlations between

parameters into account.

3.2.2 Spearman’s Rank Correlation Coefficient

Unlike SI, the SRCC also considers the correlations between

the calibration parameters. Further, it allows one to account

for nonlinear model equations by performing a rank trans-

formation of the parameters and states (Iman and Conover

1979). To apply this approach, sets of all parameters were

generated by using their given PDFs simultaneously. The

calibration parameter values and model output are sorted in

ascending order by their values leading to their ranks. Finally,

the Pearson’s correlation coefficient is determined with the

exception that the ranks of the i -th parameter RPi and the

water states RS are used instead of their values (Hamby

1994)

�i D

PN
nD1.RPin � RPi /.RSn � RS /

q

PN
nD1.RPin � RPi /

2
PN

nD1.RSn � RS /2

: (4)
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The results of the sensitivity analyses can be used

to verify the parameter-state correlations, which are

empirically determined as entries of the model covariance

matrix.

4 Results and Discussion

The analysis of the model covariance matrix and the sen-

sitivity analysis has been performed for all water com-

partments in the Mississippi River Basin. The results are

shown for the snow and soil compartment to provide an

example.

4.1 Correlations Between Model States
and Parameters

The correlations between the 22 calibration parameters and

the snow water storage for each grid cell in the Mississippi

River Basin were determined for the winter (Fig. 1a) and

the summer season (Fig. 1b). During winter, a high positive

correlation was identified with two of the parameters and

in most of the cells. Negative correlations were identified

between a few parameters and some of the cells. During

summer, nearly no correlations were found, since there is

usually no snow in the Mississippi Basin. To identify those

parameters, which the water compartments are most sensitive

to, the empirical covariance matrices were calculated for

each month of 2008 considered as the start of the integration

of GRACE data. Then a basin mean of the water compart-

parameter

g
ri
d

 c
e

ll

5 10 15 20

200

400

600

800

1000

1200

parameter
5 10 15 20

-1

-0.5

0

0.5

1
a) b)

Fig. 1 Correlations between the 22 model parameters and the snow

storage in each cell of the Mississippi River Basin for the (a) winter and

(b) summer season. See Table 1 for parameter names. In (a) the plus

and minus signs indicate whether the correlation is positive or negative

ments was determined. The time evolution of the correlations

between the parameters and the averaged snow and soil

compartment are shown in Fig. 2. Between the snow com-

partment and the snow melt temperature, precipitation mul-

tiplier, and groundwater factor multiplier, high correlations

exist during winter (Fig. 2a). The precipitation multiplier

represents a calibration factor applied to the observed daily

precipitation values. Scaled precipitation, which was stored

as snow, melts when the actual temperature is higher than the

snow melt temperature. The groundwater factor multiplier

represents a scaling factor for the calculated groundwater

recharge. Between the soil compartment and the root depth

multiplier, a calibration factor for the average root depth

of plants, and two parameters to determine the potential

evapotranspiration, high correlations were found all over the

year (Fig. 2b). In the original model version all multipliers

are one, i.e. the factors are now introduced for model cali-

bration. Note that regarding Fig. 2a, one observes almost no

ensemble spread over the months 4–10, since there is usually

no snow in the Basin (see Fig. 1b). This means that these

parameters can only be updated during winter. In contrast,

the parameters with respect to the soil compartment can

be calibrated during all seasons. This indicates nicely that

the influence of GRACE differs in each month, since the

degree of sensitivity changes over time. In addition, these

results suggest that the parameters have to be calibrated

at least for a full year, since the determination of e.g., an

updated snow melt or freeze temperature during summer is

not possible.

4.2 Regional Sensitivity Analysis

By using the SI, the high correlation between the snow stor-

age and the snow melt temperature, and precipitation multi-

plier respectively was confirmed (Fig. 2c). We found, how-

ever, that the groundwater factor multiplier has no impact on

the snow storage when measured by the SI. The magnitude

of the correlations, when evaluating the model covariance

matrix or the SI, is different: e.g. the maximum correla-

tion value concerning the snow melt temperature is 0.5

(Fig. 2a) or 0.8 (Fig. 2c) respectively. This is mainly due

to the fact that in case of the first method sets of all

parameters were generated, while only a set of one param-

eter is generated in case of the SI. However, the inter-

pretation of both approaches is the same: The snow melt

temperature is the most important parameter with respect

to the snow compartment. In summer, it is not possible to

update parameters that are directly associated with the snow

storage, since no correlations exist. For the soil compart-

ment, the parameters, which were identified by analysing the

covariance matrix, were also confirmed by evaluating the SI

(Fig. 2d).
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Fig. 2 Time evolution of the correlations between the 22 model param-

eters and the basin mean of the (a, c) snow and (b, d) soil compartment

evaluating the empirical model covariance matrix (a, b) and using

the sensitivity index (c, d). The parameters, which have the highest

correlations regarding the averaged compartment states, are listed in the

legend. The gray lines belong to the other parameters. See Table 1 for

parameter names

Considering the SRCC, all parameters with high correla-

tions for the snow and soil compartment were confirmed (not

shown here). This includes even the groundwater factor mul-

tiplier for the snow. It appears this correlation is introduced

through joint dependence on the other perturbed parameters,

and thus invisible for the SI.

In the developed EnKF approach, the empirical model

covariance matrix, which is computed by first generating

an ensemble of all model input parameters, is used in

order to determine the updated model states and calibration

parameters. This allows the consideration of the parameter,

state, and parameter-state correlations in the assimilation and

calibration procedure.

4.3 Global Sensitivity Analysis

In addition to the regional analysis, we also performed a

global sensitivity analysis to identify the parameters with the

highest model sensitivity for the 33 largest river basins in the

world. Here, the SRCC was calculated between the calibra-

tion parameters and the mean TWS. Different parameters,

which the modeled TWS output is most sensitive to, were

found for the basins (Figs. 3 and 4). For example, the TWS

in the Mississippi River Basin reacts the most sensitive to

the net radiation multiplier, as in numerous of the basins.

It seems that this calibration parameter has, along with the

river roughness coefficient and precipitation multiplier, an

overall strong influence. To make the results comparable to

the studies of Güntner et al. (2007) and Werth and Günthner

(2009), the SRCC was also determined between the calibra-

tion parameters and the mean annual amplitude of TWS as a

measure for sensitivity (not shown here). Our results confirm

some of those parameters with large model sensitivity in the

world’s largest river basins that were found in these studies,

e.g. the root depth multiplier and snow melt temperature

regarding the Mississippi River Basin. In contrast to these

studies, in which neither a net radiation nor a precipitation

multiplier were introduced, a strong dependence of the TWS

on the climate input was found here.
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1-Amazon: 6, 2, 1

25-Orinoco: 6, 2, 4

28-Tocantins: 6, 4, 22

26-Parana: 6, 2, 22

32-Yukon:

4, 2, 22 15-Mackenzie: 4, 22, 6

19-Nelson: 4, 22, 6

27-St. Lawrence:

5, 6, 22

17-Mississippi: 6, 2, 22

6-Colorado: 6, 13, 22

20-Niger: 4, 6, 22

21-Nile:

6, 22, 27-Congo: 6, 22, 2

33-Zambeze: 6, 22, 923-Okavango:

6, 4, 22

24-Orange: 6, 22, 2

11-Eyre: 4, 2, 9

18-Murray: 6, 22, 9

4-Bramaputra:

4, 2, 15

8-Danube: 6, 13, 2

9-Dnieper: 13, 6, 22

5-Volga: 6, 13, 22
22-Ob:

6, 4, 2

31-Yenisey:

6, 22, 2
14-Lena: 6, 2, 22

2-Amur: 6, 22, 2

10-Euphrates: 22, 6, 20

16-Mekong: 6, 2, 4

29-Yangtze: 6, 2, 4

3-Amu Darya: 22, 13, 20

13-Indus: 21, 2, 9

12-Ganges:

21, 2, 9

30-Yellow: 6, 21, 2

Fig. 3 The three parameters, which the monthly mean TWS output

of WGHM is most sensitive to, in the 33 largest river basins of the

world. See Table 1 for parameter names. The in the adapted model

version introduced river roughness coefficient (2), net radiation (6) and

precipitation (22) multipliers have, overall, a strong influence

basin
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Fig. 4 Spearman’s rank correlation coefficient between the calibration

parameters and the mean TWS in the 33 largest river basins of the world.

See Table 1 for parameter and Fig. 3 for basin names. The correlation

between the mean TWS and the humid (7) and arid (8) Priestley-Taylor

coefficient is shown for humid and arid regions, respectively

5 Conclusions and Outlook

The analysis of the combined model covariance matrix, as

well as the performed sensitivity analysis, indicates that

the correlations between the model states and parameters

enable the parameter calibration by GRACE measurements.

Moreover, these investigations could confirm some param-

eters which were identified to be most sensitive in pre-

vious studies (Güntner et al. 2007; Werth and Günthner

2009). Based on the global sensitivity analysis, a basin-

wise parameter calibration seems appropriate. By performing

the regional analysis, we found that the compartments are

sensitive to different model parameters. The time evolution

of the parameter-state correlations indicates that the impact

of GRACE changes over time. We plan to validate our

calibration results by performing a calibration run for 1 year.

Afterwards, the model will run for the following year, both

with the standard model parameters and the calibrated values.

The model states of both versions will then be compared to

the GRACE observations. One can also consider independent

data sets, e.g. discharge measurements, for validation. Along

with the parameter uncertainties, the uncertainties of climate

forcing and water use data will be included to obtain a

more realistic representation of the model covariance matrix.

Model improvement may also be affected by errors of the

background models for other Earth system components that

are used for separating TWS from the total mass signal

observed by GRACE (see e.g., Forootan et al. 2014). Inves-

tigations regarding these errors will be conducted in further

work.
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