CONSTRUCTION OF SOLUTIONS TO SERRIN'S OVERDETERMINED PROBLEM ON THE 2-SPHERE

IGNACE ARISTID MINLEND

ABSTRACT. A celebrated result of Serrin, with applications in fluid dynamics, states that if $\Omega \subset \mathbb{R}^N$ is a C^2 regular bounded domain in which the overdetermined problem $-\Delta u = 1$ in Ω

$$\Delta u = 1 \qquad \text{in } \Omega$$
$$u = 0, \quad \frac{\partial u}{\partial \eta} = c \qquad \text{on } \partial \Omega \qquad (0.1)$$

has a solution, then Ω is a ball. Here c > 0 is a positive constant, and η is the unit outer normal vector field on $\partial\Omega$. In this talk we present a construction in the Euclidean sphere \mathbb{S}^2 of a continuous family of regular and bounded domains $(\Omega_s)_{s \in (-\varepsilon_0, \varepsilon_0)}$ in which Serrin's overdetermined problem (0.1) is solvable. This family of domains bifurcates from a closed band in \mathbb{S}^2 which is symmetric with respect to the equator, and it is obtained via the Crandall-Rabinowitz Bifurcation Theorem.