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The interaction between locally monochromatic finite-ampikude mesoscale waves, their
nonlinearly induced higher harmonics, and a synoptic-sca flow is reconsidered, both
in the tropospheric regime of weak stratification and in the sratospheric regime of
moderately strong stratification. A review of the basic assmptions of quasi-geostrophic
theory on an f-plane yields all synoptic scales in terms of a minimal numbeof natural
variables, i.e. two out of the speed of sound, gravitationahcceleration and Coriolis
parameter. The wave scaling is defined so that all spatial an@mporal scales are shorter
by one order in the Rossby number, and by assuming their buoyacy field to be close
to static instability. WKB theory is applied, with the Rossby number as scale separation
parameter, combined with a systematic Rossby-number expaion of all fields. Classic
results for synoptic-scale-flow balances and inertia-graty wave (IGW) dynamics are
recovered. These are supplemented by explicit expressiofts the interaction between
mesoscale geostrophic modes (GM), a possibly somewhat deeked agent of horizontal
coupling in the atmosphere, and the synoptic-scale flow. Itsishown that IGW higher
harmonics are slaved to the basic IGW, and that their amplitude is one order of
magnitude smaller than the basic-wave amplitude. GM highetharmonics are not that
weak and they are in intense nonlinear interaction betweenttemselves and the basic
GM. Compressible dynamics plays a significant role in the saitospheric stratification
regime, where anelastic theory would yield insufficient reslts. Supplementing classic
derivations, it is moreover shown that in the absence of mesoale waves quasi-
geostrophic theory holds also in the stratospheric stratifiation regime.

Key Words: gravity waves; geostrophic flow; mesoscale; wave-mean-fitd@raction; parameterization; wave action;
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1. Introduction they must be parameterized because time and length scalesof m
parts of the IGW spectrum are too small to be resolved exiglici
Mesoscale waves and their interaction with large-scale fld@ravity-wave parameterizations were proposed, e.gLibgzen
are an important problem of atmospheric dynamics. TH&981), Holton (1982, Medvedev and Klaasse(1995, Hines
significant contribution of inertia-gravity waves (IGWg) the (1997), or Alexander and Dunkerto1999. Many of them are
mesoscale dynamics of the atmosphere is undisputed (dgsed on Wentzel-Kramers-Brillouin (WKB) theorBrétherton
Fritts and Alexander 2003 Kim et al. 2003 Alexanderetal. 1966 Grimshaw 19754; Muller 1976). This approach assumes a
2010. They are radiated by various processes, often propagateall variation of the wave properties frequency, wave nemmb
over large distances, and finally break, unless dissipated dnd amplitude over a wave length and a period. In its most
molecular diffusion and viscosity. Thereby and by otherlimear general form it leads to a closed system of equations desgrib
interactions they exert an impact on the momentum and enetbg propagation of frequency and wave number along rays,
budget of the large-scale flow. Neither in weather predictior in  usually the conservative transport of wave action, and the
climate simulations can corresponding effects be negle@éen interaction with the large-scale flow. The above-mentiotf@d/
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parameterizations, however, all take a single-columnpe®tive Stronger stratification, as e.g. in the stratosphere, doeseem
where horizontal inhomogeneities of the large-scale flo@ ato be have been fully consideredeitlin et al. (2003 indicate a
neglected as well as horizontal IGW propagation. Moredbety  derivation of quasigeostrophic theory with strong stregifion,
assume instantaneous steady-state IGW amplitudes raprese however within Boussinesq theory.
an equilibrium as would result after some adjustment time Therefore, supplementary approaches remain interesting.
from a steady lower-boundary IGW source and a steady-stddelti-scale asymptotics of the general compressible equsat
large-scale flow. These approximations allow the derivattd is such an approach. To the best of our knowledgemshaw
a wave-dissipation or non-acceleration paradigm, stativay (19750 first used this technique in a classic paper to analyze the
changes of the large scale flow can occur only when th@W-mean-flow interaction in a rotating atmosphere, foegsin
IGWs dissipate, e.g. by wave breaking. Crucial progressuin onon-hydrostatic IGWs with comparable horizontal and eatti
understanding of the IGW-mean-flow interaction was faaiitl scales. He assumes equal scale heights for pressure, ydensit
by the development of Generalized Lagrangian-Mean (GLM)hd entropy, as occur in the stratosphere. In the treatmfent o
theory by Andrews and Mcintyrg19783b), holding at arbitrary the IGW impact on the synoptic-scale flow he switches to a
IGW amplitudes. Based on this theorguhler and Mcintyre Lagrangian-mean approach, however, and derives a cotiserva
(1998 2003 2009 have analyzed the wave-dissipation paradigequation for a total PV consisting of quasi-geostrophic P\ a
in detail. They show that dropping the single-column anddye a wave contribution. A complete treatment within the Ewaleri
state assumptions leads to significant modifications. Theewaperspective, and a corresponding link to quasi-geostecabieiory
dissipation paradigm does not hold under these conditioms,an atmosphere with moderately strong stratification is no
as the horizontal refraction of IGWs from large-scale-flogiven. Finally, he does assume non-hydrostatic scalingtter
inhomogeneities goes along with substantial large-sit@e- waves so that an application of his results to hydrostatid/$G
accelerations. Moreover, it is the large-scale potentiatisity is not obviously possible. As a consequence of his scaling, e
(PV) that is affected primarily, and corresponding aca@lens the Coriolis frequency is assumed to be of the same order as
are determined from PV inversion. Therefore these acd@esa the Brunt-Vaisala frequency, whereas in the atmosphesedte
typically do not occur most strongly directly where the wavewvo orders of magnitude apart from each other. Another edlat
refraction takes place, or rather where the IGW forcing aftudy is the one byPlougonven and Zhan¢2007) where the
synoptic-scale PV is largest. This is the so-called remotereraction between synoptic-scale flow and IGWs is ingaséd
recoil effect Buhler and Mcintyre 2008 first demonstrated by in similar scaling regimes. They assume small wave ammiud
Bretherton(1969. Studies of the interaction between IGWs antiowever, and they do not take the step towards an efficient wav
solar tides using a general WKB IGW model without singlerepresentation by slowly varying wavenumbers and ampiud
column and steady-state approximatidgse(f and Achatz 20311 Just asYasudaet al. (2015gb) that work is rather addressing
Ribsteinet al. 2015 indeed show that these approximations leathe problem of IGW emission by balanced flow, as reviewed by
to a significant overestimation of the IGW-flux convergeneesl Plougonven and Zhan@014).
hence to an incorrect estimation of tidal amplitudes. Moreover, though IGWs are one possibility for mesoscale
As general as the GLM results are, however, with respegtves, there are also vortical geostrophic modes (GMs) lwhic
to IGW impacts on the large-scale flow, it remains difficultan contribute. In addition to IGWSs they arise as natural @sod
to directly implement them into weather-forecast and ctamain the analysis of linear dynamics (e §orchertet al. 2014 and
models. These are formulated in an Eulerian perspectivereds together with IGWs they form a complete modal basis of the
GLM assumes the resolved flow to be a Lagrangian meguart of the flow not attributable to accoustic modes. As shown
Moreover, Langrangian-mean results often stress issumsar below they also constitute the mesoscale part of a flow desari
potential-vorticity (PV) conservation and the relatedgmostic by quasigeostrophic theory. In the soundproof approxiomati
equation, whereas the practitioner is rather interesteskpiicit one can thus see the total dynamics as an interaction between
terms by which the standard prognostic equations for monanent synoptic-scale flow and mesoscale IGWs and GMs. The latter
and thermodynamics can be supplemented. Assuming low wédave been argued to be generated, e.g., by convective events
amplitudes, typically in terms of the ratio of displacemeniGage 1979Lilly 1983; Vallis et al. 1997 and to represent the
amplitude over wavelengthAndrews and Mclintyre (19781; development of fronts at the edge of synoptic-scale vastiae
Buhler and Mcintyre (1998 2003 2005 and Buhler (2009 the top of the tropospher&iflloch and Smith 2006 Beyond this
transform the GLM results in numerous examples to Eulerighey play a fundamental role in geostrophic adjustm&usEby
representations, in shallow-water or Boussinesq dynandcs 1938 and spontaneous imbalance (eRjougonven and Zhang
assuming the large-scale flow to satisfy, in the absence 2§14 where they represent the mesoscale part of the flow not
IGWSs, quasi-geostrophic dynamics. However, they do noé¢ givadiated away in the form of IGWs. The study Byllieset al.
corresponding results for general compressible dynaertical (2014 indicates that IGWs dominate the mesoscale spectrum in
displacement amplitudes below the vertical wavelengthiatply the upper troposphere. The respective role of GMs and IGWs in
IGWs significantly below the static instability or overtimg horizontal coupling of synoptic-scale flows is unclear, boer,
threshold, while waves of finite amplitudes are worthwhilso that the former still might deserve some attention. We are
consideration as well. As low-amplitude theories rely oinge not aware of an analysis that systematically analyzes the GM
able to use the wave amplitude as a small expansion paraitisterinteraction with a large-scale flow within the general coessible
not clear that their results can readily be used at finite Bnggs framework, and that develops a model for subgrid-scale G t
as well. Another issue is that classic quasi-geostrophéorth can be used as parameterization in simulations that do solvie
(Charney 1948Pedlosky 198yassumes the atmosphere to be ahe mesoscales. There is an extensive literature on iti@nac
weakly stratified as in the troposphere where the pressale sdbetween synoptic-scale Rossby waves and planetary-s@de m
height #,, is about an order of magnitude less than the potentidlews, using quasi-geostrophic theory. An overview is giweg.,
temperature scale heighty. As pointed out byKlein et al. (2010 by Vallis (2006. Most of it deals with zonally symmetric mean
the ratioH,/Hy decides how the highest-possible internal-waviows, but zonally inhomogeneous flows have also been disduss
frequency relates to a typical acoustic frequency. Theekaitgs (Plumb 198§. As detailed below, however, and is summarized in
the more care is advisable in the use of sound-proof modgls,table2, mesoscale GMs are not in the low-Rossby-number regime.
e.g. Bousinesq or anelastic models that are popular in &l fi Hence it is not clear whether quasi-geostrophic theoriesbea

(© 2016 Royal Meteorological Society Prepared usingjjrms4.cls



Interaction between synoptic-scale flow and a mesoscale wafield 3

used for them. In addition, differences could be possiblytdithe acceleration. Within this setting we consider a superfositf an

different scales involved. It is not obvious that planetsypoptic exclusively altitude-dependent hydrostatic referenceoaphere

versus snyoptic-mesoscale interactions follow the samamycs, at rest (with tropospheric or stratospheric stratificgti@rather

even within quasigeostrophic theory. general synoptic-scale flow, and a locally monochromatialsm
In summary, there seems to be room for a reconsiderationsuiale wave field.

the interaction between a synoptic-scale flow and a mesoscal

wave field of a locally monochromatic basic wave and it8.1. Reference-atmosphere scaling and synoptic scalitigrwi

nonlinearly induced higher harmonics, hydrostatic or nomuasi-geostrophic theory

hydrostatic, (1) holding at finite wave amplitudes, (2) ded

from the compressible equations, (3) holding in all inttngs As a first step we review the synoptic scaling which quasi-

stratification regimes, and (4) including the mean-flowrattion ~9geostrophic theory is built on (e edlosky 198). Synoptic-scale

with GMs. This is the plan of the work described here. It is affoW is assumed to have typical horizontal and vertical lengt

extension of the work oErimshaw(19751), but also of previous ScalesLs andHs. Velocity scales for horizontal and vertical wind

steps by some of the authorsdhatzet al. 201Q Klein 2011), areUs andWs. Density fluctuations are assumed sufficiently small

using multi-scale asymptotic theory, where a finite-arnplit t0 allow the estimate I

WKB theory for a non-rotating atmosphere has been derived Ws = L—SUS (5)

in a particular distinguished limit of the governing eqoas. o 3 o

The prediction by that theory of weak higher harmonicsThe synoptic time scal& matches the advective time scale

predominantly forced by large-scale gradients in the ¢yawvave L. H.

fluxes, has been validated numerically®igperet al. (2013. For Ts = . =W (6)

the sake of better readability results previously obtaimedthers, ° °

especiallyGrimshaw(1975h), are not just stated but re-derived, s@nd is assumed much longer than the inertial time scale,ato th

as to provide a complete picture. the Rossby numbe, is small:

The paper is structured as follows. In sect®we identify
the appropriate scales for our problem. These are used to non e = Us _ 1 _ o1 «1 7)
dimensionalize the equations of motion in sect&rnwhere the fLs [T

WKB ansatz is introduced as well, allowing for a basic wavg js assumed that the vertical synoptic length scale is coatge
and all its nonlinearly induced higher harmonics. Leadinger . a typical pressure scale heigh, (with BT /g = O(H,)), i.e.
results of the asymptotic analysis are derived in sectiofhese

include the relevant dispersion and polarization relatias well Hs o) ®)
as the eikonal ray-tracing equations. The next-order @mpsare Hp,
derived in sectior, which are used in sectidhfor the derivation

of the amplitude equations for both wave modes. These arevdereT'(z) is the temperature of the reference atmosphere. The
IGW wave-action conservation equation, and potentiatrephy horizontal synoptic length scale is set by the referenoesphere
equations for all GM harmonics. It is also shown that, due siratification. Based on observation and also consistetit wi
their dispersion relation IGWs are dominated to leadingeptry baroclinic instability theory Charney 1947 Eady 1949 it is

the basic wave, whereas in a GM solution all higher harmonigssumed to be of the same order as the internal Rossby
contribute to the same order. The leading-order IGW harasonideformation radiud.,; = NHp/f, i.e.

are found to be slaved to the basic wave. This is followed by an

analysis of the wave impact on the large-scale flow in section Ls _ O(1) 9)

7. Effectively the PV of the synoptic-scale flow is found to Lai

satisfy a quasi-geostrophic conservation equation, sapghted \ai e :
by a forcing due to the vertical curl of an Eliassen-Palm ﬂu\)/(vhere the Brunt-Vaisala frequency = \/g/Hj is here deter

. .. mined by a typical reference-atmosphere potential-teatper
convergence vector. The most essential results are suredan vy ayp P P "

dimensional form in sectioB. We conclude with a discussion inscale height Hy, i.e. 9/(d9./dz) = O(Hy). .The stratification
depends on the atmospheric layer. Assuming a constant tempe

sectiond. ature lapse raté = —dT/dz one finds for a hydrostatic reference
) . atmosphere
2. Scaling for synoptic-scale flow and for small-scale waves H R r
=2 (10
Hy cp g/cp

We assume inviscid and continuously stratified dynamicsron a - o
f-plane (e.g.Durran 1989, with Coriolis parameterf, without In the weakly stratified troposphere a characteristic lapse

external sources or sinks, rate isT' ~ 6.5K/km and henceH,/Hy ~ 0.1 = O(e) and the
mid-latitude ratio between squared inertia and stratificat
i 2 2 _ 4 .
@Jrfezxu — eV @ is f“/N“=0("). Here, hgwever, we are also |ntgrgsted
Dt in the more strongly stratified case, more characteristic fo
Dw 01 _ o) the stratosphere, where ~ —5K/km and thereforeH,,/Hy ~
D - Cp a g ( ) 2 2 2 5 .
t z 0.4 = 0O(1), so thatf/N* = f°Hy/g = O(e”), assuming equal
Do _ 0 (3) pressure scale height in troposphere and stratosphegecaihibe
e R Dt summarized by
D—: +—7nV.v = 0 (4) I
v 7 = 06 (11)
Hy

where v and w are the horizontal and vertical components fg

of the total wind v, respectively.c¢, and ¢y =¢, — R are Nz = (’)(55_a) 12)
the specific heat capacities at constant volume and pressure

respectivley, withr the ideal gas constant of dry airis potential where« is either 1 (weak stratification) or 0 (moderately strong
temperature,= the Exner pressure, angd the gravitational stratification). Hence, witlL.; = /gH,/f the external Rosssby
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deformation radius, Rossby number Ro= Y= —

JL: —°¢
L2 L2 i, . " Froude number Fr= 34 = (’)(52)
L2 © ( Ld2) =0 (E) =0 (13) internal Burger number Bu; = ( Ig‘z/f) — (%’)2
=0(1

B _ (Hp) —0 (i) — 0B/ (14) on

Ls Lai N external Burger number Bu = ( gL:/f =09
The classic derivation of quasigeostrophic theory (Beglosky Mach number Ma= —pe = O[e>t)/?]
1987 assumes weak stratification & 1). A result below will be . _ . _ o) (5-0)/2
that it also holds for moderately strong stratificatian- 0). The aspect ratio ap = 73 =0k ]

estimates above are thus consistent for both cases. Table 1. Relevant flow numbers for the reference atmosplimeléa synoptic-
For the scaling of the dynamic variables we then observe ti$5&€ flow

geostrophic equilibrium implies for the synoptic-scalenEmx

pressure fluctuations” = = — 7, together with the order-of-

magnitude equality of vertical length scale and the pressoale

height, and (3), that The horizontal length scale is chosen so that both stratdicand

rotation affect the IGW intrinsic frequency. With the Boussinesq

W_, o <stLs> Y (stLs> o <£stLs> dispersion relation as an indicator (eSyitherland 201))i.e.
T cpdT epT cp gHp o M2 N 417
R L3 1 W T 2 me (25)
= (’)<——§s> :(’)(5 +O‘> (15) TE+m
cp Ly

wherek and ! are typical horizontal wave numbers irn and
Likewise hydrostatic equilibrium yields for the synopticale y-direction, the corresponding horizontal length scaleLis=

potential-temperature fluctuations 1/vk? +12 so that equal impact of rotation and stratification
) ) . ) implies, using {4),
0 _o(2m/02) o (T ) _p (@) Z opite ) )
0 87’(’/82 g/cp0 R Hw -0 f -0 5—o 26
(16) Tz —O\az) =06 ) (26)
Moreover, geostrophic equilibrium implies
_, - , and thus
cplm cp ™ RT cpm L —
Us=0[2 —o(2Z =02 24\/RT
< Lsf > <R T LSf) (R T Ls Ly = 67(570‘)/2[‘[71; = 6(2+a)/2\/ RT()()/f =eLg (27)
17)
so that the appropriate horizontal-velocity scale is Likewise we deduce that the IGW time scdlg = 1/& is
U, = e+)/2 /BT (18) Tw=1/f = eTs (28)

where Ty is a typical mid-altitude value of tropospheric orThis is consistent with the assumption of an IGW field influehc
stratospheric temperature. In other words, the Mach nuriserby the Coriolis force. As is shown below, it is also in agreeme
Ma = Us /v/RTpo = O[e*T%)/2]. Using the definition7) of the  with the IGW time scaling to be obtained from the Doppler term
Rossby number, the aspect ratigl), and ), then also yields and hence also the absolute frequency.

The scaling of the dynamic variables is chosen so that it

Ws = ¢/*\/RTyp (19)  represents an IGW close to breaking by overturning of patent
Ls = &**\/RTp/f (20) temperature surfaces. This point of static instabilityeiaahed as
52 soon as the wave has an amplitude allowing local negatieakr
Hs = &""RIvo/f @1) " Gerivatives of total potential temperature,
while we remember from7) that _ )
83 [9 TR (9w e“k"““”)} <0 (29)
To=c'/f (22) ¢

) ) wheref,, is the wave’s potential-temperature amplitude. At the
We remark that the order-of-magnitude equality/6f and the hoint of marginal stability it satisfies

pressure scale heigli, then also implies the scaling

Ow 11d6 Huw a
=<2 R @  Foolmm)-o(F) o e

Certainly one could as well get from thigRTpo, roughly the s follows from (1), the order-of-magnitude equality &f, and

sound speed, in terms gfand f and express all scales in termsHp’ and @4). This also implies an IGW buoyancy scaling
of those constants. This would not change the results below.

summary of relevant flow numbers is given in Tab. Ow
Y ¢ w =g = O(N"Hu) (31)
2.2. Scaling of inertia-gravity waves close to breaking
Referring to buoyancy dynamics one can see that the wave
Now consider small-scale inertia-gravity waves (IGWs)rstimt amplitudes considered are finite, i.e. the vertical-dispiaent
a typical vertical wavenumber, and corresponding vertical scaleelmplitudeBw/N2 is of the same magnitude as the vertical length

Hy = 1/m obey scale of the waves. To obtain from this the horizontal-windls
of the IGWs, we use the polarization relation between their
Hy =¢Hs = 57/2\/RT00/f (24) horizontal-wind amplitudé/,, in z—direction, e.g., and buoyancy,
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Interaction between synoptic-scale flow and a mesoscale wafield 5

as also derived further below, seep), to estimate wave Rossby number Row = fULw =0(1)
) wave Froude number Fro = NUﬁ =0(1)
k& 4ilf 0 - N _ N 2
Uw =0 (ZmTQf T Bu > (32) internal wave Burger number Bu;,, = ( gz/f)
2

which can be simplified by obtaining from the dispersiontieta

) Lw
=0E"79
~2 2 2 2
w*—=N" m- L3 N
P v i O (H%) (33) wave Mach number May, = TR
= 0[T9)/%] = Ma
Since bothkw and!if are O (f/Lw), this shows, together with  wave aspect ratio agw = ILf_w = 0[e(5=)/2
(31), that we can assume for the IGW horizontal-wind scale =ap
Table 2. Relevant flow numbers for the small-scale wave corapo
Uw = fLw =T/ /RTy = Us (34)

The horizontal-wind scales of synoptic-scale flow and IGW a% Nondi ional . d WKB
thus assumed to be identical. Moreover, the IGW time scafestu ™ ondimensional equations an ansatz
out to also be the advective time scale, iig. = Lw /Uw. This 54
also implies that the Doppler term in the IGW dispersiontiefa

is in agreement with the IGW time scaling as well, as noted@bo The |GW scaling defined above is now used to non-

Likewise the vertical-wind scale is derived from the Bounssiq  dimensionalize the equations of motion without frictioealing

polarization relation between IGW vertical-wind amplieit.,  and heat conduction. Replacing in the basic equatibns ()
and By, see (66) below,

Nondimensionalization of the equations of motion

(w,w) —  (Uwu, Wyw) (39)
W = O (N2 Bw) (35) (x,y,2,t) — [Lw(z,y), Hoz, Twt] (40)
0,m) — (Tool, ) (41)
Hence the IGW vertical-wind scale can be assumed to be fo=th (42)
ields the non-dimensional equations
Ww = fHuw =e"/?>\/RTo0 = Ws (36 Y a
24a [ Du _ %
Also the vertical-wind scale can be assumed identical witt t © ( Dt foe= x u) N Rgvhﬁ (43)
of the synoptic-scale flow. For an estimate of the Exnergunes .7 Duw cp , O
scaling in a marginally stable IGW we use the corresponding Dt 395 € (44)
polarization relation for the Exner-pressure IGW ampltudee Dy 0 45
(167) below, to estimate Dt (45)
) Dr + va v = 0 (46)
i &> — N? By, Dt
e G 57
cp For later reference we also remark that the equation of state
Since &? = O(f?) < N? this implies together withJ1), 0 = p= P00 ev/R (47)
O(Two), N? = g/Hy, andH,, /H, = O(cHs/Hp) = O(e) thatan Ro"
appropriate scaling is becomes
p=n/"g (48)
_ 24« R _ 24« . . . . . .
Hw =0 (¢ o) o@E"") (38) if poo = poo/RToo is used to non-dimensionalize the density.

3.2. Multi-scale asymptotics and WKB ansatz
The IGW Exner-pressure fluctuations scale witha? as in ymp

incompressible flow and are extremely weak. As a consequenge the following we consider particular solutions of the
sound waves are suppressed in this scaling regime. compressible equations that are a superposition of a refere
We conclude this section by the remark that an analogognosphere at rest, a synoptic-scale flow, a locally morwcatic
analysis of the polarization relation$gp) — (167) below for the basic-wave field (IGW or GM), and its higher harmonics. The
dynamic scaling of a geostrophic mode (GM) close to bregkingiter are added as they will inevitably be forced by nordine
generated by the processes named above and brought to lafggractions. The length and time scales of the synoptidesc
amplitudes by various nonlinear interactions, e.g. waeam flow are (L, Hs,Ts) = (Lw/e, Hw/¢c, Tw/<), Which we express
flow interactions or harmonic-harmonic interactions ascdbed by letting the synoptic-scale fields depend on the compdesse
below, yields exactly the same scaling as for IGWSs, with thebordinates
exception that its vertical wind vanishes. A summary ofvafg (X,T) =e(x,t). (49)
flow numbers for the small-scale waves is given in TaiNotably
not only IGWs but also mesoscale GMs have a Rossby num
that is not small, since both its horizontal-wind ampliteatel the —0,1) . =()
advecting synoptic-scale wind are of the same magnitudéewh(¢”), can be encoded by letting=©""" + <6 (2), with
the length scale is shorter than the synoptic length scale! 8" a constant of order unity, and onE(l) depending on

J reference atmosphere can be characterized as folloaesk W
potential-temperature stratification, where=1 and H.,/Hy =
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6 Achatz et al.

Z. Moderately strong stratification, whete= 0 and H,,/Hy = ¢ < 1, setting
O(¢), can be described by Iettin§:§(0’0)(z), where now

a*0 depends or¥. In both cases, howevet],, /H, = O(e) SO v = ZsjVéj)(X,T)
that the reference-atmosphere Exner-pressure field hasliade j=0
order term depending ai. We summarize this by letting © oo ) B (X,T
+R DS IVY(X, )T (56)
B=1j=0
7= Y 8z 0 = Y 8912+ def (x,1)
=0 Jj=0 Jj=0
. —(0) _ =(0,1) —(0,0) o S i
W(ith © 7 (Z)=a0O +(1—-a)© " (Z)(50) +eltop Z Z Ej@(Bj)(X7 T)e BeX. 1/ (57)
s =1;=0
7 o= Y V(). (51) . =t .
7=0 To= Z ejﬁ(])(Z) +elte Z z:‘jl'[éj)(X7 T)
j=0 j=0
This way the leading-order term of the potential tempegatur +52+aé}?z Zajﬂ(ﬁj)(X,T)eZ'B‘b(X’T)/E (58)
depends onZ only in the case with moderately strong B=1;=0

stratification, wherex = 0, and the stratification is ) _
whered” andTT"” are due to the reference atmosphere, all terms
proportional to the phase factarsp i8¢ /< are contributions from
the wave (subscript 1 for the basic wave, afd> 2 for its
(52) pth harmonic), and the rest constitutes the synoptic-scalé p
(subscript 0). The equation of state then also implies

(9_5 e a@(a)
oz oz

- E i) 14+«
The wave field is assumed to have the following scaling pigg R(2)+0E) (59)

properties: (1) Wavelengths and periods of the basic wage ar

characterized by the wave scales assumed above. (2) They wdnere

in space and time, in response to the interaction with thepsty: v /R

scale wind. The spatial and time scales of these variatiogs as0) o PO 7 _ 50O (v ot eW
therefore the synoptic scales. (3) Also the wave amplituate & = ONE =0k - R 5O g©
corresponding weak spatial and temporal dependence. @ose (60)
but below the breaking amplitude this is a realistic assionpt

as the non-smoothness of wave amplitudes arises as a résu#t.o Leading-order results: equilibria, dispersion and

a turbulent breaking process, but not before (Achatz 200). polarization relations, eikonal equations

Even at the breaking amplitude, howevé®loniet al. (2016

show for the non-rotating case that WKB theory can reprodul¥® now insert the expansiorisg) — (58) into the non-dimensional
the fully nonlinear dynamics surprisingly well. (4) The lasave equations43) — (46), collect the leading-order terms and use these

is supplemented by all its higher harmonics. In the case ef tﬁ)r first results. Her_eby we discriminate betvyeen the rethpec
horizontal wind inz-direction, e.g., this is expressed via wave parts, proportional to the phase fatop if¢/= each, and
' ' mean-flow terms, where no phase factor appears.

4.1. Leading orders of the equations of motion

_ iBH(X,T
u(x,t) =R Z Up(X,T)e /e G3) The leading-order terms of the Exner-pressure equatiéhdre
p=1 O(1). There is just a wave part

PORY gk v el — (61)

with amplitudes Uz and phasesB¢/e. The basic wave is £
=1

represented by = 1, while 3 > 2 indicates the higher harmonics.
Time derivative and spatial gradient of the basic-wave ehagie|ding for all 3
define the local frequencys and local wave numberk, k-Vg))ZO (62)

respectively, i.e. ) _ )
The leading-order velocity amplitudes of the wave part are

orthogonal to the local wavenumber vector. This solendidal
property of the wave velocity field helps eliminating numeso

w(X,T) = —g (f) = —g—? (54) nonlinear advection terms in the treatment below.
t\e Next we turn to the entropy equatiod). One finds that the
K(X,T) = Vx (Q) — Vxo (55) Ieading-qrder terms ar®(s' ). Within these the mean-flow
€ contributions yield
G
(0d® " _
Wy 7 = 0 (63)
In accordance with the scaling analysis above, usirig, (16), or
(30), (34), (36), and @38), all fields are now expanded in terms of Wéo) =0 (64)

(© 2016 Royal Meteorological Society Prepared usingjjrms4.cls



Interaction between synoptic-scale flow and a mesoscale wafield 7

This reproduces the well-known result that the leading ordé.2. Dispersion relation, leading-order wave amplitudascl
synoptic-scale (geostrophically balanced, see belowji\was no polarization relations

vertical component. In the remaining wave contributionsfing

eliminate the nonlinear term bys?), leaving us with the linear The leading-order wave contributiong?, (70), (65)/No, and

buoyancy equations (62) can be summarized as
_ iﬂ&)BéO) + Wﬁ(O)NOQ -0 (65) —iw  —fo 0 0 iBk
fo =By 0 0 iBl
where 0= 0 0 0 -No ipm |z (74)
o=w-k- vV (66) 0 0 Ny —iBs 0
. . . S ipk Bl ifm 0 0
is the non-dimensional intrinsic frequency,
M (Bk, B
O @E;O) 5(Bk, Bw)
Bé ) = 5® (67)  with

t —
?rg the r:jon-dimensional leading-order wave buoyancy ampli Z(BO) = (Uéo),VB(O)yWéo)vBéo)/Nm%G(O)Hg))) (75)
udes, an

N2 1 do 68 Nontrivial basic-wave amplitudes requidet(1;) = 0, yielding
0= 50 0z 68) gither
w=0 (76)
is the non-dimensional squared reference-atmosphere t-Brun
Vaisala frequency. which is the GM solution, or
The leading terms a®(¢) in the vertical momentum equation . 5 o
(44), and ofO(£?) in the weakly stratified caser(= 1), yield 52— No (K" +1°) + fgm 77
m2
di”  R/e a1 Rjc, 8"

which is the dispersion relation for hydrostatic IGWSs. ligit be
worthwhile stressing that the GM is only balanced in the lloca
) ) o and non-inertial reference frame of the synoptic-scale.flovthe
This reflects hydrostatic equilibrium of the reference apiwere global reference frame at rest it oscillates at a high fraquedue

at leading order. to advection by the spatially and time dependent synojtites
The O(2T%) terms of @4) reflect in their wave part again gou. y P Y P Y

hydrostatic balance,

= and (ifa = 1)

iz ~ g0’ iz ~ 5050

The structure of basic wave and higher harmonics of eitreer th
GM or the IGW is given by the null vector af/z, usingw from

0 . Ccp—=(0) (0
- Bé )+ Zﬁm%@ H(g ) =0, (70)  (76) or (77). One obtains
wherem is the non-dimensional vertical wavenumber. The mean- B2k — ifoes x Ak B
flow part yields, usingf4), and again9), U(BO) — h T 0 ;2 h iﬂﬁm (78)
wo—Jg
0 0 —(a) \ 2 0 iBw (0
oy’ _ Rr/e, |6 (87 1) wi = By (79)
o0z @(0) @(0) @(0) 0
(0)
e (80)
which expresses the hydrostatic equilibrium of the symeptiale R s ipm

flow. The second term in the brackets is neither horizontadly

time dependent, and hence does not have much relevanceefor tHf* Notable difference arises, however, in the higher-haiomn
following. wave amplitudes: In the IGW case, due to the dispersiveriess o

( the dispersion relation}/s is nonsingular fors > 2. Hence the

Finally we analyze the horizontal momentum equatidB) - g k ) i
leading-order higher harmonics of a IGW basic wave vanish,

There the leading order §(c2**). Once more the nonlinear term

vanishes due t&5@), leaving the wave contributions

z{ = 0 for IGWs and § > 2 (81)

aarr(0) o), . Cp =(0)+(0)
- U . x U k,—=0"II,” =0 72 . . . .
WeUp" + foex x Uy + bk, R B (72) The GM dispersion relation, however, satistigsk) = 0 = 5w,

© ) ©) so thatdet(Mg) = 0 for all 3. Thus the leading-order GM higher
where U;” is the horizontal component d¥ ", andk; the nharmonics do not vanish,

horizontal component of the non-dimensional wavenumblee T

mean-flow part reads Z(ﬁo) # 0 for GMs and all 8 (82)
foes x U = f%@%mngm (73) and they satisfy the polarization relationg8( — (80). The

difference between the two cases lies in the fact that GMs
The latter expresses the geostrophic equilibrium of th@gticr can force higher harmonics which are GMs as well, whereas
scale flow. Clearly the hydrostatic and geostrophic equilib  IGW higher harmonics cannot be IGWs so that the basic-wave
are in agreement with the original expectations. We alsatpointeraction with its higher harmonics is non-resonant aadl$ to
out that for none of the leading-order results we had to tdeor a response at the next orderdnas discussed below in section
weak wave amplitudes. The latter are indeed allowed to beecld.2.4 While the GM results are thus less trivial than in the
to the level of static instability, and it iexclusively the scale IGW case they still provide valuable information in form biet
separation, combined with the Boussinesq-type soleritydal polarization relations above and the amplitude equati@nived
the wave velocities, that sorts out all the nonlinear terms below.

(© 2016 Royal Meteorological Society Prepared usingjjrms4.cls



8 Achatz et al.

4.3. Eikonal equations

From (77) follows the IGW dispersion relation

w = QX,T,k)
2 2
= k- Uux,1)+ \/NO (Z)(k:;ﬂ) fom? (g3

Bothw andk depend orn(X, 7'), and they satisfy by definition

ok 0 0
aT _VX¢:VX_¢ =-Vxw

aT aT (84)

From @83) and @4) follow the eikonal equations, with, = V.
the local group velocity,

o0

part is needed, i.e.

)
(1-a) (a_T +ul. vX,h) (")

EﬂVX A(POVEY) =0

cy pO) (91)

In the weakly stratified caser (= 1), wheree” isa constant, this
amounts via0) to Vx - (E(O)Vél)) = 0, i.e. the leading-order
ageostrophic mass flux is non-divergent. In case with moelgra
strong stratification ¢ = 0) the leading-order synoptic-scale
flow exhibits elastic compressibility effects that would not be
reproduced by a before-hand Boussinesq or anelastic ansatz

(8%+cg~vx)w = a7 (85)
Likewise, from the wave part of th&(c2+*) of the entropy
(8% +cg- Vx) k = —-VxQ (86) equation(45) one obtains, after division b%@(o), and using
(89),
that can be used for predicting frequency and wavenumbdneln
present context they are (1)
Bg &
( 9 oul &) ey oW
—+cg~VX)w = k- 7 (0) (0)
oT oT B o 0) Bﬁ Vﬁ 0)
9 = \ar t Y0 VxR 5@ VX%
SmteVx )k = = (VxUl) K © No®
oT BO
K2+ 12 dNG —ik- VN2
wom? az & @8 N(f) .
1
With the last term in §8) removed these eikonal equations also +7_(0) Z
hold for the GMs. For these waves the group velocity equads th 2No®" " pr=1p7=1

. . . . . 0
leading-order synoptic-scale horizontal wind, i®;,= Ué ) for D (5'//5/7 ng)) @g),}(; (8'+ 8" - B)
the GMs. .
+D(=p"/8 V) e5) 6 (8 - 8" - )
5. Next-order equations
AT A0 0) ¢ ( at "o

The leading-order equations have established well-known D ( B8V ) @5”6( pF+s ﬁ)} (92)
equilibria for the synoptic-scale flow, and the Boussinesq
dispersion and polarization relations for hydrostatic easince
the vert|cal scale of the waves was a;sumgd to be sma]lgneby Where B = (9(1)/@(0) are the first-order nondimensional
order ine, than the density scale height, it is not surprising thai B g I

- . wave-buoyancy amplitudes, and where we use the operator
the waves are found to locally follow Boussinesq dynamice. W
stress again that all these results hold at finite wave ancigls,
close to the level of static instability. What has not bearched
so far is whether and how the wave amplitude responds to the
synoptic-scale flow, and whether and how waves can influence
the latter. This can be settled by considering the respectixt

orders of the basic equations. In this section the nextrdefens  Due to @1) the nonlinear terms vanish in the IGW case. Some
will be identified. They will be used in sectidifor the derivation nonlinearities remain even there' however’ in the mean.mml,
of wave-amplitude equations, and in sectiofor analyzing the yielding with the help of 89)
wave impact on the synoptic-scale flow.
Using ©0), the wave part of thed(¢) of the Exner-pressure
equation(46) yields ( d

ar uy”- VX,h) ol + wVe g

D\ V) = ﬁ [vx : (ﬁ‘o)v)} ~V.Vx  (93)

; (€] 1 5(0)1,(0)
k-Vy'=——=Vx- (P "V 89 ~
Bk Vg = —om VX (Pv) (89) B B e IR R
, : P ORGE B OB
while the mean-flow part is p=1
Vx -V =0 (90)

The synoptic-scale potential temperature is forced by theew
entropy flux convergence. In the IGW case only the basic wave

. . . 0) .
The latter is expected sincé4) establishesV;”’ = 0, and since contributes to the latter.

the leading-order horizontal synoptic-scale flow is in gexshic . . .
equilibrium according to 13), and therefore non-divergent. N theO(c***) terms in thevertical-momentum equatic@4)
Finally, from the nextO(c2) terms in ¢6) only the mean-flow we make use OWO(O) = 0, and of the hydrostatic equilibriung9).

(© 2016 Royal Meteorological Society Prepared usingjjrms4.cls



Interaction between synoptic-scale flow and a mesoscale wafield 9

The remaining wave parts then are

. —=(0
-BYY + zﬁmc—p@( 'n)

a9 cp 5(0) O [ =(a) _ (0)
=-38 55 5% 95z [ T+ 1), }
Lim [Oc@( @) +(1-a) @80)} H(ﬁo)

1—acp

DIDY

B/ 1 B// 1
ol (O)
+i m@lg,

iB"m @(O)HéOH)a (ﬂ/ +8" - ﬁ)

s (8~ 4"~ 9)

~ig"me)n ;3? 5(—B +p" - B)} (95)

This describes the impact of the wave-momentum flux
convergences, but in the moderately-strongly stratifiesé ¢a =

0) also of contributions of potential-temperature and Exner-
pressure fluctuations to an elastic mean pressure-gradiug,

on the synoptic-scale horizontal floW.seems thus important to
take the route from the fully compressible equations in ord

to miss potentially essential aspecidso here the wave impact is

in the IGW case only due to the basic wave. The net wave impact
on the mean flow will be discussed further below. First, havev
we address the mean-flow impact on the wave amplitude.

6. Wave-action conservation and potential-enstrophy
equations

The wave equations can lead us to the prediction of the IGW

Again the nonlinear terms vanish in the IGW case. They also @gplitude via the concept of wave-action conservationewike
not appear in the weakly stratified case. The correspondeanm the GM amplitudes can be predicted from coupled potential-

flow part is not needed below.

enstrophy equations. One first derives the wave-energyehgo

The terms of0(s3+%) in the horizontal-momentum equationthen reformulates pressure flux and the various productions,

(43) have the wave parts

~iBeUY) + fe. x Bk, UY) + ifky, Cp@“))H(l)

i) ,
- (a_T +Uul0 vy h) Uy — sk, - viVul)

v vxul) - 28
—%@g)) (1 — Oé) VX_,hHgO)
Cp . —() 0 0
~ZLigk, [a@ +(1-a)6f )} 1)
1 o0 o0
=PI
B'=1p8"=1
[ (ﬁ”/ﬁ V(O)) U(BO’2 (1—
x5 (8" +8" - B)
+[p (=878 V) Ug)
+(1 - a)if"k, Lo }
X5(ﬂ/fﬂ”7ﬂ)
+[p (=878 vY") U

60 *11(0)
el )]

5(—B'+B”—B)}

1y, €p (0)7(0)
@ik, L6 HB,,}

—(1—a)if’k,,

(96)

Here as well the nonlinear terms vanish in the IGW case. The

corresponding mean-flow part finally yields, again usiég) @énd
(89),

9
<8_T + U(O) . VX,h) Uéo) + foez x Uél)

cp—=(0) 1
= 28Vl

7% {ag(a) +(1-
P(O) Z V(o

l—ac - (0)7(0)*
+ E%Zzﬁkh@ﬁ Ty,
B=1

Q) @goq VIl

§R—(O X

. (©7)

(© 2016 Royal Meteorological Society

using the dispersion and polarization relations as wehastean-
flow balance conditions, and finally combines all, using dfso
eikonal equations.

6.1. Wave-energy theorem

The wave equation®6), (95), (92), and 89) can be summarized
as
Mz

— Ry (98)

with

Mt (1) L@ 0 L @) om0 5)
z, 7(Uﬂ Vs Wy ,FOBB 50 HB) (99)

the transposed vector of the first-order wave amplitudes, an
whereR 5 can be read from the right-hand-side of the equations.
Let us now set aside the IGW higher harmonics —which are pero t
leading order — antbcus on either (1) the IGW basic wave alone
(8 =1) or (2) the GM basic wave and all its higher harmonics
(8>1). As we have seen before, in all of these casés is
singular so that it has a non-vanishing null space. TheedRoy
may not project onto this null space. Up to a constant fadter t

latter is given by the null vecttﬁg)) satisfying the polarization

relations 79) — (78). By definition Mﬁzg)) =0, and thus also,
JF

with Zéo) the complex conjugate transposesz),

20" My =0 (100)

since M is anti-hermitian. Therefore, multiplying®®) by NE
yields

Jr
0=z Ry (101)

In evaluating this we note that, due to the polarizationtieha(79)
there is no vertical wave-buoyancy flux,

R (Bg”*ng) -0 (102)

Moreover, there is no leading-order synoptic-scale vairtiiow,
Wéo) = 0, so that one obtains from the real part a0() the

Prepared usingjjrms4.cls
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prognostic equation

0 0
<8_T + Ug ) 'Vx,h> Eg

1 -(0) ¢p —(0)*1,(0)
+§3“EVX-(P % Vﬁ)

pressure (energy) flux

_ 1 /=5(0)21(0)*5-(0) (0)
,75%(]% UV >~-VXU0

shear production

2 0 " =(0)
buoyancy production

1 — gy (50 Cp 5(0)*¢5(0) (0)

R (PO U v
elastic term
+ 13
—~
triad term

for the energy density

— 0 0
O L L
fw ™ g 2 No2 2

Achatz et al.

for the synoptic-scale flow, so that

(0)
1oy (5010 (0))  9Ug
23%(1% vl w ) hy
—(0) (0)
1o [ R 0% 40 9
+2§R(NOQBB U, VXJL@(O)
1—ag (500 ,(0)*1:(0) (0)
+—5% (PY LB UP) - v

_ % P (§<0>U<BO>*W[§0>)

—(0) (0)
R L0* g0 | 9
With this the wave-energy theorem finally becomes

0 (0) 1 5(0) €p 17(0)*37(0)
<8—T+U0 -VX_’h>E5_’w+§3“EVX-(P o VB>

103 1 —(0 *
(103) =52 (R0 uP) - vx ol
1| (501 1(0)* 1, (0)
-5 éR(R U w )
—=(0) (0)
R 2(0)* 5(0) U,
=Ez- VxUP + 154 (108)

of either the basic waveg(= 1) or, in the GM case, any of
its higher harmonicsd > 2). Both advection by the mean flow . . .
and pressure or energy flux redistribute wave energy, whiteus the _non-Boussmesq _terms have been (_:omblned to effective
production and buoyancy production act as sources or siks yertical shear-production terms so that all involved fluzas be
the latter. In the case with moderately strong stratificae— \Written in terms of the celebrated Eliassen-Palm flux tertsor

0) the latter are supplemented by an elastic term, arising frd Ellassen and Paim 196Andrews and Mcintyre 1976

the potential-temperature fluctuations in the horizontakpure-
gradient force. This term would not occur in an analysis base
the Boussinesq or anelastic equations. The nonlinearterau 6.2.1.

where the vertical-shear production, buoyancy productod

6.2. Wave-action conservation for inertia-gravity waves

Reformulation of the energy flux

Ts In the IGW case only the basic wavg £ 1) appears to leading
H0) o o 1 order. Hence the IGW-energy density., = F1 ., IS the energy
R + .

= Tﬂ? Z Z {[U(BO) D <%7Vég)) U(;? density of the basic wave. Due to the polarization relatigi$y

B'=1p"=1 and (/8), and the dispersion relatiof?) it is

BOP _ a?m?
2N02 N02(]€2 + l2)

Egw=R" (109)

(0)*
B "
+—2 D (’3— vgv) o486 (8 + 5" - 5)

1 *
+ [U(BO)JrD <—B—,,V$)> U(B(?? Via the dispersion relatior8f) the horizontal and vertical part of
B the intrinsic group velocity are found to be
By B" ) g0 2
B P ol R ) N,
+N§@(O) D ( 5 Vi ) O }5 (8= 8"~ 8) eon=Vigpo = kh—oﬁ;rgﬂ (110)
~ 2012 2
OF o (B % 10 b, =22 _ Nt +D)
* [UB P (7W’Vﬁ’ U 0F = om om?3 (111)
B / . On the other hand, by the polarization relations the hotedaand
- (—ﬂ—,v(ﬁg) ) 9(9?} vertical pressure fluxes are
RN ’
- (0))2
1o (50 cp (0% (0 _ kno —0) By ]
x5 (=" + 8" - B) } (105) 2" (P r Y ) = weet o (112)

~ 0
o0 B

— (113)

Lon (5(0) €p 11(0)* 11,(0)
only contributes in the GM case. The whole can be further ZR(P RH1 Wi )
simplified by noting that geostrophy ) and hydrostaticity {1)

lead together to the thermal-wind relations

m 2Ny

Comparison with the above then shows that the pressure and
energy flux can be written as product between wave-energy

(0) au® (o) o density and intrinsic group velocity
Vyn—2 = —foer x —2 — (1 - a)N¢ 28wy 11’
500 oz R o Loy (30 o (0%, (0 _ 4
[S) z & _
(106) SR (PO V) =B (114)
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6.2.2. Reformulation of the production terms

11

of them the horizontal pseudo-momentum vegipe= kj, A. With
the help of (22) and @8), it can be shown that the horizontal

We now usegeostrophy and hydrostaticity of the synoptic-scalgseudo-momentum vector obeys
flow to convert the combined production terms. First we consider

the contributions due to the horizontal synoptic-scalerfiwind

gradients. Due to its geostrophyd) the synoptic-scale horizontal

wind is non-divergent,

ou”)
X

av,”
oy

=0 (115)

By this, the polarization relations/§), the dispersion relation

(85), and (L09) — (111) we obtain

(0) (0)
1 1 5Oy @900~ | 50, 0)* 08V
25}%{5{ Uy Uy s ROV VY 2

:§(0)|B§0)|2 1 k25U(§0) +l25V0(0)
2No2 k% +1? 0X oY
(0) (0)
Egw . ,0U Egw . 0V,
= ¢k ag( 9% Gyl % (116)
Likewise one gets
(R0 ) = Eo gk = 2000 (127)
w
and
Ll (OO ) 5 F(O)Um)* B
B ( 1 1 ) + foez x NZ oL P
_ ng ~
=75 ngkh (118)

6.2.3. Wave-action equation

In summary, insertingl(14) and (L16) — (118) into (108) yields

0 Eguw,
= <a_T +ul”. vy h) Egu + =2 ke, - Vx U
+Vx - (&gEgw) (119)
We havet, = ¢y — UE)O) andVy - U(()O) =0, so that
[0 (Egu Eguw
o = olar () e (o)
Egw (0
% (aT e Vx )
ng kéy -V xU (120)

Application of the eikonal equation87) and @8), and of ¢4),
leads to

( O L. VX) &= —kég--Vx UV (121)
oT
With this we finally obtain the conservation law

0A +Vx - (cgA)=0 (122)

ar

for the IGW wave-action densitl = F4.,/w. This facilitates the

prediction of the wave amplitude.

0
( 57+ U0 Vx h) P

= —Vx - (@p) - VXU oy, (123)
whereV x contracts withé,. The divergence of the momentum
flux tensoréyp; defines a typical mean forcing;, = —Vx -
(égp;,) due to waves, also of relevance for the angular-pseudo-
momentum equation. Taking the vertical component of thé cur
of (123) and using the leading-order non-divergent&5 of the

background flow results in

0
(7 + U8 V) for (Vi x gl == (T x ).
(124)
6.2.4. IGW higher harmonics

While the leading-order higher harmonics of a basic IGW siani
the next-order higher harmonics can be determined diréctiy
(99). Since Mg is nonsingular forg > 2 one can solve this
equation by

(B=2)

i.e. the first-order higher-harmonics are slaved to theihepdrder
basic wave. In a further step we note tiag, i.e. the right-hand
sides of the wave equationgq), (95), (92), and 89) vanishes for

B > 3. This follows because the leading-order higher-harmonic
amplitudes are all zero, se81j. Thus only the nonlinear triad
terms can contribute t®g. Those, however, are only due to
the nonzero basic wave, yielding only triad contributioaghe
second harmonig = 2. Therefore the only nonzero first-order
higher harmonic is the second harmonic, i.e.

(1)
zZ, (125)

-1
= M; 'Ry

1 _
Z; =0

(B=3) (126)

6.3. Potential-enstrophy dynamics for the geostrophicenod

6.3.1. Reformulation of the wave energy and the pressure flux

In the GM case we have separate energy equations for the basic
wave (3 =1) and all higher harmonicss(> 2). Due to the
polarization relations79) and (78), and the dispersion relation
(76) the energy densitfg ,,, of the sth GM harmonic is

()2
B!
E57gmfR(0)| ’ <1+ (127)

NG K +52>
4ANg?

7y m?

while one finds from the polarization relations that therends
pressure flux, i.e.

Ly (5(00) & (0 (0)) _
55&(13 v )_o (128)

6.3.2. Reformulation of the production terms

Again we use geostrophy and hydrostaticity of the synoptic-

As is important for the discussion below, we note that wawale flow to convert the combined production terms. First we
action has several “relatives” which have important agpians consider the contributions due to the horizontal synogtiale-
in wave-mean flow interaction theoryAijdrews and Mcintyre flow wind gradients. Due to the horizontal nondivergentEy of

1978k Buhler and Mcintyre 1998005 Biihler 20092010, one

(© 2016 Royal Meteorological Society

the synoptic-scale flow, and due to the polarization reteti@s),
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and the GM dispersion relatiofi), we obtain, usingi27),

0) (0)
1o J500) )% (0) 0 TO %09V
2?]%{}% U Uﬁ 8X + R V ﬁ oy
__7O |B( P N§ ﬁzkzaUé : +52l28v(0)
a 2No? f3B2m?2 X oY
_ Bpgm, Ul Eggm . av<°>
- ’YB 77$Bk 0X + :Yﬁ CBKYy oY (129)
where
Ng 130)
5 (BK) —
7ﬂ(ﬁ ) NOQ(ﬁQkQ—&-ﬂQlQ)—&-fOQﬂQmQ (
is a wave-number dependent function, and
N2 (N2Bk, N28L, f28m)"
&p = Vs = 2 20 (NG Bk, Ny 8 fofm) _ (31
[NG(B2k2 + B212) + f352m?]
the corresponding 'group velocity’. Likewise we obtain
1 —(0 * m . E m .
53% (R( )UI((;O) (0)> ,yBg B,’yyﬁk = B g ,'ylﬁl
(132)

Due to the polarization relatiory9) the vertical-wind amplitude
of the GM vanishes. Hence vertical momentum fluxes do not

contribute to the Eliassen-Palm production. To furthemdifpthe

latter, we again use the polarization relations and theedsspn

relation to show that

SR (EOuP W)

—(0) (0)
R 5050 | 9
+foez X?R(N—OQUﬂ Bﬁ a—Z
_ Bpgm, ou(?
’ vzﬂkh
’)/5 B, o0z

6.3.3. Reformulation of the nonlinear triad term

The reformulation of the nonlinear triad terh0f) is detailed in

the appendiXA. One obtains after some algebra

(133)

Ts
) R(O) 0o oo
=R > {
B'=1p"=1
P (50 ) s (8 4 57 5)
D (o) s (-5 )
+P" D < %, ,U“’)*) Py
5(=p'+p" —ﬂ)} (134)

6.3.4. Potential-enstrophy equation

In summary, inserting128), (129, and (32) —
yields

(133 into (108

0
0 = <8T+Ué) VXh) U()
+T5 (135)
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We havec, = UE)O) andVy - U(()O) =0, so that

o [or (F522) +ox- (o552
0 = > = +Vx - |cg—=
" [5T < Vg AN
EB, m 0 o a 0
S [(aT e VX) i+ @y U )}
Application of the eikonal equation8&) leads to
9 oo - (0)
8T +cg-Vx B8 = 7ﬂkclgﬂ VxU (137)

With this and (34) we finally obtain the prognostic equation

plO)
ﬂ// 6

U<o>)
U<o>*>

5(—5/4'5”—5)}

(8" + 8" - 5)

N
B

o (L,

P95

B (ﬁl - ﬁll - ﬁ)

(0)
PB//

(138)

for the leading-order potential enstrophy

0
Epgm _ (0) [P
oF 4

Pg = (139)

of the sth GM harmonic. The latter identity can be verified using
(127), the polarization relationsl@8) — (201), and the definition
(202. We note that the potential-enstrophy equations are not

fully closed, as they would need in products li 0)*P[§?,) also
additional information about the phase of the GM harmomics,
provided by the potential enstrophies, hétg andPg. . Closer
inspection shows that one would need to know the next-order
synoptic-scale-flow windv, (()1) to obtain these. Alternatively one
could think about a random-phase approach. For the timegbein
however, we do not pursue this further.

7. Wave impact on the synoptic-scale flow

The synoptic-scale flow is governed by the horizontal moonmant
equation 97), the entropy equation9d), the Exner-pressure
equation 91), geostrophic equilibrium 73) and hydrostatic
equilibrium (71). In the following these shall be used to derive
a prognostic equation for the synoptic-scale PV. Firstyéiréical
component of the curl of the horizontal momentum equat@f) (
yields a quasi-geostrophic vorticity equation with wavepaut,
and in the case with moderately strong stratificati@a=0) with
the contributions from a baroclinic term and an elastic waven
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which will need special attention, combined to yield
300 9 e 80O
0 0 cp © 11 9 (0) . 2 p 0
(o) (5) o) (5
(0)
+foVxh- U(()l) —(1-a) fOC_VHL
1 PO 0 ey, 0 o
I_ﬁ(O)VX' 5 a—X%ZlVﬁ Vs 0[50 (2, yor g 1 e
N - 50 07 or oo VR |\ N2 g
9 (0) 7(0)*
—5y RV —(1-a) %ez~ (vxngo) X VXG(()O))
B=1
8O0
0 (0) 2 cp@ 1Ty
C — I . = -
+(1-a) Fe: - | VxI x VO = (aT +Up Vx.,h> [Vx,h (R 7
(0) (0)
1= * N 1 9 (50 fo ©
+Vx x E%Zzﬂkh@g)ﬂg) (140) —(1-a) foEW + =~ (P NI g0 143)
B=1

) ) Herein one has, by repeated use of the hydrostatic relatt)s
In the IGW case only the basic wavg £ 1) contributes 10 anq (71), and of the equation of statéQ)
the fluxes involved. Due to9() we find for the synoptic-scale

horizontal divergence 0)
KON L0 (50 fo S
<aT 9 Vth) =0 97 (P NZ 5O
V- U
) v 11y - (a% Huy vx’h> {
=—(1-0a) (8_T+UO 'VX,h) f@
L 0 |50 fo 9 (cps(0)(0)
- — s == (26e"n
L9 (p<0>W(§1>) (141) 70 07 {R NZ 07 (R@ 0 )
P 0z ©
—ay oo
+(1-a) fog ﬁ(o)} (144)

so that it is affected by compressibility effects in the case
of moderately strong stratification. Usin@4j, WO(O) =0, and

%(WLSO)BE,O)*) = 0, we can reexpress herein the vertical wind an
reinsert the whole then intd40), yielding

Iaence one obtains a prognostic equation with wave impact

(0) or
=y (0)
9 (0) ) 2 (Cp e Il ) —(0) oo
77 TUg Vxn ] |[Vxu | 55— fo 0 |1 P (0) 5(0)*
(aT R fo T 0oz VX NZ BZUﬂ Bg
0) -
-a )fo%% 1 PO o 0,0
(0) TFO VX 2 Er D INERE
L _Jo 0 150 <£+U(0) v ) 1 S o
7007 AR I L }
oY
—(1-a) %ez . (VXHE)O) X VX@E)O)> p=1
1= *
fo 0 |1 PO S0 50 +(1-a) Fes - Vx x 3R > iBky O T (145)
P 0 B=1
-(0) o0 i i i
1 P 9 (0) ¢, (0)* for the leading-order synoptic-scale quasi-geostrophic P
50 VX3 GX%;V;; Vs
B =(0)(0)
00 e Il
9 0),(0)* PO _ g, 222 o
v v
iZI 1 oo N + fO i E(O)i (C_Pg(o)n(o)) (146)
+(1-a) Fe: Vx x 55&2 isk, 011" (142) 70 9Z | N2 0Z \ R 0

B=1

Supplementing classic derivation®gdlosky 198y, it is thus
Again, in the IGW case only the basic wave=£ 1) contributes to shown here that without wave impact the latter is conserved e
the fluxes. Due to geostrophy and hydrostaticity the thesmiiadl  in the case of moderately strong stratificatian= 0), not just in
relations (06) hold, so that the terms on the left-hand-side can libe weakly stratified case:(= 1).
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7.1. Gravity-wave impact

To reformulate the wave impact, we decompose

191 ), _ 91 (0),7(0)*
VX {axzm(Ul Yi ) 8Y2%(U1 Ui )
0 (1,0),(0)* 0 ©2 17102
so{ s (0" + g (VO - 017F)
d* 0),,(0)*
—s (Vf vl ) (147)

Achatz et al.

More light can be shed on this by usint2@) for the divergence
of the vector of IGW angular pseudo-momentum, yielding

9 (0) (0)
(8T + U -Vx ) <P0

Consequently, changes in the vertical curl of pseudomament
translate to changes in the background PV within a mediur-wit
out friction, heating and heat conduction, as has been stscl
within GLM theory byBuhler and McIntyrg(1998 2003 2005).

In agreement with these studies anégner and Yound2015
this result also implies that the theory respects the coaten

(SF7

E(O)

Vx X ph) =0 (154)

The first and last term on the right-hand side can be refortedila of total PV, here

using (L17). Moreover, due to the polarization relations, the

dispersion relation,1(09), and (10), the middle term is

UOR - (O = 2 (6gakA - gyld) /RO (148)

so that
(W) - gy (00l
CE {%V“ : (@“”égm)}

. (@(O)égk/l)}

Taking also {18) into account one finds that

_( ) "
E%VX.h' ( U(O)B(O) >:|
2 ' Ng

-(0)
1 0 P 1o} (0)1,(0)*
50 az{ 2 [axm(Wl i )

(o)
B [k (8]
(68

o] [ 1 0
Finally we use again the polarization relations to refomriithe

9 { 1
v | = (149)
oy |5

n (150)

oY ﬁ(o) 0z

elastic wave-impact term that appears in the case of madgra

strong stratificationd, = 0). One obtains

229 (1, 001" ) = ¢0: N1 AR (151)
and thus, usinggg) with o = 0,
%’ez Vx x 1§R (ikh@gmngon)
BN d@(o)c A
-9 ”
x \ pO daz
=(0)
a 1 do
£ kA (152)
( 50 dz )

Substitution of {500 and (52 into (145) finally leads to the
prognostic equation

24
oT
8 1 R 0 1

= ax {%VX | (09“0} oy {@

-(Vx x Fy)

ul”. VXJL) P

Vx - (égkA)}

(153)

—(0)
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€z

0) _ p0) _
P, P, (0)

tot = £ (155)

-Vx xpp

consisting of the synoptic-scale-flow paFtéO) and a wave
contribution from the vertical curl of pseudomomentum. An
interesting difference to the studies referred to above aed
Grimshaw(19750) is that in the latter this results is formulated
in terms of a Lagrangian-mean synoptic-scale flow whereas ou
study does not use this kind of averagerimshaw (19750,
however, shows that the difference between Eulerian-medn a
Lagrangian-mean flow, the Stokes drift(¥¢) so that it does not
appear in our leading-order results. It would show up to t&e n
order that, however, is not of prior importance here.

7.2. Geostrophic-mode impact

The calculations for the GM case are very analogous to the IGW
case. One obtains the prognostic equation

0
(8—T+U§°) VX_’h> P
) 1 >
= 8_X ——(O) Vx - Z cﬁ_’,yﬂng
R 5=
) o
+ov _(0) Vx Y &sBkPs (156)
B=1

For the moment, however, we do not see that there is an

tequivalent to the relation1p4) between changes in angular

pseudo momentum and balanced PV. Notably, our resatisot

be brought into agreement with those from the quasi-gegisito
theory of the interaction between synoptic-scale Rossbyewa
and planetary-scale mean flows, as summarizeddbys (2006).
Those theories show that Rossby waves have a conserved wave
action that is potential enstrophy divided by the planetargle
flow PV gradient, while potential enstrophy itself is not served.

GM potential enstrophy, however, is a conserved quantffit

A first guess might be that quasigeostrophic theory does not
hold in this context since mesoscale GMs do not have a small
Rossby number, as discussed above and summarized inZable
As is shown in the appendi®B, however, both the potential-
enstrophy equationsl88) for the GM harmonics and the PV
equation for the synoptic-scale flow with mesoscale GM impac
(156) can be derived from quasigeostrophic theory. It therefore
seems that it is rather the difference in scale between flane
synoptic versus synoptic-mesoscale interactions thatesathese
discrepancies. In fact the planetary-vorticity gradiemtluded in

our treatment by theg-plane assumption, is not felt significantly
by mesoscale motions. Inclusion of thesffect would supplement
the planetary vorticity by a correction a&?(<?) that we also
would not expect to essentially influence the results from th
calculations in appendiB. Therefore it is not too surprising that
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Interaction between synoptic-scale flow and a mesoscale wafield 15

the GM dynamics identified here differs from the dynamicshef t the wave energy. Hefgis the reference-atmosphere density. This
interaction between planetary-scale motions and synspade equation, together with the ray-tracing equations
vortices.

In conclusion we have not derived an extension of 0
quasigeostrophic theory to describe the dynamics of masosc (E + ey 'V) k=—-(VU)-k+
GMs in interaction with a synoptic-scale flow. All essergiaéem
to be imbedded into that theory. But even within this framewo describes the mean-flow impact on the IGW amplitudes and wave
the issue of the parameterization of unresolved mesosaadiesn numbers. The IGW impact on the mean flow is given by the
arises for simulations at sufficiently coarse resolutidnisTs the potential-vorticity equation
merit and purpose of respective results in this study.

k? 412 dN?
20m?2  dz

e. (170

0
—+U-V, | P
8. Summary of the most essential equations in dimensional ot
form o |1 R a |1 .
= *% [%V . (CglA):| + (9_y |:%V . (Cgk‘.A) (171)

8.1. Dispersion relation and polarization relations
with &, = Vi@ the intrinsic group velocity. The leading-order

A re-dimensionalization ofq7) by the substitutions synoptic-scale PV is
: 0T = G 157 ’
& = T =0/f (157) p-viv+ 12 (550) w72)
() 0/Too ifa=0 158 poz \" N* 0z
© - (g/Too—g(o)) Je fa=1 ( )

with ¥ = c,,?ol'[/f the streamfunction, wherél = s”O‘H(()O)

Z — ez/Huw (159) is the leading-order synoptic-scale Exner pressure, @ne-
(k,l,m) = [Luw(k, 1), Hwm] (160) T00§(0) is the leading-order reference-atmosphere potential
fo — f/f (161) temperature. The latter depends enonly in the case with
UE)O) ~ U/Us (162) moderately strong stratificationy (= 0), while it is a constant

in the weakly stratified casex(= 1). The streamfunction also

and the identities243) and @7) leads to the dimensional IGWyie'dS the_leading (_)rder synoptic-scale horizontal wiid via
dispersion relation geostrophic equilibrium,

2, 52 U=e, x VU 173)
QQ:(w—k.U)Q:f2+N2kn;;l (163)
and the leading-order synoptic-scale potential temperatu
with N2 = ¢(df/dz) /8. fluctuations® = ' +*7p,0", via hydrostatic equilibrium,
Re-dimensionalizing78) — (80) by the substitutions
0—0
°) oW (_—0) ifa=1
/ / / / J— - g
CRRTNCR) b s 95. -t o (174)
g B TR B Uw’ Wy cltap’ e2ta —N°fU/g ifa=0
(164) . o
results in the dimensional polarization relations Moreover, re-dimensionalization of%4) leads to
2 ~ . / 1o} ez
/ Bokpe —ifex x Bky s (—+U-V)<P—T-V><p)20 175
uB = ﬁQQQ _ZfQ Zﬂ—m (165) 8t h P h ( )
wy = Zf;; b3 (166) wherep,;, = k; A is the wave pseudomomentum. In agreement
y with Buhler and Mcintyrg1998 2003 2005; Wagner and Young
by = - B (167) (2013 this shows that the theory respects the conservationaif tot
ifm PV, here

R _ _ _ Pot=P—%.Vxp, (176)
wherebj; = g0/0 is the dimensional buoyancy of the leading- P

order gth wave harmonic. In the IGW case only the basic Wa"@onsisting of the synoptic-scale-flow pa® and a wave

(8 = 1) has nonzero leading-order amplitudes. contribution from the vertical curl of pseudomomentum. An
interesting difference to the studies referred to above aed
8.2. Gravity-wave dynamics Grimshaw (19750 is that this result is formulated there in
terms of a Lagrangian-mean synoptic-scale flow whereas our
Likewise we obtain the dimensional IGW wave-action equatio study does not use this kind of average. @smshaw (19750
shows, however, that the difference between Eulerian-naeahn
94 +V - (cgA) =0 (168) Lagrangian-mean flow, the Stokes drift, <), corresponding
ot differences would only show up in higher order terms thatrerte
of prior relevance here.
Finally we also note an energy-conservation theorem. Fham t
dimensional variant ofi21),

wherecy = Vyw is the IGW group velocity, andl = E,, /& the
IGW wave action, with

12 12
p ([l [bh]
Ew=73 ( 5 T one (169) (% +eg- v) &= —kég--VU 177)
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and the wave-action equatiohgg) one obtains with &5 , = Vgi9g, where
O0FEy X
7 + V . (Cng) = —AkCg . VU (178) R N2
() = e (185)
Multiplying (171) by —5¥ yields, with repeated use of 13, B2 |kp|” + f252m
9Es _ (9 o (_. f> 00V so thatPg = 13 /4.
o~ vh [”‘I’ (atvh‘l’“ﬂjﬂ E <p‘pN2 ot 82)
_ 9 [TV - (&glA)] — 9 [UV - (&gkA)] 8.4. Synopsis and implications for subgrid-scale modeling
ox g oy g
— V- (k- -UA) + Ak, - -VU (179) To summarize, in the absence of IGW fluxes and GM fluxes
where the synoptic-scale PV is conserved, and quasigeotropkeiaryh
_ 2 /o) 2 holds, both in the weakly stratified case £ 1) for which
Es zg v + % <8_) (180) this result is standard knowledge from text bookedlosky
“ 1987, and the case of moderately strong stratificatiar=(0).
is the energy density of the synoptic-scale flow. Hence Otherwise it is controlled by the curl of the vector of divenges
5 of the fluxesé kA, &5lA, 5 58s,0kPs and 3 ;83 ,61Ps.
5 (Es + Ey) In the case of IGW-mean-flow interactions this forcing vecto
t 5 results from changes in the vertical curl of the IGW pseudo-
=V - [5\1, (th\p + Up):| + 9 (mlf_an_\I/) momentum. Inverting the PV to obtain the streamfunctiondgie
ot 9z N= 0t 0z all information necessary to obtain the synoptic-scaledsiel
—V-(egk-UA+cyEy) by geostrophy and hydrostaticity. In the IGW case we thus
9 ) 9 ) have a fully coupled system where the wave properties can be
+ oz (WY - (&glA)] — dy WV - (&gkA)] (181) predicted by the eikonal equations, wave-action conserat

and the polarization relations, and where the synoptitesitaw

is controlled by the potential-vorticity equation obtainabove.

In the GM case all upper harmonics contribute to the fluxes
controlling the synoptic scale PV. Their amplitude is poéelil by
respective potential-enstrophy equations.

so that the total of synoptic-scale-flow energy and waveggnisr
conserved under usual boundary conditions.

8.3. Geostrophic-mode dynamics

Finally, the dimensional GM potential-enstrophy equatiane The practitioner will typically not consider the synoptcale-
5 flow PV but rather want to insert the relevant mesoscale-wave
(g +U- vh) Pp = % +V - (UPp) fluxes directly into the prognostic equations of an NWP code
t t or climate model. How this can be done is discernible from the
y A= synoptic-scale-flow momentum, entropy and pressure emuati
= 1%5/21 521 in section5. Wave fluxes actually only appear in the entropy

equation 94) and in the horizontal momentum equatio®i’),
Only horizontal entropy fluxes arise so that the dimensional
synoptic-scale-flow entropy equation becomes

1!
Pg*D (%,u;;,) Pgné (B + 8" - B)
* ﬂ” ! * / 2
+Pg D(——,uﬁ, Pgn*5 (B = B" - B) 0 §
F (%+U~Vh)0+N2W=—%Vh-%Zu/B% (186)
* B« / 1 B=1
+Pﬁ D —W,Uﬁ/ Pﬂ//(S (—ﬂ -‘rﬂ _ﬁ) (182)
The entropy-flux convergence on the right-hand side is stahd
where but takes also GM impacts into account. From the polariratio
D (\ug) =X (V-up) —up-V (183)  relations and the definition of wave action and potentiatrepgy,
respectively, one can re-express the relevant fluxes irstefrthe

and where =75|P3?/4 is the leading-order potential ) :
W Ps =pIPsl /4 i nd PO redicted fields as

enstrophy of thesth GM harmonic, with Pg = (B%kp | +
(f?/N?)3*m?)y5 the corresponding leading-order PV ampli- _

tude, and)g = cpgmr/ﬁ/f the corresponding streamfunction. This lgcg ( /19/1*) = —e. X {QNQk_hé (187)
is supplemented by the ray-tracing equations 2 wg myp

0 in the IGW case and
(E +U-V)k_—(VU)-k
to describe the mean-flow impact on the GM. The GM impact%ﬂ% (ulg%*) =e; X 29 Nt IS khénf ) @ (188)
on the mean flow is determined by the synoptic-scale potentia 9 B2NZkp|? + f2m2)" P
vorticity equation
for GMs.
<g LU.v )P More interesting is the horizontal momentum equatié).(
ot h The two flux terms appearing are pseudo-incompressible
o momentum-flux convergence and elastic term arising from the
__9 lv. Z &5, BlPs potential-temperature fluctuations in the pressure gratlierm
dz \ p 5=1 " (or equivalently the density fluctuations, if one ratherfere
- —(Vp)/p). Splitting in the forme?”) = V0, and using in
+2 éV . Z &s . BkPs (184) the IGW caseX18) and (L51), or using in the GM case’”) =0
9 \p B=1 7 and the polarization relationg&) — (79), one can rewrite these,
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and finally re-dimensionalize them, as 9. Discussion
1.1 —(0) o= < (0) 1< (0)* Our reconsideration and review of the interaction between
_5%%VX' P Zvﬁ Uﬁ synoptic-scale flow and mesoscale wave packets is based on
p=1 a detailed scale analysis. A review of the basic assumptions
1l—ac >, * of quasi-geostrophic theory for synoptic-scale flow on f&n
T3 f% Z ZBkh@(BO)HEaO) plane shows that all relevant scales can be determined tiem t
p=1 Rossby numbet and two out of the three following variables:
11 _0 & 0 (0) gravitational acceleratiory, _inertial frequency fo and sound-
= —jﬁ:mvx | R Z V' Uy related speeds = /RTyq, With Ty a typical temperature value.
R B=1 The wave scaling is then defined by requiring the spatial enel t
1—a e ©* o) s_cales to be shorter b@(a_), and_ _by assuming their bgqyancy
+Tfoez x § Z U, By field to be close to static instability. In the latter consat®ns
B=1 we have applied Boussinesq polarization relations, a#iptby
s the results of the following analysis. Two stratificatiomgiraes
N ,iv Py Z V%u/ﬁ* are considered, by assuming that the potential-temperaale
p 2 B=1 height either is larger, by (¢ 1), than both the density and the

I pressure scale height (tropospheric regime of weak stiatiibin),
+2iez x %Z “/B*b/ﬂ (189) or is of the same order as those two (stratospheric regime of
9 5=1 moderately strong stratification). After a non-dimenslaadion
of the equations of motion a WKB ansatz is introduced for
The former term is the classic anelastic momentum-fiise wave fields, allowing a basic-wave field and all nonliyear
convergence, supplemented by an additional elastic teah tthduced higher harmonics. All synoptic-scale fields and avav
cannot be derived from anelastic theory. Using the polddaa amplitudes are then expanded in terms of the Rossby number.
relations we again reexpress everything required in terfibeo  Ordering by powers of the latter and the WKB phase factor then
explicitly predicted fields as yields all results.
These re-establish the geostrophic and hydrostatic balahc
the synoptic-scale flow. They also lead to eikonal equations
wavenumber and frequency, both for inertia-gravity wavean)

— ~2 2
B?R (u/lu/l*> :khkhw + (ez X khA) (ez X kh) f A
2 |kh|2w

B (190) and geostrophic modes (GM). These results hold at finite wave

Py (uﬁwi*) __kn, % (191) amplitudes, i.e. close to the threshold of static instgbilNo

2 m L—w?/f explicit linearization of the equations is necessary thaubd

iez ‘R (u’l*b’1> :zik_thé (192) require weak wave amplitudes. It is the scale separatiomemst
29 gw m Iz the wave phases on the one hand and large-scale flow and
for IGWs and wave amplitudes on the other, combined with a hence derived

solenoidality of the wave velocity fields, that removes the
Py (u,ﬁu,ﬁ*> N4 (ez x ky) (ez x ky) Py (193) nonlinearities from thg leading-order equa.tlor)s. .
B2 (N2|kp,|2 + f2m?2) To next order one finds that, due to their dispersive nathee, t

5 ;o\ IGW higher harmonics must be one order of magnitude weaker

R (“5“’5 ) =0 (194) " than the IGW basic wave. They are slaved to the basic wave, and
! /%o 2f 4 kpymf Pg their amplitude can be determined directly from the basivav
@ez xR (“5 bﬁ) == ?N 82 (N2|kp 2 + f2m2)2 7 dynamics. The GM higher harmonics, however, are found to be

(195) @S strong as the basic wave. Amplitude equations are defiaoved
IGWs and GMs that describe, together with the eikonal eqoati

for GMs. Grimshaw (19750 shows the elastic term also in histhe mean-flow impact on the waves. The dynamics of the higher
equations for the IGW case, however then moves to Lagrangidmarmonics, both for IGWs and GMs, is an aspect of the present
mean theory. It should be stressed, nonetheless, that snaitbl finite-amplitude theory that had not been derived beforenfro
a Eulerian formulation should take it into account, togethith ~ weak-amplitude theories.
the anelastic momentum-flux convergence, as wave forcitigeof The IGW amplitude equation is the well-known wave-action
synoptic-scale flow. Using the expressions above one eastrédite conservation equation, with wave action only due to the dasi

the relevance of the elastic term by the ratios wave, while one obtains in the GM case a potential-enstrophy
e ) equation for each harmonic, with a nonlinear triad term dbsy
(f/g)ez x R(uy b)) o (f E) (196) theinteraction between different harmonics. This is fofondoth
(1/p)(8/0z) [pR(wiu}™)] @? Hg stratification regimes, and it implies a lower degree of ifitgtior

GM wave packets than IGW wave packets. Potentially this migh
contribute to the lower energy in mesoscale GMs, as compared
(f/g)e- x R(u, b)) 2 m Ls to IGWs, in the upper troposphere, as reporteddaylieset al.

v, R (u,lu,l*) =0 ( ) (197) (2014). Re_cem work by.indborg (2015 _and_BlerdeIet al.(2010),

however, indicates that the GM contribution to mesoscaée@n

in the GM case. In the scaling regime considered here these @ight be significant in various atmospheric regions. Thisiko
bothO(1), but one also sees that the elastic term looses relevafiggher support the relevance of investigations of GM dyitam
in the weakly stratified regime, i.e. wheré, is larger, and that The analysis of the wave-impact on the synoptic-scale
it is most relevant for low-frequency IGWs in a stronglyadified flow yields similar results for both stratification regimekhe
regime, and for GMs with small vertical wavelength, as coraga route there differs between the two cases, however. In the
to the horizontal wavelength, and large horizontal symogtiale, stratospheric regime of moderately strong stratificatianous
as compared to the potential-temperature scale height. elastic terms appear in the mean-flow equations, demoimgtrat

in the IGW case, and

N2 |ky| Hg

(© 2016 Royal Meteorological Society Prepared usingjjrms4.cls



18 Achatz et al.

the unsafe ground one would be on if one neglected everythitigeory assumes a displacement vegt@o thatD¢/Dt = v, or
beyond Boussinesq or anelastic dynamics from the start. Arwé = v in the linear limit. Since the intrinsic frequency of the
implementation of a WKB ray tracer into weather-forecast @M is zero, its displacement vector is not defined. Multiksca
climate models would typically supplement a model by thasymptotics, as performed here, does not have this limitatt
wave-flux terms appearing in the entropy equati®#) @nd the is thus a useful supplementary tool to GLM theory, leaving th
horizontal-momentum equation87). The latter, however, needlatter, however, its undisputed claim for elegance and igdibe
in the stratospheric regime an elastic flux term arising ftbe with regard to the dynamics of IGWs and Rossby waves.
potential-temperature fluctuations in the pressure-gradierm. The theory as a whole is nonlinear, with a two-way
This term, appearing as a Coriolis force due to a non-zeirtteraction between finite-amplitude waves and mean-flod an
mass or buoyancy flux@rimshaw 1975) would supplement a full consideration of the interaction with and between all
an anelastic momentum-flux convergence. In the investigateonlinearly induced higher harmonics, found to be negljgib
regime it is of the same magnitude as the latter, and it gainsweak in the IGW case, not however in the GM case. Processes
importance the stronger the stratification is, preferdigtiar low-  resulting from the interaction between waves and a selidéad
frequency IGWSs, and for GMs in a flow with large horizontamean wind Fritts and Dunkerton 1984Sutherland 20012006
scales. Nonetheless, both regimes yield in the end a prigno®osser and Sutherland 20idre included in such formulations, as
equation for quasi-geostrophic potential vorticity (PWjith a demonstrated, e.g., Byieperet al. (2013 and Muraschkoeet al.
wave impact from either IGWs or GMs. For the first time, to th¢2015. Our results also apply to the interaction between a
best of our knowledge, we thus show that in the absence of IGWmoptic-scale flow and small-amplitude wave fields. In the
and GMs quasi-geostrophic theory strictly holds at low Rgss present two-time-scale theory the wave impact would disapp
numbers also for moderately strong stratification. Thevdédn in this case, as it would be weaker by two ordersecofe.g.
coming nearest to this, to the best of our knowledge, has begthatzet al. 2010, but this only implies that the appropriate
indicated byZeitlin et al. (2003, but these authors only considefapproach would then be the introduction of a new longer time
the Boussinesq equations. scaleTs /2 on which the wave forcing would influence the mean
At least in the IGW case the theory also respects thigw. The final results we expect to be the same as presented
conservation of total PV, consisting of a contribution ofiggtic- here. Moreover, the higher harmonics would be suppressed
scale flow and a wave contribution from the vertical curl ofignificantly. They are a central result of the present finite
wave pseudomomentum, discussed previously in the IGW xbntamplitude theory.
by Buhler and Mcintyre(1998 2009 and Wagner and Young  An apparent limitation is nonetheless that our analysisrass
(2019. The sum of wave energy and the energy of the synoptig-single basic-wave field, locally monochromatic, supezdos
scale flow is conserved as well. by higher harmonics. As soon as various basic-wave fields are
Our study is also related to recent work Kje and Vanneste allowed, nonlinear interaction terms would supplementneve
(2019 andWagner and Youn§2016) on the interaction betweenthe IGW wave action equation. The wave impact onto the
near-inertial waves and synoptic-scale flow in the oceare Thirge-scale flow then also would appear as the superposition
scaling regime investigated there is different, howeverthiose of the wave impacts derived here separately. This approach
studies there is no horizontal length-scale separatioavéttical- would eventually imply the use of phase-space wave-action
scale separation parameterci§'?. They assume the synoptic-densities (e.gBuhler and Mcintyre 1999Hertzoget al. 2002,
scale horizontal winds to be weaker than those from thR@emingly a rather powerful tool for the avoidance of nunsi
waves. The considered stratification is considerably wettk instabilities due to crossing raysvi(raschkoet al. 2015. It
considered here, wittf/N = O(¢*/2). Finally, the considered often compares successfully to wave-resolving data, evesnw
wave field is linear, while our theory considers nonlineaveg nonlinear IGW interactions are neglected. How relevantatter
Our study is therefore mostly complementary to those. will be in the end is an open question. Atmospheric waves
The GM dynamics we have investigated might be of relevanggad a rather transient life, and it might often be too short
for the modeling of subgrid-scale dynamics. Since the GMgr nonlinear effects to have a strong impact. Measurements
are simply advected by the synoptic-scale flow, on top of thg atmospheric mesoscale spectra, however, might indicate
nonlinear triad interactions, they do not contribute toticat nponlinear dynamicsQallieset al. 2014 Zhanget al. 2015). For
coupling in the atmosphere. Their contribution to horizdnt the investigation of corresponding processes a weaklyimes
coupling, however, could be important. Although geostioptihe  |ow-amplitude approach might be useful (eQgillol and Zeitlin
Rossby number of these modes is large, i/e,/fLw = O(1). 200Q Nazarenko 201)] as it might be able to yield tractable
Nonetheless, their dynamics, as far as we have followedit, Gresylts. Corresponding investigations seem to be an irmport
be derived from quasigeostrophic theory as well, as showhein |ine of future research. Another relevant extension coddte
appendix. Still, however, both their potential-enstroplations, consideration of the interaction of small-scale wavessibg in
and their impact on the synoptic-scale flow, via the vertmal = coexistence with turbulence, with a larger-scale flow Goitg
of an Eliassen-Palm-flux convergence, differ from the quasionsiderable unbalanced contributions. This might be tfrést

geostrophic dynamics of the interaction between synagide for subgrid-scale parameterizations in climate and weathe
Rossby waves and a planetary-scale mean flow. The differepggscast models with mesoscale resolution.

in scale between planetary-synoptic versus synoptic-staée
interactions seems to be responsible for this discrepdineyght  Acknowledgement
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Interaction between synoptic-scale flow and a mesoscale wafield

A. Reformulation of the nonlinear triad term appearing in
the potential-enstrophy dynamics of the geostrophic mode

For the reformulation of the nonlinear triad tertOp) we first
rewrite the polarization relationg§) — (80), usingw = 0,

Uy = e xipk,u} (198)

wi = o0 (199)

BY = ifopmu) (200)
where o ep=(0) (0

‘I’é):ﬁ@ 1Y/ fo (201)

is a non-dimensional streamfunction. Quasigeostroph@orth
would imply a corresponding leading-order potential \@iyi

(0)

2 W
P = - (52 hen® + j;—%ﬁW) v -2 o)

In addition, due to the zero vertical-wind amplitude ondaeps
(0) (0)
()\V ) N D()\7U5 )
= A(VxnUP) -

where, due tov x x k =0,

U Vi, (203)

Vo UY) = (ex x ifky) - Vi 0 (204)

All of this is inserted into {05. In the ensuing algebra one

19

Here a
Y =cpbo (r—7)/f

is the streamfunction, wity = TOO@(O) the leading-order part
of the reference atmosphere, amdthe reference-atmosphere

(210)

Exner pressure.ﬁ:pooﬁ(o) is the leading-order reference-
atmosphere density, a2 = =% (¢/0'”) 48 /d= the Brunt-
Vaisala frequency. Non-dimensionalizing the streamfioncby
the wave scales yields the replacement, usifg) @nd the
definitions in sectiong,

cpbo (m — ) [S) ()
v prwLw _Rs2+a (”_ZEJH

= ¢! Z sj‘l/(()j)(X, T)

7=0
4R Z Z EJ\I, zﬂ¢>(X T)/e (211)
=17=0
where ¥ = (¢,/R)81Y) and ¢4 = (c,/R0 'Y

are the various-order synoptic- scale and mesoscale (basic
and higher harmonic) streamfunction components. After-non
dimensionalization, also by the wave scalés, Hw, Uw
andTw = L« /Uw, the PV conservation equatio2(q7) and the
velocity equationZ08) keep their form, while the nondimensional

PV becomes
0 0) 1o}
P=Vig+ (0) o (R( fo ¢)

NoD (212)

makes repeated use of the triad conditions, expressed tettze Inserting €11) one obtains

functions, and uses replacements of the kind

Z ﬁﬁ ﬁI/\I/(O)\I/(BO/2§ (ﬂ/ +ﬁ” _ ﬁ)

B",p"=1

_ Z (5/+5//)5 5”‘1’(0 ‘1/%0” (5 +B// 5)
BB =1

_ Z 25/25//\1,(0)\1,%0/25 (5’ +8" - ﬁ) (205)
B/ ﬂ//—l
S o) s (5 - 5 - )

B.B"=1

Z 5/25//,@(0 5(225( 5 +5” 5) (206)

ﬂ/ ﬁ// 1

to finally obtain (34).

B. Mesoscale geostrophic-mode dynamics derived from
guasigeostrophic theory

For the analysis of the interaction between geostrophiostyct

B=13j=0
(213)
with
()
() _ G, 1 0 (50 f5 0%
P9 —v% ,ul) =Y (R NE oz (214)
and where
B = (ol + L s Apm )l (215)
B = (e )
+i|28kp, - Vx4 (V- Bkp) + 25mf—oi
" " N2 0Z
10 (50 f5 (0)
t=752 < ~gom ) | v (216)

are the PV wave amplitudes explicitly needed below. Likevifse
non-dimensional wind is

scale flow and mesoscale geostrophic modes within quasi-

geostrophic theory we use the corresponding PV consen/atiou

equation on arf-plane

or

7 TV (uP)=0 (207)
with
u = e xVpo (208)
2
P = Viy+ faaz (ﬁ%g—f) (209)
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=5 duP )+ 0> YUY (x, 1) XD/

§=0 B=1;=0
(217)
with _ _
UY) —e. x vx 0l (218)
and forg > 1
Uy = e xifk, vy (219)
UGEY = ewx (il v + V0 TY) (220)

Prepared usingjjrms4.cls



20 Achatz

Obviously

K, U =0 (221)
which is used frequently below. With the expansions abovg it

useful to also expand the PV flux

uP = Zs FY) (X, T) +§RZZEJF )ePeX T /e
B=1j=0
(222)
where only the contributions
© _ Lo (0 p*
F, = 53%2 Uy’ Py (223)
B=1
F() = g p©
1 °° * *
+5R Y (U P+ U RO (224)
B=1
F,%O) UE)O)PB(O)
1 oo
+5 > |UDPL)s (8 + 8" - B)
B/7ﬂ//:1
+ul) P86 (5 - 8" - 5)
+U(O) P (—8 +8" - 5)} (225)
F = Ul PV +ulV P + U R
1 oo
+5 > | (U UG RO s (8 + 8" - )
B/ ﬂ//_l
0 1 1 0
+( (B/)PB(H) U( )PB(H) )5(5/75//75)
+ (0Pl + 0 PO 6 (<5 + 8" - ) } (226)

are used explicitly below.

The leadingO(1) of the PV-conservation equatior2@?) is
found with this only to have wave parts, yielding

—ipwP +ifky, - FY =0 (227)

Due to the solenoidality?R1) the nonlinear triad part in the PV
flux (225 has a vanishing scalar product wiky, so that one
obtains the polarization relation

0=p80=23 (w “ k- UgO>) (228)
The nextO(e) has a synoptic-scale part
0=Vxu FY (229)

Using 223, (219, and @15), however, one finds th&tgo) =0,
so that this equation is satisfied trivially. The correspogdvave
parts are

(0)

oP
— (1) B
0= —zﬁwPﬁ + 3

(© 2016 Royal Meteorological Society

(230)

+iBky, - Fg) +Vx FE;O)

et al.

Using the explicit flux contributions 2@5 and @26), the
solenoidality £21) and the dispersion relatio2%8) this becomes

_(20 (0) o, (1) 1(0)
07(8—T+U -Vx )PB +Zﬂkh-U0 PB
1 o0
+§ Z {
ﬁ/7ﬁ//71
(i1 - UL PE) + V- (UG PR 5(5+ 8" - )
. (1) 5(0)* (0) 5(0)
+ [lﬁkh : UB/ PBH + V){ h (UB/ PBH )i|
X5(ﬂ/fﬂ//fﬂ)
+ [iBk - UG PE) + Vcn- (U PE))]
x6 (=B + " - B) } (231)
Due to 19, (220), andV x x k = 0, however, one has
gk, 0D =B u - _Bg Ul (@32
B B! B 5/

so that multiplication of231) by R © éo)*/Q and taking the real
part of the product yields the potential-enstrophy equafi8).
From theO(?), finally, we only use the synoptic-scale part

ory"
T

0=

(233)

or, usingVx p, - U(()O) =0 and @24),

X

4 th %Z(U RS G )(234)

0
— +

0 0
=5 +Up) vx,h) P

Inserting 19, (220), (215, and @16), again usingv x x k = 0,
and finally resorting to the definition& 30), (131), and (39 one
obtains after some algebra the prognostic equati&i®)(for the
leading-order synoptic-scale PV. We point out that the gqoa
system derived here is not closed. The solution of the piaient
enstrophy equations requires knowledge of the phase of the P

amplitudesPéO). As can be seen fron281) one needs for this

U(()l). For this one would have to solve the next-order equation for
the synopic-scale PV, invoIving’B(l) and so forth.
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