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A finite-volume model of the classic differentially heated rotating annulus experiment
is used to study the spontaneous emission of gravity waves (GWs) from jet stream im-
balances, which may be an important source of these waves in the atmosphere and for
which no satisfactory parameterisation exists. Experiments were performed using a clas-
sic laboratory configuration as well as using a much wider and shallower annulus with a
much larger temperature difference between the inner and outer cylinder walls. The latter
configuration is more atmosphere-like, in particular since the Brunt-Väisälä frequency is
larger than the inertial frequency, resulting in more realistic GW dispersion properties.
In both experiments, the model is initialised with a baroclinically unstable axisymmetric
state established using a two-dimensional version of the code, and a low-azimuthal mode
baroclinic wave featuring a meandering jet is allowed to develop. Possible regions of GW
activity are identified by the horizontal velocity divergence and a modal decomposition
of the small-scale structures of the flow. Results indicate GW activity in both annulus
configurations close to the inner cylinder wall and within the baroclinic wave. The former
is attributable to boundary layer instabilities, while the latter possibly originates in part
from spontaneous GW emission from the baroclinic wave.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

Internal gravity waves (GWs) play an important role in both oceanic and atmospheric
dynamics (Müller et al. 1986; Fritts & Alexander 2003; Kim et al. 2003; Alexander
et al. 2010). Radiated from various processes in the atmosphere, they are typically too
small in scale to be explicitly resolved by present-day numerical weather prediction or
climate models. They have, however, a significant effect on the resolved flow and therefore
pose an important multi-scale problem. GWs in the atmosphere are typically divided
into orographic, generated by flow over topography, and non-orographic, mostly due
to convective processes, and spontaneous imbalance. The relative importance of these
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waves and their sources is seasonally dependent (Sato et al. 2009). While flow-dependent
parameterisations for orographic and convectively forced GWs do exist (Palmer et al.

1986; McFarlane 1987; Chun & Baik 1998; Beres et al. 2004; Chun et al. 2004; Beres
et al. 2005; Song & Chun 2008; Richter et al. 2010), less progress has been made in
the cases of the other sources, of which spontaneous imbalance of synoptic-scale flow
might be the most important. Observations identifying increased GW activity in the
vicinity of jet stream exit regions (Uccellini & Koch 1987; Guest et al. 2000; Pavelin
et al. 2001; Plougonven et al. 2003) are evidence that large-scale (balanced) flows can and
do spontaneously radiate GWs. Directly applying the concept of geostrophic adjustment
(Rossby 1938; Uccellini & Koch 1987; Fritts & Luo 1992; Luo & Fritts 1993; O’Sullivan &
Dunkerton 1995; Pavelin et al. 2001) to the parameterisation of GW emission is difficult
since the system is continuously re-establishing an unbalanced flow that sheds imbalances
by GW radiation. Ford (1994a,b,c) applied the concept of Lighthill radiation (Lighthill
1952) to GWs radiated from vortices in shallow-water flow, but certain assumptions for
this theory are violated for GW radiation from jet streams. Recent work by Snyder et al.
(2009) and Wang & Zhang (2010) indicates that the process can be understood to a large
extent by linear models, in which the GWs are solutions of a system linearised about
a balanced state and forced by the residual tendency. It was found that the accuracy
of these models depends on the choice of balance used to define the background flow.
When quasi-geostrophic dynamics is used, systematic deviations from the fully nonlinear
dynamics develop after a while (Snyder et al. 2009). This could be improved on by
obtaining the background flow from a higher-order balance (Wang & Zhang 2010).
Obviously, examining these processes in the atmosphere confronts the scientist with

particular challenges. Due to its extreme complexity, GW emission will always be em-
bedded in the interaction of a multitude of interdependent processes, many of which
are not detectable from analysis or campaign data. The benefits of repeated and more
detailed measurements, while representing the only source of information about the real
atmosphere, are limited by the non-repeatability of an atmospheric situation. The same
event never occurs twice. This argues for complementary laboratory experiments, which
provide a more focused dialogue between experiment and theory. An especially interest-
ing scenario in the context of spontaneous imbalance is GW emission from jet streams in
baroclinic-wave life cycles (O’Sullivan & Dunkerton 1995; Zhang 2004; Viúdez & Dritschel
2006; Plougonven & Snyder 2007), which are also examined in laboratory experiments
using the differentially heated rotating annulus (Hide 1958). In that experiment, a fluid is
confined between two cylindrical walls, with the outer wall kept at a higher temperature
than the inner, and the entire apparatus is mounted on a rotating table. At sufficiently
fast rotation this set-up leads to a baroclinic instability closely related to that which is
believed to be the core process of mid-latitude cyclogenesis. A survey of the flow regimes
observed in the experiment is found in Hide & Mason (1975). Promising laboratory ex-
periments on wave generation observed at the interface between two superposed fluids
of differing density have been done by Lovegrove et al. (1999, 2000) and Williams et al.
(2003, 2005, 2008) for a baroclinically unstable flow in the rotating annulus, and by
Afanasyev (2003) for colliding vortex dipoles in a non-rotating experimental set-up. A
variant of the conventional differentially heated rotating annulus, where in addition to
the horizontal temperature gradient, an external vertical temperature gradient is applied,
is discussed by Miller & Fowlis (1986) and Hathaway & Fowlis (1986) and modelled by
Kwak & Hyun (1992). In this version of the experiment, the stratification of the fluid
can be controlled independently of the lateral temperature gradient. Here, however, we
stick with the conventional set-up, as it seems to be a configuration more favoured in the
experimental physics community. GWs have been identified in a version of a classic annu-
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lus set-up with continuous stratification (Jacoby et al. 2011; Randriamampianina 2013),
but they have been shown to be probably due to boundary-layer instabilities instead of
spontaneous emission by baroclinic waves. By a classic set-up we mean an annulus with
an outer cylinder radius of about 10 cm, a gap width between inner and outer cylinders
of less than 10 cm and a fluid depth of about 10 cm. The lateral temperature difference
in a typical classic configuration is about 10K and the angular velocity ranges from 0 to
about 5 rad/s (0 to about 48 revolutions per minute) (Hide & Mason 1975).
Using a newly developed finite-volume algorithm for Boussinesq flow in a rotating

annulus (Borchert et al. 2014) we focus on two experiments, the first using a classic
laboratory configuration of the annulus, the parameters of which are very close to those
used in a laboratory experiment by Harlander et al. (2011), and the second using a much
wider and shallower configuration with a much larger temperature difference between the
inner and outer walls. In the latter, side walls naturally have much less influence on the
interior flow, and the ratio of the Brunt-Väisälä frequency N to the inertial frequency
f – essential parameters in the GW dispersion and polarisation relations – is greater
than unity, as is the case in the real atmosphere. The present work is limited to the
identification of GW activity in the two annulus configurations. The investigation into
the mechanism of spontaneous GW emission in the annulus and what portion of the
GW field originates from this source will be presented elsewhere. Section 2 describes
the physical parameters and the numerical model used in the study. This is followed in
section 3 by an analysis of the factors that simultaneously control N/f and baroclinic
instability in the rotating annulus, leading to the identification of a more atmosphere-like
annulus configuration. Section 4 describes our findings with regard to the GW activity
in both the classic and atmosphere-like configurations. Finally section 5 summarises the
results and gives a short discussion.

2. The model

A detailed description of the model and its numerical implementation in the cylindrical
flow solver with implicit turbulence model (cylFloit) is given by Borchert et al. (2014).
We summarise here only those features necessary for understanding the present text.

2.1. Geometry

A schematic view of the differentially heated rotating annulus is given in figure 1. It
consists of two coaxial cylinders mounted on a rotating table. The inner cylinder, of
radius a, is cooled to the constant temperature Ta and the outer cylinder, of radius
b, is heated to the temperature Tb such that, usually, Ta < Tb. The gap between the
cylinders is filled with water up to an equilibrium depth d. The surface in the laboratory
experiment considered here is free, and hence depends on horizontal location and time. In
the numerical model, however, we approximate it by an inviscid rigid lid. The apparatus
rotates at the angular velocity Ω. The cylindrical coordinates are the azimuth angle ϑ,
the radial distance from the axis of rotation r, and the vertical distance from the bottom
z.

2.2. Governing equations

Since deviations ∆ρ̂ from the constant background density of the fluid ρ̂0 at reference tem-
perature T0 = (Ta+Tb)/2 are generally relatively small (|∆ρ̂| ≪ ρ̂0), the fluid-dynamical
equations are used in the Boussinesq approximation. We took these equations from Far-
nell & Plumb (1975, 1976) and Hignett et al. (1985) and used them in flux form, adapted
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to a finite-volume discretisation. The pressure p̂ is split into a time-independent refer-
ence pressure p̂0 and the deviation ∆p̂ therefrom. The reference pressure is defined by the
hydrostatic equilibrium between the pressure gradient force, gravity, and the centrifugal
force, i.e.

∇p̂0 = gρ̂0 − [Ω× (Ω× r)] ρ̂0, (2.1)

where ∇ = eϑ(1/r)∂/∂ϑ+ er∂/∂r + ez∂/∂z, g = −gez is the gravitational force, Ω =
Ωez is the angular-velocity vector, and −Ω× (Ω× r) = Ω2rer is the centrifugal force.
Here eϑ, er and ez are the azimuthal, radial and vertical unit vectors. The dynamics are
then described relative to the reference state by subtracting (2.1) from the full momentum
equation and applying the Boussinesq approximation to get

∂v

∂t
= −∇ · (vv + pI − σ)− 2Ω× v + gρ− [Ω× (Ω× r)] ρ, (2.2)

where p := ∆p̂/ρ̂0, ρ := ∆ρ̂/ρ̂0 and v = ueϑ + ver + wez is the velocity vector. The
first term on the right-hand side is the divergence of the symmetric total momentum flux
tensor, which consists of the advective flux of mass-specific momentum, described by the
dyadic product vv, the density-specific pressure tensor, with the unit tensor I , and the
viscous stress tensor

σ = ν
[

∇v + (∇v)
T
]

, (2.3)

where ν is the kinematic viscosity and ∇v is the velocity-gradient tensor. The superscript
T denotes the transpose. The flux term in (2.2) is followed by the Coriolis force and the
reduced gravitational and centrifugal forces. The governing equations are completed by
the continuity equation

∇ · v = 0, (2.4)

the thermodynamic internal energy equation

∂T

∂t
= −∇ · (vT ) +∇ · (κ∇T ) , (2.5)

and the equation of state

ρ = ρ1 (T − T0) + ρ2 (T − T0)
2
, (2.6)

where T is temperature, κ is the thermal diffusivity, T0 = (Ta + Tb) /2 is the constant
reference temperature, and ρ1,2 are coefficients depending on the working fluid. The
viscosity ν and thermal diffusivity κ vary with temperature according to

ν = ν0

[

1 + ν1 (T − T0) + ν2 (T − T0)
2
]

, (2.7)

κ = κ0

[

1 + κ1 (T − T0) + κ2 (T − T0)
2
]

, (2.8)

where ν0,1,2 and κ0,1,2 are six more fluid-dependent coefficients. Eqs. (2.6), (2.7) and
(2.8) are parameterisations for the dependence of ρ, ν and κ on the temperature. The
coefficients ρ1,2, ν0,1,2 and κ0,1,2 were derived by fitting parabolas to tabulated values for
water between 10 ◦C and 70 ◦C (at pressure of 1000 hPa) taken from Verein Deutscher
Ingenieure et al. (2006), Section Dba 2, and are listed in table 1 (note that they depend
on T0). The coefficient of correlation (see, e.g., Clapham & Nicholson 2009) between fit
and data was greater than 0.99 for all fits.

2.3. Boundary conditions

Periodic boundary conditions are used in the azimuthal direction. The velocity satisfies
no-slip and no-normal flow conditions (i.e. the velocity is identically zero) at the radial
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boundaries and at the bottom. The experimental set-up described by von Larcher &
Egbers (2005) and Harlander et al. (2011) has a free fluid surface. We assume that the
free surface displacements are small compared to the equilibrium depth at rest d in the
annulus set-ups considered here. Thus a stress-free rigid lid may be a good approxima-
tion for the free surface, i.e. the vertical velocity component vanishes as do the vertical
derivatives of both horizontal velocity components (James et al. 1981). Another common
experimental set-up where a lid is brought into contact with the fluid surface (Hide &
Mason 1975), which would be modelled by the no-slip boundary condition, is not consid-
ered here. Temperature is prescribed at the radial boundaries, with T (r = a) = Ta and
T (r = b) = Tb. At the model bottom and model top vanishing heat flux is assumed, i.e.
the vertical temperature derivative vanishes there.

2.4. Discretisation

A finite-volume method is used to solve the flow equations numerically. The code has
been adapted from an algorithm for the solution of the pseudo-incompressible equa-
tions in the atmosphere (Rieper et al. 2013), by modifying it to solve the Boussinesq
equations, introducing a regular cylindrical-coordinate finite-volume grid, and by mod-
ifying the boundary conditions. The annulus volume is subdivided into volume cells of
azimuthal angular width ∆ϑ, radial width ∆r and vertical extension ∆z. A staggered
C-grid (Arakawa & Lamb 1977) is used so that the cell for each velocity component is
centred on the temperature-cell face to which it is normal. The algorithm is constructed
so as to implement an implicit parameterisation of subgrid-scale (SGS) through a special
handling of the advective fluxes. Instead of constructing the fluxes from the surround-
ing volume averaged velocities by high-order interpolation, a weighted average of first-,
second- and third-order accurate interpolations is used. The weights used in this adap-

tive local deconvolution method (ALDM) (Hickel et al. 2006) have been chosen so that
the numerical viscosity and diffusivity of the odd-order interpolation optimally mimic
the effect of the unresolved eddies. In a variety of complex turbulent flows including
decaying turbulence (Hickel et al. 2006), boundary layer flows (Hickel & Adams 2007,
2008), separated flows (Hickel et al. 2008) and stratified turbulence (Remmler & Hickel
2012), ALDM has proven to perform as well as established explicit SGS models like the
dynamic Smogorinsky model (Germano et al. 1991). A low-storage third-order Runge-
Kutta method (Williamson 1980) is used for the discretisation in time, with an adaptive
timestep determined from the instantaneous velocity field. The Poisson equation for the
dynamic pressure is solved iteratively using a preconditioned biconjugate gradient sta-
bilised (BiCGSTAB) method (e.g. Meister 2011).

3. An atmosphere-like annulus configuration

3.1. Results from a classic configuration

In all simulations to be discussed here we have first obtained an azimuthally symmetric
asymptotic steady state by integrating the model in a two-dimensional (2D, without
azimuthal dependence) mode over a sufficiently long time span t2D from a resting initial
state with homogeneous pressure p = 0 and temperature T = T0 = (Ta + Tb)/2. The
full model was then initialised with the obtained 2D steady state and a random low-
amplitude temperature perturbation. For a large enough temperature difference between
the inner and outer cylinders, baroclinic instability sets in and a baroclinic wave develops,
transporting heat in the direction opposite to the large-scale radial temperature gradient.
The first experiments presented here are from a classic laboratory configuration, the
parameters of which are given in table 1. Its main characteristics are inner and outer
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cylinder radii of a = 4.5 cm and b = 12 cm, fluid depth d = 13.5 cm, lateral temperature
difference of Tb − Ta = 8K, and rotation rate Ω = 0.63 rad/s (6 rpm). These values are
from an experiment presented in Borchert et al. (2014) and are very close to parameters
used in a laboratory experiment by Harlander et al. (2011). Parameters for the numerical
model are given in table 2. The column “coarse 1” in table 2 lists the spatial resolution as
well as t2D, and the amplitude of the random temperature perturbations used to initialise
the corresponding 3D simulation. Figure 2 shows snapshots of the horizontal temperature
and horizontal-velocity distribution. Vertical cross sections of the azimuthally symmetric
steady state temperature field as well as the azimuthally averaged temperature in the
presence of the baroclinic waves are depicted in figure 3.
In order to get an idea of the radial and vertical structure of the stratification of the

annulus flow, we introduced the local ratioNl/f , where the local azimuthal-mean squared
Brunt-Väisälä frequency is

N2
l = −g

∂ρ

∂z

ϑ

, (3.1)

where (·) ϑ

denotes averaging over the azimuthal coordinate, and ρ = ∆ρ̂/ρ̂0. The distri-
bution of Nl/f is shown in figure 3c. Stratification in the experiment is brought about
by an overturning cell consisting of upwelling of warm liquid near the outer cylinder
and downwelling of cool liquid near the inner cylinder. The ratio Nl/f resulting from
this is very different from that occurring in the real atmosphere. In the upper tropo-
sphere of mid-latitudes, the ratio is on the order of 100 (e.g. Esler & Polvani 2004), while
in the classical annulus configuration, it is on the order of 0.1. This affects GWs both
quantitatively and qualitatively. The intrinsic frequency of plane GWs ω̂ satisfies, in the
Boussinesq approximation, the dispersion relation (e.g. Gill 1982; Fritts & Alexander
2003)

ω̂2 =
N2
(

k2 + l2
)

+ f2m2

k2 + l2 +m2
= N2 cos2(α) + f2 sin2(α), (3.2)

where k and l are the two horizontal wave number components, m is the vertical wave
number, and α = arctan(m/

√
k2 + l2) is the angle of phase propagation relative to the

horizontal plane. While in the atmosphere high-frequency waves exhibit near-horizontal
phase propagation, and low-frequency waves propagate more vertically, conditions in the
classic differentially heated rotating annulus lead to the opposite behaviour. In the rest
of this section we will describe a configuration of the annulus that, at least qualitatively,
better represents real-atmosphere conditions.

3.2. Theoretical considerations

Using the equation of state (2.6) our estimate for N/f is

N

f
=

√

g |ρ1 (Tb − Ta)|χz/d

f
, (3.3)

where N is the global and time average Brunt-Väisälä frequency

N =





1

T

∫

T

dtN2
l

r,z





1/2

, (3.4)

and

χz =
d

ρ(Tb)− ρ(Ta)

1

T

∫

T

dt
1

V

∫

V

dV
∂ρ

∂z
(3.5)
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is the vertical density gradient, averaged over the total annulus volume V not occupied
by the boundary layers (the approximate thicknesses of which are given further below)
and over a sufficiently long period of time T and normalized by the density gradient
expected to leading order from the overturning circulation (Hide 1967). In (3.4), (·) r,z

denotes averaging over the radial and vertical coordinates excluding the boundary layers.
The expectation χz ∼ 1 is actually rather an upper limit since the baroclinic waves reduce
the radial temperature difference available for inducing a stratification via the overturning
circulation. Based on (3.3), there are several options available for increasing N/f . We do
not pursue switching to a fluid with a higher thermal expansion coefficient ρ1, leaving us
with increasing the temperature difference Tb − Ta and decreasing the fluid depth d and
the angular velocity Ω.

Care must be taken not to suppress baroclinic instability. Quasi-geostrophic theory
(Charney 1948) can be used as a guideline (e.g. Vallis 2006). For convenience we neglect
friction and heat conduction in the following considerations. Furthermore, at a repre-
sentative mid-radius position Ω2(a+ b)/2 ≪ g for the annulus configurations considered
here so the centrifugal force may also be neglected (Hide 1958; Williams 1967). The
Boussinesq equations can then be written

Du

Dt
= −fez × u−∇hp, (3.6a)

Dw

Dt
= B − ∂p

∂z
, (3.6b)

DB

Dt
= 0, (3.6c)

∇h · u+
∂w

∂z
= 0, (3.6d)

where D/Dt = ∂/∂t+ v · ∇ is the material derivative, u is the horizontal velocity, w is
the vertical velocity, ∇h is the horizontal part of the nabla operator, and B = −gρ is the
buoyancy. The anelastic equations are used by Vallis (2006), e.g., as the starting point for
the derivation of quasi-geostrophic theory. These only differ from the Boussinesq equa-
tions here by an altitude-dependent reference density. Characteristic horizontal velocity
and length scales U and L, together with the inertial frequency, are used to define the
Rossby number

Ro =
U

fL
. (3.7)

In the limit Ro ≪ 1, the thermal wind relation can be used to obtain an estimate for the
(azimuthal) velocity scale U . Choosing in addition L = b− a for (3.7) yields the thermal

Rossby number (Hide 1967)

Roth =

(

N

f

d

b− a

)2
χr

χz
= Bu

χr

χz
, (3.8)

where Bu is the Burger number (e.g. Read et al. 1997; Bastin & Read 1998) and

χr =
b− a

ρ(Tb)− ρ(Ta)

1

T

∫

T

dt
1

V

∫

V

dV
∂ρ

∂r
(3.9)

is the normalised mean radial density gradient (Hide 1967). Roth can be used as a rough
estimate for the true Rossby number. Assuming for convenience χr ∼ 1 and thus χr/χz ∼
1, Roth is determined by the squared product of N/f and the annulus aspect ratio
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d/(b − a). Strongly stratified flow configurations with N/f > 1 must be shallow for
quasi-geostrophic theory to hold to leading order, i.e. d/(b− a) < 1 is required.
Following Eady (1949), one can assume a background flow with N2 = const. and

an azimuthal velocity, given by the thermal wind relation, of the form ū = Λz (where
Λ is a constant), in order to keep the problem tractable. Although the Eady model
is formulated for a zonally periodic rectangular channel on the f plane, it can yield a
rough understanding of the observed behaviour if the dominant unstable scales in the
annulus are considerably less than the radial distance from the center of rotation, so that
curvature terms can be neglected (e.g. Allen 1972; Hide & Mason 1975). We thus make
use of the following results from the Eady model (see, e.g., Vallis 2006). It is found that
modes of the quasi-geostrophic approximation to (3.6) linearised about the background
flow can only grow if the approximated instability criterion

Bu =

(

N

f

d

b− a

)2

<
(µc

π

)2

(3.10)

is satisfied, where µc = 2.399 and (µc/π)
2 = 0.583 (e.g. Hide & Mason 1975; Vallis 2006).

Thus, the aspect ratio d/(b− a) must be kept sufficiently small while decreasing d and f
and increasing Tb − Ta in order to maximise the ratio N/f . Therefore, a slowly rotating
wide and shallow annulus with a relatively large temperature difference between the inner
and outer walls is needed.
Another consideration concerns the boundary layers. Let

δE = dEk
1

2 , (3.11)

δS = (b− a)Ek
1

3 , (3.12)

δT = d

(

κ0ν0
g |ρ1 (Tb − Ta)| d3

)
1

4

(3.13)

be, respectively, the approximate thicknesses of the viscous Ekman layer at the bottom,
the viscous Stewartson layer at the side walls, and the thermal boundary layer at the
side walls, where

Ek =
ν0
Ωd2

(3.14)

is the Ekman number (Farnell & Plumb 1975; James et al. 1981). Strictly speaking
(3.11) and (3.12) are only valid for homogeneous fluids. For stratified fluids the boundary
layer thicknesses at bottom and side walls have modified forms (Barcilon & Pedlosky
1967a,b). Nevertheless, we assume the simpler formulas (3.11) and (3.12) are sufficient
for our purposes. Applying the above modifications of the annulus parameters, the Ekman
number will increase and so will the fraction of the fluid depth taken up by the Ekman
layer and of the gap width taken up by the Stewartson layer. At some point viscosity
might substantially affect the dynamics in the interior, which would be undesirable if one
is interested in the dynamics of the free fluid flow.
Furthermore the ratio of the area of the free fluid surface Stop to the area of the total

annulus surface S∂V (free fluid surface, cylinder walls and bottom)

Stop

S∂V
=

1

2
(

1 + d
b−a

) (3.15)

will also increase with decreasing aspect ratio so that the neglect of all thermal exchange
processes between fluid and air becomes more and more questionable when relatively
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high temperatures are imposed on the outer cylinder wall in order to increase the radial
temperature gradient. In a laboratory version of the experiment it might be necessary
to place a lid slightly above the fluid surface to minimise thermal fluxes and air drag
(Williams 1969). In general, we endeavour to keep the model parameters of our numerical
simulations within the limits of experimental practicability.

3.3. Large-scale dynamics simulated in a newly suggested configuration

In table 1 we list the parameters of a suggested atmosphere-like annulus configuration,
which were finally chosen as a compromise between our goal to increase N/f and the
restrictions mentioned above. It has inner and outer cylinder radii of a = 20 cm and
b = 70 cm and a fluid depth of d = 4 cm. The lateral temperature difference is Tb − Ta =
30K and it rotates with Ω = 0.08 rad/s (0.76 rpm). The spatial dimensions of the new
configuration are close to values proposed by Rossby (1926) for an experiment imitating
the atmospheric flow and to the dimensions of the early rotating dishpan experiments by
Riehl & Fultz (1957).

The spatial resolution and run time of a 2D simulation using the atmosphere-like an-
nulus configuration, as well as the amplitude of the random temperature perturbation in
a corresponding 3D simulation, are listed in table 2 (in the column “coarse 1”). Figure
4 shows snapshots of the temperature and horizontal-velocity distribution at mid-depth
from the 3D simulation, and figure 5 shows vertical cross sections of the azimuthally
averaged temperature field from the 3D simulation and the local ratio Nl/f and the
steady state temperature from the 2D azimuthally symmetric simulation. Both in the
classic and the atmosphere-like configurations, the dominant azimuthal wave number in
the baroclinic wave observed is wave 3. In both cases the wave remains relatively uniform
in its shape and the phase velocity with which it drifts in an anti-clockwise azimuthal
direction. In the atmosphere-like configuration the simulation shows a transition from
the wave 3 into a wave 2 after an integration time of about 2.8 h, but the wave 3 recovers
again after about 0.7 h. A comparison of the velocity vector fields in figures 2 and 4 shows
that in the case of the atmosphere-like configuration the centres of low temperature have
a stronger vortex character than in the classic configuration where the jet meanders rela-
tively uniformly between centres of lower and higher temperature. N2 ≈ 0.33 (0.64) s−2,
χr ≈ 0.07 (0.41), χz ≈ 0.15 (0.3), Bu ≈ 0.08 (0.16), Roth ≈ 0.04 (0.22) and N/f ≈ 3.6 (5)
are typical values from the 3D simulations of the atmosphere-like configuration (val-
ues from the 2D simulations are in parentheses). For comparison, simulations of the
classic configuration produce N2 ≈ 0.12 (0.14) s−2, χr ≈ 0.19 (0.74), χz ≈ 0.77 (0.89),
Bu ≈ 0.26 (0.29), Roth ≈ 0.06 (0.24) and N/f ≈ 0.27 (0.3). Though for estimating N2

and Bu, χr ∼ χz ∼ 1 was assumed, we see that especially in the 3D simulations χr < 1
due to the reduction of the baroclinicity during the growth of the baroclinic wave and
χz < 1 since the process is accompanied by a vertical expansion of the isopycnals (Dou-
glas & Mason 1973) (notice the vertical expansion of the isotherms between figures 5a
and 5b). Theoretical considerations on χr and χz can be found in Hide (1967). Most
importantly for our purposes is that the intended increase of the ratio N/f has been
achieved with the atmosphere-like configuration, as can be seen in figure 5c. Now at least
N > f on average. The Ekman number of the atmosphere-like configuration is about
100 times larger than that of the classic configuration (see table 1). Thus, according to
(3.11) and (3.12) the fraction of the total depth taken up by the Ekman layer increases
by a factor of about 10 while the fraction of the gap taken up by the inner and outer
Stewartson layers increases by a factor of about 5.
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4. The gravity-wave signal

4.1. Simulations

For the simulation of GWs the grid resolutions used to determine the large scale velocity
and temperature fields shown above are too coarse since the spatial scales of the GWs
can be assumed to be much smaller than those of the baroclinic waves according to the
simulations by Jacoby et al. (2011). In addition to increasing the number of grid cells,
one may gain further resolution in the azimuthal direction by restricting the simulation
to one azimuthal wave length of the dominant baroclinic wave (Williams 1969, 1971), a
method also common in simulations of baroclinic waves in the atmosphere (e.g. Simmons
& Hoskins 1975). Thus the original 2π-periodicity in azimuthal coordinate was replaced in
both configurations, classic and atmosphere-like, by a 2π/3-periodicity. In the case of the
atmosphere-like configuration we restrict our investigations to times much earlier than
when the wave-3 to wave-2 transition occurred in the coarse simulation. In addition we
performed simulations with 2π-periodicity using the same number of grid cells as in case
of the 2π/3-periodicity. The results (not shown), although three times coarser resolved
in the azimuthal direction, convinced us that the 2π/3-periodic simulations represent the
full 2π-periodic flow sufficiently well for this study. The spatial resolutions in the “fine”
2π/3-periodic simulations are listed in table 2. In order to save computing time the fine
simulations were initialised with interpolations from a less highly resolved pre-simulation,
the specifications of which can be found in the columns labelled “coarse 2” in table 2.
Note that in the case of the classic configuration the baroclinic wave cannot be triggered
under 2π/3-periodicity. The initial instability is characterised by wave 2 which only after
a few minutes undergoes a transition to wave 3. Therefore the pre-simulation was done
in the full annulus and a third of it interpolated to initialise the fine simulation. The
integration times of the pre-simulations were 2100 s for the atmosphere-like and 600 s for
the classic configuration. The subsequent simulations on the fine grid lasted for a further
1100 s in the atmosphere-like and 400 s in the classic configuration. These times were long
enough that any artefacts of the interpolation would have disappeared.
In order to indicate possible GWs, a horizontal cross-section of the horizontal velocity

divergence

δ = ∇h · u =
1

r

[

∂u

∂ϑ
+

∂(rv)

∂r

]

(4.1)

at mid-depth is plotted in figure 6 (e.g. O’Sullivan & Dunkerton 1995). It should be noted
that δ contains a balanced part, which affects its suitability as a proxy for GW activity.
In the case of a quasi-geostrophic flow, the balanced part of δ can be obtained from the
omega equation for the quasi-geostrophic vertical velocity and (3.6d) (e.g. Zhang et al.

2000; Viúdez & Dritschel 2006; Plougonven et al. 2009; Danioux et al. 2012). Subtracting
the balanced horizontal divergence from the total would highlight the gravity-wave signal
especially clearly. Nevertheless, we assume that the balanced part does not dominate
the divergence signal and note that the divergence is still a widely used GW indicator
(see e.g. Vanneste 2013; Plougonven & Zhang 2014). The most noticeable structures in
the divergence signal are already identifiable with comparable magnitude in the pre-
simulation suggesting that they are not merely numerical artefacts of the interpolation.
We have also tested whether the divergence signal might be affected by the implicit SGS
model ALDM. A repetition of the above simulations using a simple central-difference
scheme (e.g. Ferziger & Perić 2008) instead of ALDM to compute the advective fluxes
showed no difference in the typical shape, magnitude and other characteristics of the
divergence signal (not shown). On the one hand we may conclude from this that the grid
resolutions is sufficiently high so that a SGS model is no longer necessary. On the other
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hand it shows that the inclusion of ALDM does not adversely affect the GWs in these
simulations. Simulations using the grid resolutions “coarse 1” and “coarse 2” in table
2, however, appear to profit from ALDM, since it produces a smoother solution, which
more closely resembles the solution of the fine simulations than does using simple central
differences (Borchert et al. 2014).

In the more atmosphere-like configuration there is a strongly localised signal in the
boundary layer region of the inner cylinder, probably consisting of GWs originating from
boundary layer instabilities as described by Jacoby et al. (2011) and Randriamampianina
(2013). In addition one can see spiral-like patterns arranged around the low-pressure
centre. A substantial part of these GWs might come from the boundary-layer generated
waves since they propagate into the interior of the annular channel as pointed out by
Jacoby et al. (2011). In the classic configuration the overall picture is comparable. One
can see horizontal divergence signals close to the boundary layer of the inner cylinder
and unlike in the atmosphere-like configuration band-like horizontal divergence structures
following the jet of the baroclinic wave.

The divergence field simulated by our model compares favourably with results from
other models. The GWs in both annulus configurations resemble in their spatial structure
those observed in simulations of an idealised lifecycle of an unstable baroclinic wave in
the atmosphere by O’Sullivan & Dunkerton (1995), Zhang (2004), Plougonven & Snyder
(2005) and Plougonven & Snyder (2007). Similar GWs were also observed in simulations
of vortex dipoles in a rotating, stratified fluid by Snyder et al. (2007, 2009). As was
stated by these authors, the GWs are almost stationary with respect to the baroclinic
wave or the vortex dipole. We observe the same behaviour in our simulations. The GWs
appear to be an inherent feature of the baroclinic wave. In the aforementioned works the
GWs are attributed to spontaneous emission from imbalances of the large-scale flow, so
a portion of the GWs in the rotating annulus possibly originates from spontaneous GW
emission.

It is likely that, regardless of the sources of the GWs, the spatial organisation of
the GW field as indicated by the horizontal divergence is primarily determined by the
propagation of the waves through the background flow. According to Bühler & McIntyre
(2005), Plougonven & Snyder (2005) and Wang et al. (2009) the horizontal deformation
and vertical shear of the background velocity field appear to have a large impact on the
location, orientation and other characteristics of the waves (such as their wavelengths).

4.2. Analysis

4.2.1. Modal decomposition based on linear theory

An important element in the investigation of GWs in numerical simulations is to test
whether the characteristics of the observed structures, assumed to be GWs, are consistent
with predictions from linear GW theory (O’Sullivan & Dunkerton 1995; Zhang 2004;
Plougonven & Snyder 2007). For this purpose we decompose the flow into small-scale
and large-scale parts by means of a moving average. Next, we determine how the energy
in the small-scale part of the flow is distributed among the various modes of the linearised
governing equations, which shows what part of the small-scale structures of the flow is
consistent with the polarisation relations of linear GWs.

The analysis is based on the Boussinesq equations in the formulation (3.6). Expressing
the governing equations in Cartesian coordinates, all fields are decomposed into a large-
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scale part and small-scale deviations, i.e.

v = V0 + v′, (4.2a)

B = B0 +B′, (4.2b)

p = P0 + p′, (4.2c)

with

U0 =
1

f

∂P0

∂y
, (4.3a)

V0 = − 1

f

∂P0

∂x
, (4.3b)

W0 = 0, (4.3c)

B0 =
∂P0

∂z
, (4.3d)

∂B0

∂z
= N2, (4.3e)

where U0, V0 and W0 are the velocity components in the x-,y- and z- (i.e. azimuthal,
radial, and vertical) directions. Following the standard WKB procedure (e.g. Grimshaw
1975), we assume that U0, V0, and N2 are constants, or rather that their spatial and tem-
poral derivatives are negligible relative to those of the deviations. Writing the linearised
Boussinesq equations in terms of the deviations and Fourier-transforming in space and
time then yields (e.g. Fritts & Alexander 2003)

− iω̂ũ = −f ṽ − ikp̃, (4.4a)

− iω̂ṽ = fũ− ilp̃, (4.4b)

− iω̂w̃ = B̃ − imp̃, (4.4c)

− iω̂B̃ = −N2w̃, (4.4d)

kũ+ lṽ +mw̃ = 0, (4.4e)

where k, l, and m are the wave-number components in the x-,y- and z- directions, ω
and ω̂ = ω − kU0 − lV0 are the frequency and intrinsic frequency, and φ̃ denotes the
Fourier transform of the field φ′. The signs of the Coriolis terms in (4.4a) and (4.4b)
are reversed compared to those in equation (7) and (8) of Fritts & Alexander (2003)
because we changed the usual order of cylindrical coordinates from (r, ϑ, z) to (ϑ, r, z)
(a left-handed system) in order to facilitate comparison with the atmosphere (where the
zonal direction corresponds to the azimuthal direction in the annulus). In general, the
Fourier transforms X := (ũ, ṽ, w̃, B̃) can be decomposed into three eigenmodes of the
system (4.4). One of these is the geostrophic mode with eigenfrequency

ω̂ = ω̂1 = 0 (4.5)

and structure

X1 =

√
2fN

√

N2 (k2 + l2) + f2m2

(

l

f
,−k

f
, 0,m

)

i
p̃

|p̃| =: R. (4.6)

The other two are the GW modes with eigenfrequencies

ω̂ = ω̂2,3 = ±
√

N2 (k2 + l2) + f2m2

k2 + l2 +m2
(4.7)
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and structure

X2,3 =























(1,±i, 0, 0)
ũ

|ũ| , for k = l = 0

p̃/ |p̃|√
k2 + l2 +m2





m
(

k − il fω̂

)

√
k2 + l2

,
m
(

l + ik f
ω̂

)

√
k2 + l2

,−
√

k2 + l2, i
N2

ω̂

√

k2 + l2



 , otherwise

=: G±. (4.8)

The inertial oscillation (k = l = 0) is a limiting case, but the case k = l = m = 0 is
not considered below. The factors (i)p̃/|p̃| and ũ/|ũ| could equally well be set to unity
since they have no bearing on the following analysis. R, G+ and G− form a complete
basis of all fields satisfying the continuity equation (4.4e) (Smith & Waleffe 2002; Achatz
2007). The analysis below cannot guarantee that the obtained deviation fields do exactly
satisfy (4.4e), so to also allow velocity fields with non-zero divergence we add a fourth
basis vector

X4 =

√
2√

k2 + l2 +m2
(k, l,m, 0) =: E, (4.9)

spanning the part of the deviation velocity fields not satisfying (4.4e).
The aforementioned vectors are orthonormal with respect to the energy scalar product

〈XI ,XJ〉 :=
1

2

(

ũI ũ
∗
J + ṽI ṽ

∗
J + w̃I w̃

∗
J +

B̃IB̃
∗
J

N2

)

, (4.10)

where the asterisk denotes the complex conjugate, i.e. 〈R,R〉 = 〈G±,G±〉 = 〈E,E〉 = 1,
and 〈R,G±〉 = 〈G±,G∓〉 = 〈R,E〉 = 〈G±,E〉 = 0. Now for a given set of wave
numbers (k, l,m) the deviations can be expressed as a superposition of the geostrophic
and GW modes and the divergent (non-physical) part

X = ̺R + γ+G+ + γ−G− + ǫE. (4.11)

Up to an irrelevant constant factor the norm corresponding to the scalar product is the
sum of the kinetic and available potential energy conserved by the linear Boussinesq
equations, and one has

〈X ,X〉 = 1

2

(

ũũ∗ + ṽṽ∗ + w̃w̃∗ +
B̃B̃∗

N2

)

= |̺|2 +
∣

∣γ+
∣

∣

2
+
∣

∣γ−
∣

∣

2
+ |ǫ|2 . (4.12)

Summing over all wave numbers yields the total energetic contribution from the geostrophic
mode, the GWs and the non-physical divergent part (e.g. Achatz 2007)

Egeo =
∑

k,l,m

|̺k,l,m|2, (4.13a)

EGW =
∑

k,l,m

∣

∣

∣
γ+
k,l,m

∣

∣

∣

2

+
∣

∣

∣
γ−

k,l,m

∣

∣

∣

2

, (4.13b)

Eerr =
∑

k,l,m

|ǫk,l,m|2. (4.13c)

The large-scale part of the flow is defined by a simple moving average. To each grid-cell
with azimuthal, radial and vertical indices i, j, and k we assign a larger averaging box
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and determine the large-scale basic field from

(Φ0)i,j,k =
1

(2I + 1) (2J + 1) (2K + 1)

I
∑

i′=−I

J
∑

j′=−J

K
∑

k′=−K

φi+i′,j+j′,k+k′ , (4.14)

where φ is one of u, v, and B. Averaging p is not necessary. The azimuthal, radial and
vertical extent of the averaging box is chosen to be small enough so that the cylindrical
curvature can be neglected. In grid cells where the averaging box extends beyond the
radial and vertical annulus bounds, its size is reduced so as to fit in the domain. The
local stability is estimated via centred differences using

N2 =
(B0)i,j,k+1 − (B0)i,j,k−1

2∆z
. (4.15)

Within an averaging box we then decompose the fields into mean and deviations and then
perform a spatial Fourier transformation with triply periodic boundary conditions. To
reduce spectral leakage the amplitude of the deviations φ′

i+i′,j+j′,k+k′ is smoothly reduced
to zero towards the boundaries of the averaging box by multiplying it by a window
function Wi′,j′,k′ before applying the Fourier transform. Here we make use of a Tukey
window (Harris 1978)

Wi′,j′,k′ = wI(i
′)wJ (j

′)wK(k′), (4.16)

where

wI (i
′) =























1
2

{

1 + cos

[

π(−i′−βI)
(1−β)I

]}

, for i′ < −βI

1, for − βI 6 i′ 6 βI

1
2

{

1 + cos

[

π(i′−βI)
(1−β)I

]}

, for i′ > βI

, (4.17)

with β = 3/4, and analogous definitions for wJ(j
′) andwK(k′). The Fourier analysis yields

for each possible wavenumber combination (k, l,m) the deviation Fourier transforms X.
We then determine, from the wavenumbers and from f and N , the four basis vectors
R, G+, G−, and E. Projecting X onto these yields the expansion coefficients ̺, γ+,
γ−, and ǫ which are finally used to determine the energetic contributions (4.13). This
procedure is done grid-cell by grid cell, yielding a spatially varying decomposition of the
energy.
Figure 7 shows the analysis results for the snapshot of the annulus flow shown in figure

6. We have used an averaging and analysis box of size I = J = K = 25 in the case of the
classic configuration and I = K = 20, J = 30 for the atmosphere-like configuration. In
both configurations the energy contained in the geostrophic mode Egeo is of comparable
magnitude to the energy of the two GW modes EGW . The energy in the non-physical
part of the velocity field Eerr is about an order-of magnitude smaller (not shown). The
classic configuration has highest energy values of the geostrophic mode in the region
of the jet, where the temperature and velocity fields vary relatively strongly (compare
figure 2). The energy of the GW modes EGW has its highest values in the jet region as
well. This coincides with the pattern of the horizontal velocity divergence (figure 6a). For
the atmosphere-like configuration both, Egeo and EGW have their maximum close to the
low-pressure centre (compare figure 6b). This might likewise be associated with stronger
variations of temperature and velocity fields in this region (compare figure 4). The energy
signal of the GWmodes coincides with the signal of the horizontal velocity divergence also
in this case (figure 6b). Note that the boundary layer regions lie outside of the analysed
sub-region since in our implementation the analysis box cannot cross the solid walls of
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the annulus (compare to figure 7a, b). Although we claim that these results are a useful
contribution to the collection of indicators for GW activity in the annulus experiment, it
should be acknowledged that the analysis is not unambiguous due to the freedom in the
choice of the averaging volume and the simplifications involved in the linearisation of the
governing equations. So some caution is required in the interpretation of these results.
It is not surprising that all energies increase with increasing box size, but in our tests
the ratio of the various energies to the total energy depends only slightly on the box
size. Thus this analysis is assumed to give (at least) information on the relative energy
distribution between the geostrophic mode and the GWs, which in our case suggests that
GWs contribute significantly to the small-scale structures of the flow.
The decomposition of the flow into a smoothed large-scale part and the small-scale

deviations using a moving average has to be distinguished from the decomposition into
balanced and unbalanced parts, which is a common method to identify GWs, e.g., Warn
et al. (1995); Zhang et al. (2000); Snyder et al. (2009); Wang & Zhang (2010). In those
works, diagnostic relations are used to determine the GW-free balanced (large-scale)
part of the flow (geostrophic balance is a simple example). The deviation of the flow
from the balanced part is the unbalanced part, which is assumed to contain the GWs.
Although, the analysis presented here is not based on the decomposition into balanced
and unbalanced parts, it might be used in the future to investigate a question which has
attracted some interest in past works, namely that of the dependence of the energy in
the small-scale structures on the Rossby number. In a simplified model of spontaneous
GW emission, it has been shown analytically using exponential asymptotics that in the
limit Ro ≪ 1 the amplitude of the GWs is exponentially small in the Rossby number,
more precisely proportional to Ro−1/2 exp(−α/Ro) (Vanneste & Yavneh 2004). Numer-
ical simulations of vortex dipoles, on the other hand, suggest a power-law dependence
Roβ with typical values of β ≈ 4 (Snyder et al. 2007) or β ≈ 6 (Wang et al. 2009)
for the considered Rossby number range. Meanwhile, laboratory observations from a ro-
tating two-layer annulus found the amplitude of small-scale waves to vary linearly with
the Rossby number in the considered range (Williams et al. 2008). For the differentially
heated rotating annulus it would be necessary to investigate a large number of experi-
ments with different parameters to cover a large enough range of the Rossby number.
The thermal Rossby number (3.8) might be used as reference point to find suitable pa-
rameters, while the Rossby number defined by characteristic velocity and length scales
identified in the actual flow would be used for comparison with the aforementioned works.
Note that instead of yielding the absolute dependence of the energy in the small scale
structures on the Rossby number, the analysis method presented in this section is only
suitable for obtaining the relative change in energy as Ro changes.

5. Summary and discussion

Determining the importance of large-scale balanced flow as a source of GWs in the
atmosphere is one of the major challenges facing modellers wishing to improve the pa-
rameterisation of GWs in weather prediction and climate simulation. Given the inherent
difficulty of using data from direct atmospheric measurements for validating and ad-
vancing theory, it would be valuable to have complementary laboratory experiments
available where an elusive process like spontaneous GW emission can be investigated in
a controlled and systematic way. One such experiment is the differentially heated ro-
tating annulus (Hide 1958), a classic laboratory analogue for mid-latitude atmospheric
flows. Indications of GW activity in the rotating annulus have been reported, but ei-
ther a two-layer variant of the experiment was used (Williams et al. 2005) or the waves
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were attributable to boundary layer instabilities (Jacoby et al. 2011; Randriamampianina
2013). The purpose of the present modelling study is to investigate whether and how a
rotating-annulus experiment with continuous stratification might be designed to be use-
ful for the investigation of spontaneous GW emission. Our tool is a new numerical model
of the differentially heated rotating annulus (Borchert et al. 2014) that integrates the
Boussinesq equations using a finite-volume discretisation with the implicit subgrid-scale
parameterisation developed by Hickel et al. (2006).
In the classic configuration of the annulus experiment the ratio N/f of the mean

Brunt-Väisälä frequency N to the inertial frequency f is less than unity (in the regime
of baroclinic instability) unlike in the real atmosphere where N/f ∼ 100. These two fre-
quencies define the range of intrinsic frequencies for GWs, with horizontally propagating
waves having frequencies closer to N and vertically propagating waves frequencies closer
to f . The fact that in the atmosphere, the former are very high frequency and the latter
very low frequency is central to their importance to the large-scale circulation and to the
problems they pose to modellers. If the annulus experiment is to serve as an analogue for
GW processes in the atmosphere, it is therefore desirable to design it in such a way that
N/f > 1 and the “ordering” is preserved. Without differential heating at the top and
bottom boundaries (the set-up suggested by Miller & Fowlis (1986)) the only way to in-
crease N/f is by increasing the temperature difference between the inner and outer walls,
by decreasing the fluid depth, and by decreasing the rotation rate. Care has to be taken
that this is done in such a way that baroclinic instability is still active, as it provides the
large-scale wave from which GWs are to be radiated. Quasi-geostrophic theory (Charney
1948) in the approximation of Eady (1949) has been used to identify parameters that
at once maximise N/f , preserve baroclinic instability, and remain within realistic lim-
its for eventual implementation in the laboratory. We found a wide and shallow, slowly
rotating annulus with comparatively large lateral temperature difference to be the con-
figuration of choice. In one such configuration with inner and outer radii a = 20 cm and
b = 70 cm, fluid depth d = 4 cm, temperature difference Tb − Ta = 30K and angular
velocity Ω = 0.08 rad/s (0.76 rpm), our numerical model predicts N/f ∼ 4, slightly less
than our theoretical expectation. We have performed simulations with both this more
atmosphere-like configuration and a classic configuration, with cylinder radii a = 4.5 cm
and b = 12 cm, fluid depth d = 13.5 cm, temperature difference Tb−Ta = 8K and angular
velocity Ω = 0.63 rad/s (6 rpm). These values are very close to those used in a laboratory
experiment by Harlander et al. (2011). In this configuration we observe N/f ∼ 0.3.
Clear signals are observed in the horizontal divergence field, a likely indicator of GW

activity, in both configurations, both close to the inner boundary and within the baro-
clinic wave. Within the baroclinic wave, they take the form of small-scale spiral patterns
in the atmosphere-like configuration and band-like patterns in the classic configuration.
Especially in the first configuration, the structures are reminiscent of the spontaneously
emitted GWs observed in simulations of atmospheric baroclinic waves (e.g. O’Sullivan &
Dunkerton 1995). Modal decomposition based on linear theory suggests that GWs con-
tribute significantly to the small-scale energy in regions where the horizontal-divergence
structures are found. A substantial part of the GW signal seems to originate from a lo-
calised instability in the boundary layer at the inner cylinder, similar to those described
by Jacoby et al. (2011) and Randriamampianina (2013).
In a future work we will address the problem of finding further indications which

underpin the assumption that a part of the GWs observed in the simulations of the ro-
tating annulus originates from spontaneous GW emission. In this context, we hope to
clarify how significant this GW forcing is in comparison to the boundary layer instabili-
ties. Preliminary results already indicate a clear forcing of horizontal divergence by the
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geostrophically and hydrostatically balanced flow (not shown), indicating a local GW
source apart from boundary layer instabilities. The approaches of Snyder et al. (2009)
and Wang & Zhang (2010) can be further promising tools for this investigation. They
linearised the governing equations about a balanced state (either a quasi-geostrophic
or a nonlinear balance), obtaining equations for the small-scale deviations forced by the
residual tendency of the balanced flow. Vortex dipole simulations showed good qualitative
agreement between the forced linear solution and the GWs from the fully nonlinear simu-
lations. Wang & Zhang (2010) showed that the forcing of the relative vorticity deviation
contributes most to the spontaneously emitted GWs in their test case.
Although a proof of spontaneous GW emission in the differentially heated rotating

annulus is still pending and boundary-layer effects are considerable, even in our wider,
atmosphere-like annulus simulations, we hope that our results so far will provide a guide-
line, or at least motivation, to colleagues in the laboratory to address spontaneous GW
emission in new configurations of the differentially heated rotating annulus.
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classic atmosphere-like
configuration configuration

- inner radius, a: 4.5 cm 20 cm
- outer radius, b: 12 cm 70 cm
- fluid depth, d: 13.5 cm 4 cm
- inner wall temperature, Ta: 24 ◦C 15 ◦C
- outer wall temperature, Tb: 32 ◦C 45 ◦C
- angular velocity, Ω: 0.63 rad/s 0.08 rad/s

(6 rpm) (0.76 rpm)
- working fluid: water water
- ρ1: −2.765 × 10−4 1/K −2.923 × 10−4 1/K
- ρ2: −3.915 × 10−6 1/K2 −3.917 × 10−6 1/K2

- ν0: 8.543 × 10−3 cm2/s 8.160 × 10−3 cm2/s
- ν1: −2.297 × 10−2 1/K −2.292 × 10−2 1/K
- ν2: 2.692 × 10−4 1/K2 2.819 × 10−4 1/K2

- κ0: 1.469 × 10−3 cm2/s 1.477 × 10−3 cm2/s
- κ1: 2.824 × 10−3 1/K 2.758 × 10−3 1/K
- κ2: −1.266 × 10−5 1/K2 −1.259 × 10−5 1/K2

- Ekman number, Ek: 7× 10−5 6× 10−3

- Ekman layer thickness, δE : 0.12 cm 0.32 cm
- Stewartson layer thickness, δS: 0.32 cm 9.27 cm
- thermal boundary layer thickness, δT : 0.09 cm 0.05 cm

Table 1. Physical parameters and derived quantities for a classic annulus configuration
comparable to those used by Harlander et al. (2011) and a more atmosphere-like configuration.

classic configuration atmosphere-like configuration
coarse 1 coarse 2 fine coarse 1 coarse 2 fine

- number of azimuthal grid cells, Nϑ: 60 90 160 80 80 160
- — radial — , Nr: 40 45 90 80 80 160
- — vertical — , Nz: 50 80 160 30 30 90
- azimuthal width of simulated
periodic sector: 2π rad 2π rad 2π/3 rad 2π rad 2π/3 rad 2π/3 rad

- integration time t2D of 2D model
to reach steady state: 10800 s 10800 s - 36000 s 36000 s -

- max. amplitude δTpert of initial
temperature perturbations,
in units of |Tb − Ta|: 0.03 0.03 - 0.01 0.01 -

Table 2. Parameters of the numerical model.
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Figure 1. Schematic view of the differentially heated rotating annulus with a sector removed
to indicate the cell walls of the regular, cylindrical finite-volume grid (dotted lines).

(a) Temperature (b) Velocity

Figure 2. Horizontal cross section of (a) the temperature field in ◦C, contour interval 0.5 ◦C
simulated for a classic annulus configuration at height z = 0.74 d = 10 cm and time t = 2700 s
after the seeding of baroclinic instability by a random temperature perturbation, and (b) the
corresponding horizontal velocity vector field in cm/s.
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(a) 2D: Temperature (b) 3D: Temperature (c) 3D: Nl/f

Figure 3. (a) Azimuthally symmetric solution for the temperature field from a simulation in the
classic annulus configuration. Also shown are the vertical cross-section of (b) the azimuthal-mean
temperature and (c) the local ratio Nl/f from the same full 3D simulation as shown in figure 2.
The contour interval for the temperature plots is 0.5 ◦C. The isolines of Nl/f have the contour
interval 0.05.

(a) Temperature (b) Velocity

Figure 4. As figure 2, but now for the more atmosphere-like annulus configuration. The plots
are at height z = d/2 = 2 cm, and time t = 3600 s. Contour interval of the isotherms in the left
panel is 0.3 ◦C.
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(a) 2D: Temperature

(b) 3D: Temperature

(c) 3D: Nl/f

Figure 5. As in figure 3, but now for the atmosphere-like configuration. The contour interval
is 1 ◦C for both temperature plots and 0.5 for Nl/f .

(a) Classic (b) Atmosphere-like

Figure 6. Pressure field (grey scale) and contour lines of the horizontal velocity divergence
δ = ∇h · u (a) δ in 10−2 s−1 for the classic configuration at height z = 0.74 × d = 10 cm and
time t = 1000 s after seeding the baroclinic instability. The contour interval of δ is 3× 10−2 s−1.
(b) δ in 10−2 s−1 for the atmosphere-like configuration at a height of z = d/2 = 2 cm and at
time t = 3200 s, with a contour interval of 2× 10−2 s−1 for δ.
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(a) Classic: geostrophic (b) Atmosphere-like: geostrophic

(c) Classic: GW (d) Atmosphere-like: GW

Figure 7. Contribution to the total energy by the various linear modes of the small-scale
structures, defined as the differences between the simulated flow (of which the pressure and the
horizontal divergence are shown in figure 6) and a smoothed flow obtained by a moving average.
Shown is the energy contained in the geostrophic mode (a and b), and the energy of the two
gravity wave modes (c and d), in arbitrary units, for the classic configuration (left column), and
for the atmosphere-like configuration (right column). The dashed lines define the sub-region
analysed and the dotted lines indicate the approximate horizontal size of the box used for the
moving average and subsequent linear analysis.
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