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The dynamics of internal gravity waves is modelled using WKB heory in
position-wavenumber phase space. A transport equation fothe phase-space
wave-action density is derived for describing one-dimensnal wave fields
in a background with height-dependent stratification and heght- and time-
dependent horizontal-mean horizontal wind, where the mearwind is coupled
to the waves through the divergence of the mean vertical flux fohorizontal
momentum associated with the waves. The phase-space apptbabypasses the
caustics problem that occurs in WKB ray-tracing models when he wavenumber
becomes a multivalued function of position, such as in the of a wave
packet encountering a reflecting jet or in the presence of a me-dependent
background flow. Two numerical models were developed to soévthe coupled
equations for the wave-action density and horizontal mean imd: an Eulerian
model using a finite-volume method, and a Lagrangian “phase&pace ray tracer”
that transports wave-action density along phase-space pag determined by
the classical WKB ray equations for position and wavenumber.The models
are used to simulate the upward propagation of a Gaussian wav packet
through a variable stratification, a wind jet, and the mean flov induced
by the waves. Results from the WKB models are in good agreemenwith
simulations using a weakly nonlinear wave-resolving modeas well as with a
fully nonlinear large-eddy-simulation model. The work is astep toward more
realistic parameterizations of atmospheric gravity wavesn weather and climate
models. Copyright(©) 2013 Royal Meteorological Society
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1. Introduction This forcing — known as gravity-wave drag — helps maintain
the large-scale circulation in the middle atmosphere. In
It is well established that gravity waves play aflimate models and models used for weather forecasting,
important role in the dynamics of the atmosphergravity-wave drag must be parameterized, since the models
Excited in the troposphere through processes suchcasnot resolve the entire range of gravity-wave scales,
flow over topography, convection, and jet imbalance, theyuch less the even smaller scales involved in gravity wave
transport momentum and energy into the stratosphere &nelaking and wave-turbulence interactions. For an overvie
mesosphere, where they break and deposit their momentamatmospheric gravity waves and the parameterization
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2 J. Muraschko et al.

of gravity-wave drag in weather and climate models A particular way in which the background becomes time
see Fritts and Alexander(2003, Kim etal. (2003 and dependent is through the forcing due to the divergence of
Alexanderet al. (2010. the momentum flux associated with the waves themselves.
Many parameterization schemesLindzen 1981 Sutherland (2001) showed that the propagation of a
Alexander and Dunkerton 1999 Warner and MclIntyre horizontally periodic, vertically compact wave packet is
200% Song and Chun 20Q&re based on Wentzel-Kramerstrongly modified by the interaction between the waves and
Brillouin (WKB) theory (Bretherton 1966 Grimshaw the wave-induced mean flow, a phenomenon knowseits
1975 Miller 1976, where the amplitude, wavelength anecceleration and that a weakly nonlineasystem coupling
frequency of the waves are represented as functionstigf wave packet to the induced mean flow — but neglecting
space and time that vary slowly compared to the scalsther wave-wave interactions — is sufficient to capture most
of the waves themselves. WKB theory leads to tag of the nonlinear dynamics (note that unlike, for example, th
equations which describe the propagation and evolutiostfect of breaking waves or waves encountering a critical
of wave properties along paths everywhere parallel to tlegel, this kind of mean flow forcing is reversible). The
local group velocity. Numerical models based on the rgyavity-wave momentum flux in a WKB model is a function
equations, colloquially known amy tracers have been of position, wavenumber and wave action density so it can
used for the interpretation of gravity wave observatiomg readily coupled to an equation for the mean flow to yield
(e.g. Eckermann 1992 Marks and Eckermann 1995 a weakly nonlinear WKB model.
Hertzoget al. 2009 and for studying the evolution of The same approach for overcoming the caustics problem
gravity wave flglds in realistic Iarge-_scale.flows. Examplgs already in common use in the field of surface gravity
of the latter include the three-dimensional ray tracfayes inthe ocean. There, the wave-action-density equatio
developed bySong and Chur(2009 to simulate gravity- is solved for forecasting and engineering purposes in eithe
wave drag induced by cumulus convection and the rgyposition-wavenumber or a position-frequency-direction
tracer used bySenfand Achat2201]) for studying the formuylation. Both are employed operationally by various
impact of thermal tides on the propagation and dissipati@e models (see, e.gBooij et al. 1999 WAMDI Group
of gravity waves. o 1988 Benoitet al. 1996 Tolman 199} and are coupled in
Gravity-wave-drag parameterizations based on WKRe same weakly nonlinear manner with ocean circulation
theory (such as that aarner and Mclintyre 20QIneglect g els (se®ietrich et al. 2011 Rolandet al. 2009 2012.
the effect of transience in the large-scale flow on the-l-he aim of the present study is to use WKB theory to

waves. Given a (discrete or continuous) spectrum &Izscribe the propagation of a gravity wave packet in a time-

emitted waves and an instantaneous background st endent background flow while accounting for the effect
these schemes use steady-state WKB theory to calcu he waves on the background flow. We show that the

the wave properties at all heights and the mean flow 15 <o <oace WKB approach is able to describe the weakly
modified accordingly based on parameterization-spec IShlinear coupled system while avoiding the caustics

Irg\l/(ZTSrell_'a;\tlavde\}g,r f?r: eeé?g;[()jle_,Sf:taélcalsnssutambl[(I{[g/nair;’d Crgtk') oblem. For simplicity, the Boussinesq approximation is
: ’ y P P ed, and the study is restricted to horizontally uniform,

not justified when there are significant interactions betwe\?ertically localized gravity wave packets. Simple testesas

gravity waves and solar tidessénf and Achatz 20)1or . .
between small-scale parameterized waves and Iarge-sgé'?ep resented to illustrate the effects of the wave field en th
an flow and of the wave-induced mean flow on the wave

explicitly resolved waves (discussed in several studies d
internal waves in the upper ocean interacting with inertiar.c- . . .
waves, seevanderhoffet al. 2008 201Q and references Two numerical algorithms are proposed for solving the

therein). Indeed, current general circulation models ha&égase—space WKB equations coupled to an equation for
0

horizontal resolutions of tens of kilometres and therefofa® €volution of the mean flow. The first uses a finite-
resolve a large part of the gravity-wave spectrum (. lume method to solve the transport equation for wave-

Watanabeet al. 2008). It s likely that in such cases the timeAction density in position-wavenumber phase space, and the
scale of the background variations is not long comparedgcond is a ray tracer (in phase space) that exploits the area
that of the evolution of the wave packet (not to be confusBEES€Tving property of the phase space flow. Simulations
with the period of the waves themselves). The steady st4ff) the WKB models are compared to simulations with
approximation is also not consistent with localized way®e explicitly wave-resolving models — a weakly nonlinear
packets excited by a transient source, such as a convecfigdle! and a fully nonlinear large-eddy-simulation (LES)
event, which induce a time-dependent mean flow. model. _ .

As will be shown, when transience in the background The paper is structured as follows. In sectidnan
is accounted for, solutions to the ray equations tend §¥Planation and derivation of the theory is given. In settio
become multivalued functions of space. This is an exampiethe ray equations are reviewed and the caustics problem
of thecausticgproblem (ighthill 1978), where two or more that arises in, for example, cases of self-accelerated wave
rays intersect and the ray equation for wave-action dendi§ckets and wave packets encountering a strong wind jet is
(the quantity representing wave amplitude in WKB theorjijustrated. The equations governing the weakly nonlinear
becomes ill-defined. The formalism used lHgrtzoget al. €volution of gravity-wave packets using WKB theory in
(2002 (following Dewar 1970 Dubrulle and Nazarenkophase space are derived in sectiriThe two numerical
1997 avoids the caustics problem by casting the WKBplementations of the weakly nonlinear phase-space WKB
equations in the form of a transport equation for the wavgquations as well as the two validation models are described
action density in position-wavenumber phase space. Thg&ection. Finally, sectiorf presents the results of a series
same formalism was also used IBilhler and Mclintyre

(1999 to StUdY propagation of Kelvin-Helmoltz shear-some authors (e.gFritts and Dunkerton 1994efer to this system as
generated gravity waves through the summer stratospherguasi-linear”
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WKB theory and weakly nonlinear gravity-wave dynamics 3

of experiments, with an emphasis on test cases which leatlVe assume a solution ta8)(in the form of a single

to caustics. gravity-wave packet with period and wavelength small
compared to the scales of the background and follow the

2. The weakly nonlinear Boussinesq equations development inAchatzet al. (2010 by postulating the
ansatz

The theory developed here for the weakly nonlinear
evolution of internal gravity wave packets assumes that /u/(x,
the background is a variably stratified fluid with a time- | w'(
and height-dependent horizontal-mean horizontal flow. | v/(z, z,
The influence of the Coriolis force is neglected, as are \p'(z, z,
molecular viscosity and diffusion. The waves propagate N
in the zz-plane, have constant horizontal wavenumber o0
and time- and height-dependent vertical wavenumber and R
amplitude. We make the standard WKB assumption that ;—o X (
the background fields and wave properties vary on time 21
and space scales long compared to the period and vertical (4)
wavelength of the waves. . R

Except for the increase in wave amplitude with heigM{here ¢ is a small parameter;, w;, b; and p; are
in a stably stratified environment, the dynamics of interngingle-valued time- and height-dependent complex wave

gravity waves can be well described by the Boussined@PlitudesZ = ez andT = et are “slow” height and time
equations: coordinatesk is the constant horizontal wavenumber, and

©(Z,T)/e is the fast-varying time- and height-dependent

8

exp [zkx + ©(Z,1) T)}

3

Du @ —0 (1a) part of the wave phase. Followindayes(1970, we define
Dt Oz 00 90
D 0 == -7
Db 9 the time- and height-dependent vertical wavenumber and
oy TN w=0, (1) frequency.
ou  Ow Inserting @) into (3) and collecting terms in powers ef
—+ =0, (1d) vyields
oxr 0z
whereu andw are the horizontal and vertical components of i 0 0 ik Qo
velocity, p is the departure from the background hydrostatic 0 —iv =N im W
pressure divided by a constant reference densityis 0 N —id 0 bo/N
the height dependent Bruntdis&ala frequency,b is the ik im 0 0 Do
buoyancy, and is the constant acceleration due to gravity. . ’ A
For application to the atmosphe®, andb are defined in —iw 00 ik Uy
terms of potential temperatute= 6y + 6(z) + 0'(z, 2,t), te 0 —iw =N m [
where 6, is a constant and)(z) a fixed profile, via o N —iw 0 bi/N
N? = (g/6p)df/dz andb = g6’ /6,. The two-dimensional % im0 0 p1
material derivative is Dty /0T + (U /02 )abvg
Oy /OT + Opo/0Z
D 0 0 0 0 oo — 2
i = et e (2) * (1/N)dby /0T o). ©®
Oy /0Z

To derive the equations governing the weakly nonlinear
dynamics of the waves, we begin by linearizirig &bout Where R
a time- and height-dependent horizontal floWz, t). Next w=w-—kU (7)

we derive the WKB ray equations governing the evolutiqg the intrinsic frequency(i.e. the frequency observed in a

of gravity waves in the linearized system. Finally we |§kference frame moving with the mean flow). @q(1),
U(z,t) evolve in time depending on the divergence of the

vertical flux of horizontal momentum associated with the N

waves. g?)
The linearized equations may be written M BO/N =0,
o' _ou U oy Po
U— '+ == =0 3a o .
or " Car TV or Tar T (3a) o0 0 ik
ow'’ ow'  op , _ 0 —iw —N im
Py = where M = . . (8)
ot +U8x +8z =0, (3b) % N _éw 8
b/ b/ (3 m
a—JrUa——H\fzw’:O, (3c)
ot Ox ) , For nontrivial solutions tog), the determinant oM must
ou' ow' vanish, yielding
=0, (3d)
or 0z
5 5 N2k2
wherev' =u — U, w' = w, p’ = pandd/ = b. @° = (w—kU) T+ m2 ©)
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4 J. Muraschko et al.

and mean of horizontal momentum flux is

N _Z.W) . (10) ww' = Akeg, , a7
m

and, with (L2), that
wherea is a complex constant whose magnitude represents
the wave amplitude in nondimensional units defined such Q(U —kA) =0 (18)
that |a| > 1 implies the waves are “statically unstable”. ot '
Equations 9) and (L0) are the dispersion relation and , . .
polarization relations for gravity waves in a uniforn)f"hICh expresses the connection between the mean

background withV andU equal to their instantaneous |Oca2nﬁmenttl)1r2 ﬁnd tq%7wzv?sel:ﬁomomentqtn13 - kA.
values. For convenience we introduce the functions shown byAcheson .)5 votice that for gravity waves in
a shear flow, wave action is conserved, as opposed to wave

Lo . W
(UO,’lUQ,bo/N,po) =a (_Zk7l

EN(2) energy which is exchanged with the mean flow. It can be
Qi(m, 2,t) = kU(2,t) + Nk (11) shown using Hamiltonian methodSdinocca and Shepherd

1992 Buhler 2009 that pseudomomentum, defined as the

which will be used later to derive the ray equations. Nof@nServed perturbation quantity associated with symmetry
that the subscript o). corresponds to the sign of the®’ the Hamiltonian and the mean flow with respect to

intrinsic horizontal phase speed. translation in space, can be written (in the small amplitude
Multiplying the O (e) terms in 6) by the complex limit) as : : :

conjugate of the polarization relations vector ihOX, p_ <5u B 3w> (19)

using @) and (L0) once more, and transforming back into N2\ 0z ox )’

the fast time and height variables yields the wave-acti

comsorvation law 8Md, using4), (9) and (L0) that, toO (¢), (19) is equivalent

to P = kA. Since, from (0), ¥’ andw’ are out of phase
A 9(cy.A) by 7/2, the horizontal-mean vertical flux of buoyancy
wn 5 =0 (12) ' vanishes, so unlike the horizontal mean horizontal
momentum, the horizontal mean buoyancy (and hence the
wherec,, = 990 /0m is thegroup velocityandA = E/w stratification N2) does not change with time due to the
is the wave-actiondensity, with £ the wave total energy Passage of the wave packet. From the horizontal mean of
density (energy per unit mass) (10), it follows that the horizontal-mean vertical wind must
also vanish (as discussed Bghatzet al. 2010.

_1 ~ 12 A2 ‘50‘2 |ZA70|2 . . .

E= 1 <|uo| + |o|* + ~z | TN (13) 3. Ray tracing and caustics in physical space
Prognostic relations for the local frequency and

Equation (2) governs the evolution of the wave amplitudevavenumber may be derived from5)( and (L1)

|a|, which satisfies (Bretherton and Garrett 1968Hayes 197 Together
with the wave-action conservation lai?), these are the
2m2¢ i
af? = %;UA' (14) ray equations
dgz 004 Nkm 20
The equation for the evolution of the mean flow is obtained d¢t =~ om + (k2 + mz)% = Cgz (20a)

by writing (18) in the flux form

dym 00+ - k dN ou )
= — = — — k= =m,
Ou 9 (u?)  O(uw) dp _ 0 (15) dt 0z Vk2 +m?2 dz 0z (20b)
ot ox 0z or
dgw _ e _ k@£ (20c)
Averaging in x over one horizontal wavelength of the d¢r =~ 9t = ot "’
perturbations eliminates the-derivatives and the linear d,A4 degs
perturbation terms and gives the momentum conservation™y; — ~“ 75, ° (20d)
law for a horizontally periodic wave packet with vertically
varying amplitude: where
S A _of | of
f=-—2= R e (22)
ou  O(ww’) dt ot 0z
ot 0z (18) is the time derivative of the quantityf in a frame

_ ~moving with the local group velocity. The syste@0] thus
where the overbar denotes averaging ovemssuming describes the variations in wave properties along paths,
periodic boundary conditions. Equatiobg] can be used to known asrays parallel to the local group velocity.
couple the mean flow to the linearized Boussinesq equation¥ariations in U and N lead to changes imn and w.

(3). Using the definition of wave-action density and thEquation 20d) and any two of 209-(200), with the third
polarization relations1(0) one can show that the horizontatonstrained by ), may be solved as an initial value
problem for the properties of the wave field at a point

fSinceM is anti-Hermitian, the conjugate-transpose of a vector sn {fNOViNg along a ray. 'A model that_sowes thf_ase equat_ions
(right) nullspace is in itteft nullspace SeeAchatzet al. (2010 for details. for a collection of points representing an entire wave field
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WKB theory and weakly nonlinear gravity-wave dynamics 5

is called aray tracer. A challenge in developing a ray tracehigher vertical group speed than the rest of the wave field.
is to calculate the derivative af,. on the right hand side The occurrence of caustics due to overtaking is typical of
of (20d) from information on the discrete and irregularlynany types of dispersive waves, as discussedhywn
distributed set of ray points. (2000.

The ray equations are a powerful tool for the description Caustics often occur when the background wind is
of gravity-wave packets but they are limited by the WKBme dependent, for example in the problem discussed
assumption that at each location there is exactly one lobglBroutman and Youn@1986 of high-frequency gravity
phase and amplitude. If a solution evolves in such a wasaves in the upper ocean propagating through a large-
that multiple ray points are at the same position, bsctale inertial wave. An example of time-dependence leading
have different values ofm,w, A) and hencer,., then the to caustics is shown in figuréc, in which a Gaussian
derivative on the right hand side df@d) will be undefined. wave packet with\, = 2 km and\, = 2.9 km propagates
Such a situation is an indication oftaustic a set of points through its own “induced mean flow” — the mean wind
at which multiple rays intersect (see, e.gighthill 1978). equal to the waves’ pseudomomentum (see equdt®n

Unfortunately, the formation of a caustic is not thén the weakly nonlinear limit, such a background wind
exception but the rule for gravity waves propagating thtougropagates upward together with the wave packet. The mean
realistic background flows. In the remainder of this sectiowind at various times is indicated by the thick grey lines
we present examples of caustics arising under differémtthe figure. This is a test case taken fradatherland
circumstances. In each case, equatio?3g( and @0b), (20060 illustrating the phenomenon ofmodulational

together with the ray equation for horizontal position ~ instability. When |m| < k/+/2, group velocityincreases
with increasing|m/|. As such, the lower flank of the wave
dgz Nm? packet is accelerated by positive background wind shear
ar U+ m = Cga (22) \while the upper flank is decelerated by negative background

wind shear, and again caustics occur due to overtaking. The
(obtained by differentiatingl(l) with respect td: with z, m data for the background mean wind were taken from weakly

andt constant), are solved numerically for a collection gonlinear wave-resolving simulations described in sectio

ray points initially located at = 0, uniformly distributed - L .
in =, and all having the same initial value of. The A phenomenon related to caustics is that ofrdical

wave-action equation and the feedback of the waves on ffe! This is a levelin a a shear flow where the background
background are neglected. In each examiple positive,m wind speed equals the horizontal phase speed of the waves.

is initially negative and the frequency is given by= (.. AS the waves approach such a level, their group speed

The rays initialized this way represent a wave field wifPProaches zero but their vertical wavenumber tends to

initially upward group velocity. In each case, a constafjfinity (unlike near a reflecting level, where: passes
Brunt-Vaisala frequency ofV = 2 x 102 s~ is used. through zero). Critical levels may be considered “caustics

Figure la shows rays associated with waves wit t infi.nity”. An .ex"’?mp'e of waves approaching a critical
horizontal wavelength), — 3 km and initial vertical evel is shown in figureld. The only difference from the

| — 3k fl ind iet of the f example with the reflect!ng level is tha}t the jet (equation
wavelengthh. = 3 km reflected by a wind jet of the form 23) is in the same direction as the horizontal phase speed

(Zzl)g] of the waves and has an amplitudg =8 ms™!. As

w2 (23) they approach a critical level, waves overturn and break
U

due to the large local buoyancy gradients associated with
) ) o . increasing|m| or else they decay due to viscous forces
with peak velocitylUy = =5 m s~7, half-width ¥ = 3 a550ciated with the increasing velocity shear (propaation
km and centre at; = 70 km. During the reflection of the o |,,,)). Although the wave action equatioBQg) diverges
wave packet, there are simultaneously ray points with bothy critical level like it does approaching a caustic, this i
upward and downward vertical group speed at points belgy; merely an artifact of the WKB assumptions and the ray-
the reflecting level. . tracing equations. There really is a build-up of wave action
One might not be interested in reflected wave packefgar a critical level and the system does become strongly
for example in a gravity-wave-drag parameterizatiofon|inear. The effect of the waves on the mean flow at a
so in practice the downward propagating ray poinf§itical level must be treated with a suitable gravity-wave
might be ignored. Nevertheless, caustics tend to fodpag parameterization scheme, regardless of how the waves
in other commonplace circumstances. Figuie shows zre modeled.
rays corresponding to nearly hydrostatic waves propagatin The caustics problem is discussed in some detail in the
through a weak background wind (amplitude 2hsthat reyiew paper byBroutmanet al. (2004).
varies sinusoidally in the vertical (wavelength 50 km).
The waves initially have the same wavelengths everywhere WKB in phase-space
(A\z = 30km and)\, = 3 km) but due to the slightly varying
wind shear, parts of the wave field (represented by the lovBputmanet al. (2004 propose using Maslov’s method to
rays atr = 0 in the figure) “overtake” the parts immediatelysolve the caustic problem in physical space. This entails
above. This may be explained as follows: According splving the ray equations (or, where possible, the exact
(20b), m increases (decreases) along rays wh#igdz linear equations) in wavenumber space wherever caustics
is negative (positive). For nearly hydrostatic waves, tlierm in physical space and mapping the solution back into
magnitude of the vertical group speed, given 304, physical space using the inverse Fourier transform. The
decreases with increasifig|. Since heren < 0 (the waves method has been shown to work well in cases where there
have positive vertical group speed), the parts of the waaee no caustics in wavenumber space (where position is
field initially in a background withdU/dz < 0 develop a multivalued function of wavenumber) such as stationary

U(z) = Uy sech {

Copyright(©) 2013 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-25 (2013)
Prepared usingjjrms4.cls



6 J. Muraschko et al.

t=0min
t=33min
———1=67 min 107
=t =100 min|

0 10 20 30 40 50 60 0 200 400 600 800 1000 0 5 10 15 20 25 0 50 100 150 200

X [km] x [km] x [km] x [km]

@ (b) © (d)

Figure 1. Examples of the caustics problem in physical space: (a) tays l{nes) associated with waves encountering a refleganhick line); (b)
waves propagating through a slowly varying alternatingdyiie) modulationally unstable waves propagating througfr thwn induced mean flow (cf.
section6.5); (d) waves encountering a critical level due to a positete Markers are placed along rays at intervals of 100 minut¢a)iand (d), 500
minutes in (b), and 33 minutes in (c).

hydrostatic mountain wave8(outman and Rottman 20P2 where § is the Dirac delta function. We begin by
and trapped lee waveBfoutmanet al. 2006 but becomes differentiating €5) with respect to time:

complicated when caustics occur in both physical spaC@ P
t / {
R

and wavenumber space. The same method was applied
Brown (2000 to one-dimensional surface gravity waves in
a time-dependent background.

0A.
The caustics problem disappears altogether in the /{ ot 6(m —ma)

As s,
ot (5(m—ma)+Aaat5(m—ma)] da

formalism of Hertzogetal. (2002, where the WKB R
equations are recast as a transport equation for a Om, O
wave-action density in position-wavenumber phase space _Aaiat %6(m —mg)| da. (26)

(hereafter simplyphase spade This avoids the need

to dynamically switch between the physical space ak$ing @43, we can rewriteZ6) as

wavenumber space representations and is the approach

adopted in the present study. The derivation presented herQAf — {_8(6?‘404)5(7” —ma)
z

mainly followsHertzoget al. (2002). ot J
Consider a superposition of noninteracting WKB om, O
fields {mq(2,1), Aa(z,1)}, wherea € R is a continuous —Aa—5,— 5 ~0(m — ma)} doar. (27)

parameter, each obeying the ray equations
Rearranging terms in the integrand gives

ON 0
dyAa Jcga(z,t) _ 0Aa | O — = / { [cgaAad(m —my)]
T + A, oz = o + 9 [Cga(zvt)Aoc] ot J oz 'Y
=0, (249) Oma  Oma\ O
—A, (cgaaz + 5 ) aTﬂ(S(m - ma)} da, (28)
and which, using 24b), becomes
ON 0
dyma _ Oma | Om o {‘az [egaAad(m —ma)]
dat ot 9T 92 R . 5
M,
E—— W . (24b) - gdt Aaam(;(mma)} da. (29)

SinceA,(z,t) andd,m,/dt are functions only of andt,

they may be taken inside the partialderivative:
where ¢y = ¢g4.(ma, 2,t), and the phase-space wave-

action density defined by ON 0
rr {_8z [cgaAad(m —my)]
_ 0 [dgma
N(z,m,t) = [ Aa(2,t)0 [m —ma(z,t)]da, (25) _ And(m —my)| p da, (30)
om | dt
R
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WKB theory and weakly nonlinear gravity-wave dynamics 7

and the integral over can be interchanged with the partialvhere®,, /¢ is the fast-varying time- and height-dependent
z andm derivatives to give part of the phase of wave packet (compare with the
notation in the WKB ansatz}) is not in general zero. This

ON ) effect is not captured by the WKB model since it depends
T o /CgaAa5(m —mg) da on the relative phases of the two fields (information not
R contained inN) and can lead to small-scale features in
9 dgma the mean flow which would violate the WKB assumption
o | “ap Aedlm—ma)da. (31) of a slowly varying background. We will see that small-

R scale features do appear in the induced mean flow in wave-

resolving simulations but that the behaviour of the waves
From the definition of the) function, ¢, (z,t) may be and of the large-scale structure are well predicted by the
replaced withey. (m, z, t) in the first integral and,m,/d¢ weakly nonlinear WKB model.
with m(m, z,t) = d,m/dt in the second, and both factors
may be taken outside of the respective integrals to leaBe, Description of the numerical models

finally,
IN  3(cg.N) (N In this section we describe the two numerical implementa-

o + 92 am 0. (32) tions for solving the equations governing the evolution of

] ) the phase-space wave-action density and the mean flow, as
Equation g2) describes the transport of phase-space waygs|| as the wave-resolving models used to validate both the

action densityV' by the phase-space velocity fidld,., 7). \WKB models and the underlying theory.
From (209 and @0b),

Ocg. Om 0 <6Qi> 0 (8Qi

o a) =0, (3

5.1. WKB models

9: om0z

- Om The first model uses a finite-volume method to solve
the Eulerian form of the phase-space wave-action-density
i.e. the phase-space velocity is divergence-free, aeguation 82). Wave-action density is defined on a two
therefore\V is conserved along trajectories in phase spacgimensional position-wavenumber grid while the mean flow
is defined only on the position grid. The second model
D.N(z,m,t) _ ON(z,m,1t) ON (z,m,t) is a ray tracer in phase space that solves the Lagrangian
Tl form of the phase-space wave-action-density equa#dn (
Dt ot 0z ion densitv is defined i f
ON (2, m, 1) Wave-action density is defined on a discrete set of ray
+m——=""2=0. (34) pointsin phase space that propagate along rays defined by
om the phase-space-velocity fiel@,.,72) and transport the

Given an initial distribution of phase-space wave—actiocr?ns’erv.ed wave action (_:iensity. In order to approximate the
densityN\y(z,m), one can calculate its distribution for an)glttzgaaééntéhzggr:nf;ta“gir:] t()];sfh: ?;(égﬁnﬁmwﬂgéfﬁg’rea is
time by evolving NV using @32) (the Eulerian view) or yp g

: - : d but whose shape changes with time depending
by simply advectingVy conservatively along phase-spac%onserve L -
trajectories using34) (the Lagrangianview). on the straining effect of the phase-space flow. For inytiall

The phase-space wave-action density may be Couple(ﬁ#}g&monochromanc and spatially localized wave packets,

i . : iS model is much more efficient than the Eulerian model
Ea?ned perg)gtr(l)ovitrlitt:eequatlon for the mean flokb) using (L7) since it need only update the solution on points with nonzero

wave-action density and not on the entire phase-space
domain.

W' = /kcgzN(m’Z’t)dm’ (35) 511, Eulerian model: finite-volume method

In the Eulerian modelN (2, m, t) is defined on a regular
so that grid of rectangular cells in position-wavenumber spacd, an
- the large-scale background fieldz) andU(z, t) and the
ou 3, mean momentum flux’w’(z, t) are defined on the position
ot o2 / keg=N(m, z, t)dm, (36) grid using the staggered arrangement shown in figure
—0 A standard fourth-order Runge-Kutta scheme (e.g.
Durran 2010 is used for the time integration, with the
where we are implicitly assuming the induced mean flowtigne step dynamically adapted to satisfy a CFL condition.
affected only by the self-interaction of each member of thige flux of A is calculated using a second-order MUSCL
superposition of wave fields that make Wp. Interaction upwind scheme with the MC limiterkemm 2010. The
between wave fields may also project on the horizontguUSCL scheme is stable for transport problems with sharp
mean, since the flux of horizontal momentum associatgehdients, such as occur in the wavenumber direction near
with one wave field, labeled;, due to another, labelet,, a quasimonochromatic wave packet, while being much less
diffusive than a simple first-order upwind scheme in regions
17. . On, — Oq, where the solution is smooth. The components of the phase-
[ <E> space-velocity fieldc,., ) needed to compute the fluxes
o o of the wave-action density are calculated in each Runge-
A A, exp <_M)] . (37) Ku.tta sub-step (sin(;e they depend on time throligh, ¢))
€ using the ray equation@g and Q0b).

Copyright(© 2013 Royal Meteorological Society Q. J. R. Meteorol. So€@0: 1-25 (2013)
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8 J. Muraschko et al.

j j+1 Ui equation33), i.e.
’i-‘rl ~ dU/dZ,+1 dA d
T'é dN/dzis TtR = T dzdm
Nij W, R
¢ 1N . N
= f(cgz,m) v dl
Ui/ OR
i —dU/dz; .
i Ocg, O
N dN/dz - / Yz L I zdm =0,  (40)
m 0z om

Figure 2. A finite-volume cell for the Eulerian WKB model: The grid for . .. .
variables depending only on height is staggered as shown. wheredR is the boundary ofz, 7 is the outward directed

unit vector normal toR, di is a line element iMR, and
the two-dimensional version of the divergence theorem has
Equation 86) is used to calculate the time evolutiodeen used. We approximate by attaching to each ray
of the mean flowU(z,t). The total horizontal-meanparticle a small rectangle and let one side of the rectangle
momentum fluxu/w’ is computed at each height by (Say Am) change with time while keeping the area fixed

summing the integrand over the domain, i.e. (see figure3). There are obviously more sophisticated
Wy = =3 N A, (38)
] (k’ —&—mj)z | \\ |
| _ N N[ x
where A,,, is the width of a grid cell in the wavenumber TZ I I [Z
direction. The absolute value applied foV;; ensures l N .
the correct sign of/w’ is obtained for both branches of ! \ \
Q.. A centred difference approximation is used for the 2 7 29
z-derivative ofuw/w’. The mean wind is updated at each Il 7 R s
Runge-Kutta sub-step. R, |R ; R, — .
Periodic boundary conditions are used in thdirection, N . . !
while on the boundaries in the: direction, a no-inflow m m
condition was used, i.e. the value df' outside the (a) (b)

considered domain is assumed to be zero. Since the o , ,
boundaries in then direction arede factohigh- or low- Figure 3. Schematic |IIu_strat|on of _the area-preserving proper_tyhm‘t
-off les for the model. the domain sho pr@se-space flow, showing the region of nonzero yvgye-admmtyR
wavenumber cut-off scales fo e J Y rectangles attached to ray particles (a) at the initie¢ and (b) at a
be chosen large enough that significant wave energy dp@s time.R is deformed by the phase-space velocity.(rn) (indicated
not leave the system. by vectors). The momentum flux in the interviah, z2) is calculated by
integrating ovelR N R .

5.1.2. Lagrangian model: phase-space ray tracer methods for tracking the evolution @, but none that we
have tried give better results than this simple approach,
Qhich also generalizes easily to higher dimensions.
'a ssociated with each ray particle is thus its phase space
wave packet is initially localized sition (z,m), its conserved phase-space wave-action
: . density A/, and the widthAm and conserved area of

In order to calculate the wave-|ndu§:ele mean-floye hhase-space rectangle attached to it. For the results
_tendency using 36), the moment_um_fluxa w’ must be presented below, two columns of ray particles, each column
integrated in spectral space (which is not trivial sinide

. ; . O t a slightly different wavenumber, were initialized as
is only known on the discrete and irregularly distribute

: . To th q ol h own schematically in figuréda Using two columns
set of ray points). To that end, we calculate the averggeeay of one allows the distribution of ray particles to
momentum flux in a height interval betweemndz + A :

adjust in a realistic way to shear in thg, field.
The same staggered position grid as in the Eulerian model

The Lagrangian model exploits the fact that wave-acti
density is conserved on rays in phase space so that
particles need only be initialized in the region where t

1 S 17 R is used forU, N and v/w’. For each ray particle, the
A / ww'dz = A / / kcg.Ndzdm integral in @9) is evaluated analytically over the portion of
o R the attached rectangle contained within each intervalén th
1 fixed U grid (see figuretb):
=X / keg.Ndzdm , (39)
z ma
RNRy u’w’gy _ (Az,) /ng\k:/\ﬂdm
. . Az (k2 +m?2)?
whereR is the phase-space region of nonzé&f@ndR; = my
(2,2 4+ A,) x (—o0,00). The regionk becomes deformed Az 1 1
in time due to the strain and shear in the phase-space = ( z) N;ik|kN| [ - — —1,
flow (c,., ), but its areadp, is preserved because of the Az (k24+m3)2 (k2 +mj)2
divergence-free property of the phase space velocity (see (42)
Copyright(©) 2013 Royal Meteorological Society Q. J. R. Meteorol. So€@0: 1-25 (2013)
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WKB theory and weakly nonlinear gravity-wave dynamics 9

5.2.1. Weakly nonlinear wave-resolving model (WNL)

| The one-dimensional weakly nonlinear model solves the
Amyg z . . X
| z e m system B) assuming a perturbation field of the form
1 2
. . A2i+1' u’(x7z7t) fb'(z,t)
. I SR i —Ar+1 w/(q; z t) IZ)/(Z t) ik
—7+1 (ad — " ) 1RT
L A A Vi ot) | = Y ey | < (0 @Y
Az b O p/(xvzﬂt) ﬁ/(z7t)
A -1 Am i R
— — where 4/, @', b and p’ are complex height- and time-
@ b) dependent fields, coupled to the equation for the mean flow:
Figure 4. Schematic illustration of the momentum-flux calculation using 3£ _ 712 (12'11)'* + ﬂ'*ﬁ/) (45)
the phase-space ray tracer: (a) initial position of ray ipas and ot 4 0z ’

rectangles; (b) partition of a rectangle at a later time sé the mean

momentum flux due to the portion of the rectangle lying withiotegrid The pressure is computed by solving the Poisson equation

cell is computed separately. - . . .
obtained from setting the divergence of the velocity

tendency to zero.

The model uses a staggered grid with the vertical-
wheremy = (m — 5), my = (m + 5%), and Az;/Az - ying perturbation defined on the grid-cell boundaries and
is the fraction of the rectangle contained within théh  yhe horizontal-wind, pressure and buoyancy perturbations
interval on the fixed grid. The resultingw’fgy is added defined at the grid-cell centres. The Bruniisala
to the corresponding elementw’; in the fixed grid array. frequency N and the mean flow/ are also defined at
Once the momentum flux due to all ray particles has beié¢ grid-cell centres. The usual fourth-order Runge-Kutta
accounted for, a simple running average filter with windog¢heme is used for the time integration, and centred finite
width Agnootn Of three grid cells is applied ta/w’ to differences for the spatial derivatives. The discrete our
remove small-scale features arising due to the coarserf&gasform is used to solve the Poisson equation for the
of the ray-particle distribution, and then the mean floressure at every Runge-Kutta sub-step.
tendency is computed fron36) using a centred difference Some explicit kinematic viscosityy and thermal
approximation to the derivative (as in the Eulerian model)diffusivity ;. are required for stability of the model. For all

The time evolution of: andm is computed using209) simulations, both are setn@—% m2§—1 (a typical value for
and QOb), in Lagrangian form: the stratopause region). Dissipation has little effectlon t

gravity waves studied here, which have wavelengths of a
few kilometres (the time scale of viscous decay?)~! >

Drz =F Nkm T = Cgz s (42a) 10 days is long compared to the simulation times of less
Dt (k* +m?)2 than a day).

D N
o BN GO0 _ G (azb)

5.2.2.  Fully nonlinear large-eddy-simulation model
(INCA)

Dt - \/k2+m25 0z

and that ofAm usin N . . .
mn 9 The other validation model is the large-eddy-simulation

model INCA (http://www.inca-cfd.org) which solves the
&(Am) = 1n(mg, 2) — m(my, 2) . (43) fully nonlinear Boussinesq equationsl)( using the
Dt adaptive local deconvolution method (ALDMjlickel et al.

2006 as subgrid-scale-turbulence parameterization. See

Values of N, dN/dz anddU/dz at ray-particle positions Remmler and Hickel(2012 2013 for a detailed model

are obtained by linear interpolation from the respectiscription and validation of the LES scheme against direct

values on the fixed grid. Again the standard fourth-ordgimerical simulations of weakly and strongly stratified

Runge-Kutta scheme is used for the time integration.  flow. For consistency, the same explicit viscosity and

Periodic boundary conditions are used in théirection, diffusion parameters are used as in the weakly nonlinear

i.e. ray particles leaving the top of the domain reentarodel.

through the bottom. No boundary conditions are needed inThe use of the fully nonlinear model also serves as a

them direction in this model. reference to validate the weakly nonlinear theory on which
the WKB analysis is based, i.e. to test how well the weakly
nonlinear dynamics, which neglect wave-wave interactions

5.2. Validation models can describe the propagation of wave packets in a time- and
space-dependent background flow and their interaction with

For validation of the WKB models we use both #he background flow.

one-dimensional model that solves the weakly nonlinear

Boussinesq equations for a wave field with constagt Numerical results

horizontal wavenumbet and a fully nonlinear large-eddy-

simulation model for solving the Boussinesq equations Tine WKB and validation models were used to simulate

two dimensions. the propagation of an initially quasimonochromatic wave

Copyright(©) 2013 Royal Meteorological Society Q. J. R. Meteorol. So€@0: 1-25 (2013)
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10 J. Muraschko et al.

packet with the:-dependent buoyancy amplitude mg. A convenient by-product of the region of nonzexo
having a finite width is that the energy density can never
become infinite, for example at a reflecting level (see sectio
6.4 and appendixB) unlike in conventional ray-tracing in
physical space.

i.e. a Gaussian envelope centredz@tand with half-width ~ We conducted a set of experiments in which the
o. Ny is the local Brunt-\aisala frequency at = z, and gravity-wave packet propagates through different large-
myg is the initial vertical wavenumber of the wave packescale background fields: an initially uniform background, a
The nondimensional amplitude, is defined so that the background with varying stratification, a weak wind jet, and
threshold criterion for static stabilityN? + db/9> > 0, awave-reflecting wind jet. The physical parameters used for
will be satisfied everywhere in the wave packetuif < the various experiments are summarized in Tdkded the

1. The polarization relations1() imply the following model parameters in Tabk

initial perturbation fields for the wave-resolving valiabat Each simulation was done both with no initial mean flow

2 Y
Ap(z) = ao% exp [(22020)} ; (46)

models: at the position of the wave packet (“case 1") and with an
initial mean flow that, to leading order, propagates togethe
b (x, 2, tg) = Ap(2) cos(kz + moz) , (47a) with the wave packetAcheson 1976Sutherland 2006
' (x,2,t0) = A (z)@@sin(km + mgz) (47Db) e A2(2)
2RO E AN 0= Uind(2, to) = kA(z, to) = kb2 (51)
5 2N20
w'(x, 2, t0) = —z‘lb(z)ATO2 sin(kz 4+ moz) , (47c) (“case 27). It follows from (L8) that in the weakly nonlinear

0 limit, U;,q remains equal to the wave pseudomomentum
kA. While the inclusion of the initial wave-induced mean
flow is preferred by some authors, we will see that at later
times, in the upper part of the domain (whékg (to) = 0)
there is little difference between the simulations with and
without an initial wave-induced mean flow. This is to be
fexpected from 18), which says that the local mean-flow
tendency depends only on the local wave pseudomomentum

where @y is the intrinsic frequency of the initially
guasimonochromatic wave packet. Note that due tozthe
dependent amplitude af’, the initial condition 47) does
not satisfy the nondivergence constraihtl)( In all wave-
resolving simulations, thé (e) divergent part is removed
before the first time step. The initial wave-energy density

using (0. tendency and not directly on the large-scale structureef th
1 Pz ztg)] U leld. . N .
E(z,t0) = = |u2(x, 2, t0) + w'2(z, 2,t0) + ’72’0 The two diagnostic quantities we will use to compare the
2 No WKB and validation models are the mean fléi(z, ¢) and
A%(z2) the wave-1 energy density. For the WKB models} is
= N2 (48) calculated by integrating the intrinsic frequency times th

wave-action density over the wavenumber domain:
In the WKB models, the choice of the initial wave-
action density corresponding t@lg) is not unique. All _ ~
that is required is that the integral abN over m Ewks / Nodm, (52)
equal E. The definition 25) calls for a delta function ) o o
(a truly quasimonochromatic wave packet), a discré@ the weakly nonlinear validation model, it is
approximation to which is

1 R . |8/|2
A2(2) 1 Bwne =7 (IU’I2+Iw’I2+ Ne ) 63
N(zym,to) = { 2Ng% Aoy A
11 R0) = itmo — =5* <m <mo+ =5* * and for the fully nonlinear model, it is the horizontally-

0, otherwise averaged energy density contained in the first horizontal
(49) Fourier mode of the velocity and buoyancy fields.

whereAmy is a small wavenumber interval. We generally

took Amyg to be the width of a single finite-volume celb.1. Hydrostatic wave packet propagating through a
in the Eulerian WKB model. A measure of the sensitivityniform background

to the width of the wavenumber interval is the relative

variation of the group speed across the interval First we consider a wave packet propagating through a
uniform stratification withN(z) = Ny = 0.02 s~!. The

Acy. 1 dcygs waves are “hydrostatic” with horizontal wavelength =
cg2(mo) ~ (mo) Om Amg 30 km and initial vertical wavelength\.o =3 km (k =
9= TS Rez mo 2.1 x 10~ m~! andmgo = —2.1 x 102 m~1). The wave
_ (1 _ 3mj > Amyg (50) packet has half-widtlr = 5 km and is initially centered
m3+ k%) mg at zop = 30 km. The spatial domain has a total height of

[, =100 km. We consider wave packets with amplitudes
It follows that whenAm /my is small, the patch of nonzeroa, of 0.1, 0.5 and0.8.
N initially moves with approximately uniform group speed For the Eulerian WKB model a wavenumber domain of
and relatively little spurious dispersion is introducedtihe —0.007 m~! < m < —0.0005 m~! was used, with, =
experiments presented here, the exact valuAwof, does 500 cells in thez direction and,,, = 70 in them direction.
not make much difference as long as it is much smaller th@he initial wave-action-density distribution had width in

Copyright(©) 2013 Royal Meteorological Society Q. J. R. Meteorol. So€@0: 1-25 (2013)
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WKB theory and weakly nonlinear gravity-wave dynamics

Test case Background Wave packet Domain size
and run time

Hydrostatic No=2x10"2s"1 Az = 30Kkm, A0 = 3km lp = 30km

wave packetin a k =27/ Az, mo = —27/Xz0 . =100 km

uniform background

UJ:Q+
o =5km, zp = 30 km
ap = 0.1, 0.5, 0.8

tmax = 800 min

Variable No=2x10"2s"1 Az = 30 km, ;o = 3 km Iz = 30 km
stratification apacr = 0.8 k =271/ e, mo = =27/ A0 l, = 100 km
M = 27/(20 km) w=0y tmax = 800 min
z1 = 50 km o =5km, zg = 30 km
ag = 0.5
Wind jet No=2x10"2s1 Az = 30km, X0 = 3km I, = 30 km
Up=20ms ! k=2m/As, mo = 27/ Az0 I, = 100 km
z1 = 50 km w=0_ tmax = 800 min
Yy =3km o =5km, zp = 20 km

ag = 0.5

Reflecting jet

No=2x10"2s"1
Ug=5ms !

z1 = 70 km

Yy =3km

Az = 3km, A0 = 3km
k=2m/Xg, mo =27/ A0
w=0Q_

o =5km, zp = 40 km

ap = 0.2

Il = 3km
I, = 100 km

tmax = 300 min

Modulationally
unstable wave packet

(s)table, (m)etastable, (u)nstable

No=2x10"2s"1

Az = 2km

Ao = 1.46) | 2.9(m) 5(v)

k =271/ e, mo = —27/ A0
w =04
o =3.2km, zg = 30 km

le = N/A*

m l. =50 km

tmax = 200 min

ap = 0.12(9), 0.21(m) | 0.42(wW

11

Table 1. Summary of test case parameters. Refer to equatiéng47), (54), and 66) for the forms of the wave packet, background buoyancy
perturbation and background jet,.x is the total model time of the simulationsThe fully nonlinear model was not run for the modulational

instability experiment.

Eulerian WKB
(finite-volume method)

Lagrangian WKB
(“ray tracer”)

Validation models

Weakly nonlinear

LES ("INCA)

,s,J)

Amg =10"4m1

v=p=10"2ms"1!

Ng X Ny = 64 X 2048

_ _ —1
m € [-.007, —.0005] m ns = 500 n, = 2048 U, S, J)
N X nm = 500 X 70 pe — 2 % 200 0.5.0.R) Au X A, =470mx 50 m

(R A, ~50m (R)

-~ 1 U, S, 3,R) _
m € [—.01,.005] m A~ 200m M Az X A, =47mx 50m
Nz X Ny, = 500 X 140 Asmooth = 600 M A, ~25m CFL=0.5
(M) ™) At=1s v=p=10"2m?s1!
_ -1
m € [-.012,.002] m A, —100m M) | |
( n; X Ny = 500 x 140 Ao = 300m no LES simulations
At)max = 1S
At=1s
CFL=0.5

Amg=10"%m1

Table 2. Summary of model-configuration parameters (U = uniform brackgl; S = variable stratification; J = background jet; R = reflegit;

MI = modulationally unstable wave packef), andA . are the grid-cell sizes in the various models axwis the time step (where applicable).
CFL is the CFL number appropriately defined for the Eulerian WKB anly fubnlinear LES models. In the Eulerian WKB model the time step
is the smaller of At)max and the time step determined by the CFL condition.

Copyright(© 2013 Royal Meteorological Society
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12 J. Muraschko et al.

the wavenumber direction equivalent to one grid cell, dlustrated for the case, = 0.5 in figure 7. Note that as
Amgy =10"* m~!. For the ray tracer, the ray particlegxpected, the mean flow in the upper part of the domain —
in each of the two columns were initialized at equallgbove 35 km — is very similar in cases 1 and 2.

spaced intervals between= 10 km andz = 50 km and  For comparison, the energy density from a purely linear
at m = mg — Amg/2 and m = mg + Amg/2. The total wave-resolving simulation (without the wave-induced mean
number of rays was,,, = 2 x 200. The same resolutionflow) is also plotted in figure6. As pointed out by

in z for the large-scale fields was used as in the Eulerigntts and Dunkertoii1984), one effect of the induced mean
model (so that there was exactly one ray particle in eaftbw is to broaden the wave packet and to reduce its peak
column per interval on the fixed grid). The wave-resolvirgmplitude. This comes about because, for hydrostatic wave
weakly nonlinear model used, = 2048 points while the packets, the mean flow changes the vertical wavenumber,
fully nonlinear model was run in a domain of width= 30 and hence the vertical group speed, in such a way as to
km (one horizontal wavelength) with, x n, = 64 x 2048 accelerate the leading flank and decelerate the trailing flan
grid cells. Figures shows the initial wave-action density in(this is not the case for very nonhydrostatic wave packets,
the WKB models and the initial buoyancy fieldat= 0 in cf. section6.5). Fritts and Dunkerton(1984 also found

the wave-resolving models. that the interaction between the wave packet and its wave-
induced mean flow can lead to “dislocated critical levels”
A ] that cannot be explained with linear theory. As one would
5 28 ° 3 32 expect, the departure of the weakly nonlinear solutions
52 D from the prediction of linear dynamics increases with wave
44 o packet amplitude. They = 0.1 simulations induce only
TR 11 ] very weak shear in the background flow and thus very little
20 change to the group velocity distribution in the wave packet
s (12 £ 1 1 which therefore remains close to Gaussian (fidiae

4

Caustics develop during the later evolution of the wave
field in both cases 1 and 2. FiguBeshows the positions
of the ray particles after 500 minutes in the simulations
g8 with ag = 0.5, with a curve drawn connecting initially
= I | adjacent ray particles. Caustics occur wherever a ho@ont
= line would intersect the curve more than once, indicating
20 D 1T 1 that there is nonzero wave amplitude at more than one
P wavenumber at the same height (i.e. rays in physical space
are crossing). In the figure this can be seen in the lower
part of the wave packet in case 1 and in the upper part in
case 2, where initially lower placed particles have oveak
Figure 5. Initial condition for theag = 0.5 case of the hydrostatic Wavem't'a"y h!gher_pIaCEd particles. . .
packet in a uniform background. Left: phase-space waveradensity\ The similarity between the results obtained with the
in the WKB finite-volume model and ray-particle distributiortie WKB  weakly nonlinear and the fully nonlinear models supports
ray tracer (circles; size proportionalAd). Right: initial buoyancy a&: = 0 the claim of Sutherland(2006H) that the propagation of a
in the wave-resolving models. . . .
horizontally periodic, vertically compact wave packet can
be represented well as long as the interaction between

The mean momentum flux'v" initially has the same the waves and the mean flow is accounted for. Higher

Gaussian profile as the wave-action density. It theref(ﬁﬁrmonics of the waves do not play a significant role.
decelerates the mean flow on the lower flank and accelerates

it on the upper flank. Figuré shows near perfect agreeme . .
between tFk)le induced mean flows and wave-energy densri% Wave packet propagation through a stationary
simulated by the WKB models and the wave-resolvirf'oyancy field

models after 200 minutes. In case 1 (panels a, b andld
this generates a dipolar background shear flow in the eall
part of the simulation. In case 2 (panel c), by constructi "f'\,
the momentum flux acts to propagate the initial backgroSHHoyanCy
flow perturbation upward with the wave packet so no 5
negative mean flow is left behind in the wake of the wave Wack NG [1—cos(M(z—2))],

packet. As pointed out byposser and Sutherlan@01),  p(;) = ifz2y <z<z +27/M , (54)
the negative mean flow in case 1 is exactly equal to the
negative of the initial wave pseudomomentum. In both cases 0, otherwise

1 and 2 the total horizontal momentum is conserved.

Since the stratification is uniform2Qb) implies that which may be interpreted as the zero-frequency limiting
changes in wavenumber depend only on the shear in @@e of a long-wavelength resolved gravity-wave packet
mean flow. Therefore, in case #; becomes positive onthrough which the waves parameterized using WKB theory
the lower and upper flanks of the wave packet and negatif@pagate. The background perturbatiBiiz) has lower
in the middle, deflecting the wave-action density signal tiénit z1 = 50 km, vertical wavenumbed/ = 27 /(20 km),
less negative wavenumbers (longer wavelengths) and m@a€ a nondimensional amplitudg, ., = 0.8 (again defined
negative wavenumbers (shorter wavelengths), respectiveglative to the threshold for static stability). In this eas
In case 2, the shear already present in the initial backgrodhe total Brunt-\aisala frequency is given byN(z) =
flow affectsrin and theN distribution accordingly. This is \/Ng + dB/dz. In the WKB models, bothV anddN/dz

N [10° m%s™Y)

z [km]
8

251

15l L
-24 -2.2 -2 -0.2 0 0.2

m[10°mY b[ms 3

he next experiment, the wave packet propagates through
variable background stratification associated with the
fieldVZz + B(z), where

Copyright(©) 2013 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-25 (2013)
Prepared usingjjrms4.cls



WKB theory and weakly nonlinear gravity-wave dynamics 13

60 60
551 55-
501 501
45; 45;
— 40t — 40}
€ g 40
=, =,
N N

251

LES
—— WNL
== WKDFV [T
= = = WkbRAY
----- LD

150 . p—
-4-2 0 2 40 10 20 30
Ums™Y Ums™Y E [m%s? Ums™Y E[m%s]

(a) (b) (d)

Figure 6. Mean flow (left) att = 200 minutes induced by the wave packet propagating through #alipiuniform background and the corresponding
horizontal-mean wave-energy density (right) simulated byfalr models. (a) Wave packet amplitudg = 0.1 case 1; (b)ap = 0.5 case 1; (c)
ap = 0.5 case 2; (dpo = 0.8 case 1. (LES: fully nonlinear wave-resolving model; WNL: wigahonlinear wave-resolving model; wkbFV: Eulerian
WKB finite-volume model; wkbRay: WKB ray tracer; LD: linear dynas).
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Figure 7. Snapshot at = 100 minutes of the wave packet with initial amplitudg = 0.5 propagating through a uniform background in (a) case 1
and (b) case 2. Contours in the left panels show the waveradgnsity from the Eulerian WKB model (contour interdak 106 m3 s—1) and the
circles indicate the positions of the ray particles in thgiamgian WKB model (size proportional £¢). Centre panels show a cross-section of buoyancy
atz = 0 from the weakly nonlinear model. Right panels show the mean filom the Eulerian WKB model (grey) and the weakly nonlinear nhode
(black).

are computed analytically fronb¢) and stored on the gridthe possibility of static instability occurring (for delmsee
as shown in figuré. equation64 in appendixA). However, in a more general
Based on simple addition, one might expect that é¢ase with feedback from the waves on the large-scale flow,
apack + |ao| > 1, when the wave packet reaches the level tfe interaction of a statically stable wave packet with a
minimum static stability in the background, it will becomstatically stable background is unlikely to lead to static
statically unstable. Perhaps counterintuitively, howevénstability.
one can show (see append® that the wavelength and Figure 9 shows the distribution of wave-action density
amplitude of the waves change in such a way that theedicted by the WKB models as the wave packet
minimum total static stability occurs as the centre of threoves through the background buoyancy perturbation. The
wave packet reaches the pointrabximumstatic stability deflection of the wave packet in this region is dominated by
in the background. For the hydrostatic waves used hettee derivative ofN (z), so there is little difference between
asapecr, — 1 then|ag| would have to be at least 0.76 focases 1 and 2 in this experiment. As in the first experiment,
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Figure 8. Distribution of ray particles at = 500 minutes from the experiment with the wave packet with= 0.5 propagating through a uniform
background for (a) case 1 and (b) case 2. Examples of caustiasdicated by the horizontal lines intersecting the camennecting the ray particles.
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Figure 9. As in figure7 but att = 500 minutes in the test case with a variable background stratditaThe dashed line in the right panels shows the
total N2 (with values indicated on the upper horizontal axis). Thetcor interval for the wave-action density (left panels)is 10° m3 s=1.

caustics can be observed on the upper and lower flankgiadup velocity and intrinsic frequency satisfy
the wave packet in both cases.

Figure 10 shows the wave-packet energy density as . Nk _ Nk

; ) . RS , Cgr N . (55)

a function of height and time for case 2 from all |m] 7 Iml?
models. Before it interacts with the large-scale buoyancy
perturbation, the wave packet propagates verticallyhtllig It can be seen in figur8 that|m/| is reduced as the wave
perturbed by the induced mean flow as in the previopacket passes through the region of redutédFrom (5),
experiment. As the waves interact with the large-scalez.)x c;j ~|m/|/& and therefore the wave energy at the
buoyancy field and their wavenumber changes, the wagentre of the wave packét(z.) « |m| is also reduced. The
packet energy density also changes so as to globghgsence of the weak wave-induced mean flow alters this
conserve wave action. This may be most easily understgmcture only slightly.
if we for the moment neglect the time-dependent Figure 11 shows the wave-induced mean fldw from
background wind. In that case (as is shown in appendiase 2 as a function of height and time. Where the
A), the physical-space wave-action densihat the centre wave energy is small, there is (as one would expect)
of the wave packet.(t) is inversely proportional to thealmost no momentum transfer to the mean flow. Also
vertical group velocity. Since in this experiment the wavshown in the figure is a comparison betweé&nh and
packet is almost hydrostatic (i.¢k| < |m|), its vertical the pseudomomentun® at ¢ = 500 minutes from the
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Figure 10. Horizontally averaged wave energy density versus time aighhfor the test case with variable stratification (for c2ye
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Figure 11. Mean flowU for all models from the test case with varying stratificatitor case 2). Right panel shows the pseudomomentufrom the
wave-resolving models @at= 500 minutes.

wave-resolving simulations (calculated usintP)j. The equality {8) is satisfied by construction for the weakly-
nonlinear model, while for the fully nonlinear model the
correspondence is very close.
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16 J. Muraschko et al.

The mean flows produced by the two validation modeis4. Reflection by a wind jet
are almost identical. The most striking difference between
the results from the WKB and validation models is thé the wind jet is strong enough, WKB theory predicts
presence of small-scale structuredjirand E in the wave- that, notwithstanding the violation of the scale sepanatio
resolving models. These are probably due to wave-wa@ssumption, the vertical wavelength of the waves tends to
mean-flow interactions (of the sort discussed at the eifidinity before the vertical wavenumber changes sign (see,
of section 4) which begin to occur as the phase-spa@g., Sutherland 201p|e the wave packet is reflected.
wave-action density becomes spread out in the wavenumbeissume for simplicity a uniform stratification and (for
dimension. Since the WKB models do not account féfie moment) a steady horizontal mean flow. As the waves

any wave-wave interactions, they cannot reproduce th@sepagate, the vertical wavenumber adjusts in such a way
features. as to keep the frequency, given by the dispersion relation

(112), constant. Reflection occursiit passes through zero,
ie., if
6.3. Wave packet propagation through a wind jet

Uy > N (1 r ) (57)
0= 75—~ B DR E
Next we consider the case where a “hydrostatic” gravity k V2 +mg

wave packet propagates through a horizontal wind jet. Theere , is the vertical wavenumber of the waves before
wave packet is the same as in the previous cases exceptf{iaf encounter the jet.

itis initially centred atzy = 20 km. The background wind \y\e consider this time a “non-hydrostatic’ wave packet

has the initial profile with wavelengths\, = 3 km and .o = 3 km, half-width
( 2 o =5 km, and centre initially aty = 40 km. To avoid

, T zZ—2 modulational instability as the vertical wavelength beesm
Ujer(2) = Uo sech [ 2 } ' (56) large (discussed in sectioh5), the relatively low initial

amplitudeay = 0.2 is chosen. Again the horizontal phase
with 2, = 50 km, Uy =20 m s and X = 3 km. The SPeed is chosen to be negative to exclude the possibility

jet profile and wave packet are chosen so that the wa&fea critical level. _For these simulations, the jet is agdin o
packet does not encounter a critical level, wherequals the form 66), butis centred at; = 70 km and has a peak
the horizontal phase speed of the waves. Since the je¥Y§ocity of Uy —5m s~! (equation §7) predicts reflection
positive, the horizontal phase velocity of the wave packét/o > 2.8 ms™). . _

is therefore chosen to be negative by taking the negatjvel© accommodate the reflection of the waves, the Eulerian

root in (9), i.e. w=_, and a positive initial vertical WKB model required a larger wavenumber (ilomain
wavenumbern,. (straddling them = 0 line) chosen to be-0.01 m™* <

—1 \asi . .
The jet refracts the wave packet in much the same way/&s< 0-005 m™" with n,,, = 140 grid points. .
: b ?:lgure 15 compares the wave energy for case 1 obtained

does the variable stratification in the previous experimen .
P P tth the WKB and wave-resolving models. The WKB

Figure12 shows the energy density for case 1 as a functiof

of height and time. Again, it can be explained in terms of tH@odels are able to accurately simulate the reflection of the

wavenumber velocityi. As the waves propagate througwave.tpackgt. F'gurisfhg\.’\’f _tget_phanA—Bpa.ce \;vave]—‘tactﬁn
the lower flank of the jet, the vertical wavenumber becomggns' Y ar;( tray pa}r Ic eh 'Z I’IAU 'anh 'mllr']tltJI ez.?f e
smaller due to the wind shear, simultaneously reduciﬁ' VE packet was fauncned. Again there Is fittie difference

: : tween cases 1 and 2. Figuré shows good agreement
the wave packet energy density. Figut8 shows good ) ;
agreement between the induced mean flow, lilé:, ) — between the induced mean flow simulated by all models far

Ujet(z), from case 1 simulated by the WKB models an]:ﬁo:j“ tr}le rfﬂgctmg level. Iln thebr?rg]ﬂon where ':h_e |nC|d?jnt|
the wave-resolving models after 500 minutes, as the w ﬂgLrJeceegneob\\I/vi?)\llgss(r)rYaellr fo;\leosigr\:;?\i/r?:[Le:?n\éllngeg]?neeai
packet passes through the peak of the jet. There are aﬁ%w that is not predicted by the WKB models.

small-scale structures ilf in the wave-resolving models, The linear, steady-state version of this test case admits
but they do not seem to affect the wave energy above the ear, steady o ;
analytic solution, detailed in appendix which can be

. 4 « . . n
jet. Notice that the mean flow “left behind” in the wake of g\pared t0 the results of simulations with the WKB and

the wave packet has positive sign in this case because 1R X - )
ve-resolving models (in linear mode). To approximate a

horizontal phase speed, ar_1d hence the pseudomomenfg{eady wave-train, a much longer wavepacket with initial
of the wave packet is negative.

This is the only experiment in which there is a Iargkéuoyancy amplitude

difference between the weakly nonlinear and fully nonlmea N2
wave-resolving models. In the region of the jet, the 4,(,) = 2020 (tanhzz0+J
2

wave energy in the weakly nonlinear model (and the mo B
WKB models) is strongly reduced and there is almost no Z2—20—0
momentum transfer to the mean flow, while in the fully — tanh 3 , (58)

nonlinear model there is a significant induced mean flow
(which is nevertheless of much smaller amplitude than terez, = 80 km, ¢ = 65 km and3 = 2 km (essentially
background jet). a smooth boxcar function between= 20 km and z =
Figure 14 shows the phase-space wave-action-density0 km) was used, the jet was moved upzto= 170 km,
distribution from cases 1 and 2 also fa& 500 minutes. and the height of the domain was increased to accomodate
Caustics occur again on the upper and lower flanks of tie jet and the wide wave packet. The idea was to see
wave packet in both cases. In this experiment too therehat wave energy does not steadily accumulate near the
little qualitative difference between cases 1 and 2. reflecting level. For this experiment the feedback on the
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Figure 12. Horizontally averaged wave energy density of the wave pamapagating through a wind jet (for case 1).

in the WKB models. The total wave energy in the layer just

80 f—— below the reflecting level reaches a plateau once the flux of
A — WNL downward- and upward-propagating waves become equal,
70¢ '_';'_'xtgg\zw and the value of the energy at the plateau is close to that

z [km]

Figure 13. Wave-induced mean flow generated by the wave pac
propagating through a wind jet (for case 1} at 500 minutes (LES: fully

0
U

0.5 1
[m/s]

15

calculated in the appendix for the steady-state case. As the
width of the initial condition in wavenumber space is made
smaller (the initial condition approaches a delta fungtion
the analytic phase-space solution approaches the padicti
of conventional physical-space ray-tracing, in which the
wave-action density becomes infinite at the reflecting level
but the wave-energy integrated over any interval (possibly
including the reflecting level) converges to a constantdinit
value. The key property of the phase-space representation
is that even as the group speed approaches zero, the
wavenumber velocity remains nonzero, so points following
the phase-space flow spend only a finite amount of time in
the vicinity of the reflecting level.

6.5. Modulationally unstable wave packets

kfhe final test case is a nonhydrostatic wave packet propagat-

nonlinear wave-resolving model; WNL: weakly nonlinear waeselving ing through a uniformly stratified resting background. This
model; wkbFV: Eulerian WKB finite-volume model; wkbRay: WKB rayjs the test case used Butherland(20060) to investigate

tracer).

modulational instability (see als8utherland 2006a A
wave packet becomes modulationally unstable if its vdrtica
wavelength is large enough compared to its horizontal

mean flow due to the waves was switched off (in the weakhavelength (such thaftm| < 0.7|k[). In this regime, the

nonlinear version, the solution in the wave-resolving ni®dexffect of the wave-induced mean flow is to decelerate the
— but not in the WKB models — becomes very irregulagading edge of the wave packet and accelerate the trailing
below the reflecting level as the reflected waves propagatize, causing the packet to narrow and, if unstable, its
through the alternating induced mean flow, but this &nplitude to grow. The narrowing of the wave packet makes
unrelated to the caustics problem). Figuré shows the this test case inherently difficult for a model based on WKB

mean wave energy in the wave-resolving (linear) model atiebory, which assumes an amplitude envelope that varies
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Figure 14. As in figure7 but att = 500 minutes in the test case with a wind jet. The dashed line inighe panels shows the wind jéf;.;(z) (with
values indicated on the upper horizontal axis). The coritderval for the wave-action density (left panelspisc 10> m3 s—1.
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Figure 15. Horizontally averaged wave energy density of the wave paeilected by a wind jet (for case 1).

slowly in space. Nevertheless, as will be shown, the WKIB = 50 km. The first case is a modulationally stable wave
models remain well-behaved even in the most unstalplgcket with initial vertical wavenumben, = —1.4k and
case and reproduce some of the large-scale features ofatimplitude oy = 0.12, the second is a “metastable” wave

solution if not the fine-scale details.

packet withmy = —0.7k and ay = 0.21, and the third is

Three wave packets with horizontal wavelength= 2 a modulationally unstable wave packet withy = —0.4k
km, half-width o = 3.2 km and centres at, = 30 km andag = 0.42. We present only the results from “case 2" —
were simulated with the weakly nonlinear wave-resolvirige. with the initial wave-induced mean flow1) — but those
model and both WKB models in a vertical domain of heiglfitom case 1 are similar. No LES simulations were done for
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Figure 16. As in figure14 but att = 140 minutes in the test case with reflection by a wind jet. The caniiaterval for the wave-action density (left
panels) is5 x 104 m3 s~ 1,

were initialized in two columns between= 20 km and

75 z = 40 km on either side ofn = m,. Refer to table for
7ol the full details.

Figure19 shows the wave-induced mean flow simulated
65¢ with all three models. To facilitate comparison with
eol Sutherland(2006h, the mean flow is normalized by its

maximum value in the initial condition and plotted in a
551 reference frame moving with the initial group velocity of
B 50 the wave packe_t.
~ The modulationally stable wavepacket (panel a) behaves
454 similarly to the hydrostatic wavepacket in sectiéri in
20l that the wave-induced mean flow causes the wave packet
to broaden. The WKB models agree well with the wave
351 = ] resolving model. On the other hand, the mean flow causes
— WAL the metastable and unstable wave packets (panels b and c) to
307 == WkbFV 1 narrow and amplify and their centres to decelerate relative
g5 T WIORAY] ‘ to their initial group speed. The WKB models capture this
=06 -04 -02 0 02 04

behaviour qualitatively quite well (although the Eulerian
model overestimates the deceleration of the unstable wave

. _ acket). In the wave resolving simulations the mean flow
Figure 17. The wave-induced mean flow generated by the wave paclget | ) fi truct f? hi t tured by th
encountering a reflecting wind jet for case 1tat 140 minutes (LES: €velops a mnine structure whic 'S_ not capture y the
fully nonlinear wave-resolving model; WNL: weakly nonlinearave- WKB models. Although there are differences between the
resolving model; wkbFV: Eulerian WKB finite-volume model; wkbRa WKB and wave-resolving models, this is a case where
WKB ray tracer). Note that the agreement between the two WKB nsod%{ conventional ray-tracer would fail due to the formation
and between the two validation models is so close that it igcdif to f ti fiqurec. f hich th fl
distinguish the two pairs of curves. 0 caustics (compare figuréc, for whic e mean flow
induced by the metastable wave packet was used as the
background for the rays).

U [m/s]

this experiment since the weakly nonlinear results closgy
match those of the fully nonlinear simulations reported irn

Sutherland’s paper (his figure 3). WKB theory in position-wavenumber phase space has
The spatial resolution for all models was twice as higieen used to develop a weakly nonlinear model for the
as for the earlier test cases in order to accommodat®lution of internal gravity waves coupled to a time-
the narrowing of the wave packet. The Eulerian WKBependent mean flow. Because standard WKB theory
model used a wavenumber domain-e§.012 m~! < m < assumes that frequency and wavenumber are single-valued
0.002 m~* with n,, = 1400 cells in them direction. As functions of time and space, it breaks down in the presence
usual, the initial wave-action-density distribution haiditt  of caustics, such as those occurring in cases of wave
in the wavenumber direction equivalent to one grid cell, egflection and in cases where a time-dependent background
Amg =10"* m~1. For the ray tracer, 400 ray particleseads to wave packets overtaking each other. Contrary to

Summary and discussion
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Figure 18. Horizontally averaged wave energy density of the very loagenpacket reflected by a wind jet from the wave-resolvingdirmodel and the
WKB models (in linear mode). The right panel shows the mean erierthe layer between 150 and 168 km as a function of time. Oreddwnward
(outgoing) waves balance the upward (incoming) waves, thewaergy reaches a plateau at the value corresonding t@®atassteady wave train
reflected by a jet. The energy in the layer predicted by théyio®olution to the steady state WKB problem (see appeigiindicated by dashed
horizontal line.

practice in common gravity-wave-drag parameterizations,Two numerical implementations of the model have been
the interaction between small-scale gravity waves and saaown to agree well with both a wave-resolving weakly
tides Senfand Achatz 20)1and between parameterizethonlinear model and a fully nonlinear model. The Eulerian
gravity waves and highly variable resolved gravity wave§KB model solves the phase-space wave-action-density
require that background transience be taken in accowusnservation equation using a finite-volume method, and
Especially — but not only — under such circumstancede Lagrangian WKB model transports ray particles with
caustics can quickly become a problem. The caustig$ached rectangular elements of constant area and wave-
problem disappears in the phase-space approach useaddivn density along rays in phase space. In both models,
Hertzoget al. (2002 and implemented here, where théne mean flow evolves depending on the divergence of
ray equations for wavenumber and wave-action densitytie momentum flux calculated by integrating a function
physical space4) are replaced by a conservation equatiaff wave-action density either over the whole wavenumber
for wave-action density in phase spadém, z,t). dimension (Eulerian model) or over the area of each of the

In passing from conventional WKB theory in physicalectangular elements (Lagrangian model). The Lagrangian
space to WKB theory in phase space, one has some freedggtlel is made more robust by allowing the rectangles
to choose the exact form of the phase-space wave-acti@ched to the ray particles to change shape depending
density function. The initial condition fok” corresponding on the straining effect of the phase space flow. This
to the WKB ansatz for a quasimonochromatic wave packslra degree of flexibility allows the model to give good
has a delta-function dependence on wavenumber. Inedyits with fewer ray particles (a comparable result can be
numerical treatment of the phase-space WKB model, $tained in many cases with rectangles of fixed shape and
delta function must be approximated by a wavenumhbggre ray particles per unit length in the vertical).
interval of nonzero phase-space wave-action density, th(?: . . .

or problems like the propagation of a single wave

simplest example being unifor” in the interval between . NI
P b g packet, where the wave-action-density distribution ishig

mo — 2 Amg andmg + 3Amg and N = 0 for all otherm b ” . .
(equation49). The size ofAmy is not related to and shouldiocalized in position and wavenumber, the Eulerian model is

not be confused with the width of the Fourier transforfR€fficient because it mustintegrate the wave-action-tiens

of the Gaussian envelope in physical space (i.e. invers@ﬂpation over a domain Iarge enough to include all positions
proportional to the width of the envelope). A convenie'd wavenumbers accessible to the wave packet. Due to
side-effect of a finite value of\m, is that the phase-the conservation Qf wave-action density alqng phase-space
space wave-action density is nowhere infinite. Moreov&®YS, the Lagrangian model only needs to integrate the ray
thephysical-spaceave-action densityl (the integral of\’ €guations on a set of ray particles that |n|t|§1IIy covers the
overm) is also nowhere infinite, as it is in the convention&fgion of nonzeraV. Also, for a more realistic case of
ray-tracing solution at the singular point in the example ofvaves propagating in an environment varying in all three
steady wave train being reflected by a shear layer (discus@égensions, the Eulerian approach would require a six-
in section6.4 and appendiB). Because of the dependencéimensional computational domain and is thus less prdctica
of group velocity on wavenumber, the finite width of th&ith present computational capabilities. On the other hand
initial condition also implies that the solution will spekathe Eulerian model uses a very robust numerical scheme,
out in space. As such, in extreme situations, such as nd@@s not require smoothing of the momentum flux, and
a reflecting level, the vertical distribution of energy dens generally agrees better with the weakly nonlinear wave-
should be compared to a wave-resolving model or analyt&solving model (see figureld, 11 and12). Furthermore,
solution in terms of averages over finite height intervais the case of an initially broad spectrum of waves, the
rather than in terms of point values. This is very compatibfeulerian model can be competitive with the Lagrangian in
with a model using the finite-volume method which predicterms of performance. Eulerian wave-action models are in
averages over grid-cells rather than point values. operational use for oceanic surface-wave forecastingr@vhe
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Figure 19. Normalized wave-induced mean flow from the modulational inktalexperiment simulated with the weakly nonlinear waveaking
model and both WKB models: (a) stable caseo(= —1.4k, ap = 0.12), (b) metastable casen(y, = —0.7k, ap = 0.21), and (c) unstable case
(mo = —0.4k, ap = 0.42). Plots are in the reference frame moving with the initial grapeed at the centre of the wave packet.

either a four-dimensional position-wavenumber or a fourenlinear problem of three-dimensional gravity waves in
dimensional position-frequency-direction phase spacetlie atmosphere without extensive further simplification.
needed), so clearly a two-dimensional atmospheric gravity Five test cases were presented: (i) a nearly hydrostatic
wave problem can also be solved operationally. Singeayity wave packet propagating upward through an injtiall
the heaviest computational effort in oceanic wave-actigésting background with uniform stratification; (i) the
models relates to the computation of thenlinear four- same wave packet propagating through a background
wave-interaction component, there is hope that the approatratification varying slowly with height (but not with tirjie
could also be suitable for solving the merelyeakly (iii) the same wave packet propagating through and being
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22 J. Muraschko et al.

refracted by a localized wind jet; (iv) a nonhydrostatic waw.indzen 198). Similar considerations might be necessary
packet being reflected by a sufficiently intense wind jetjith regard to other nonlinear dissipation mechanisms such
(v) a nonhydrostatic wave packet subject to modulatiorees modulational instability.

instability when its vertical wavelength becomes large

enough compared to its horizontal wavelength. In eagh sgatic stability of a wave packet in a varying

case caustics occur, either due to the waves encountegBgkground

a reflecting jet, or due to transience in the background

associated with feedback of the waves on the backgroupdiow of a Boussinesq fluid (governed by equatichs

All experiments were done with and without an initial meag statically stable if the local vertical buoyancy gradien
flow perturbation that propagates together with the waie eyerywhere less than the mean squared background
packet. Other than near the height where the wave pagkgbyancy frequenciv2. During the passage of an internal-
is initialized, there are only small differences betwees t@ravity-wave packet with buoyancy amplituble- aN2/m,

results with and without the extra initial mean flow. the flow is everywhere stable if the nondimensional

reéglsil:'\carsneos dg;s V\X/ﬁr? {Egde;’tg?r:fc\getlilovr\]”tgft?heewg\é%f plitude of the waves satisfigg < 1. In this section we
9 ’ P P amine the purely linear variation efas an initially stable

modulationally unstable nonhydrostatic wave packet. T o
; ve packet propagates through a background stratification
latter was always going to be a challenge for the WKvefwying with height,

models since the amplitude variation is on the same sca o
as the vertical wavelength. Otherwise, the most prominen uppose the centre of the wave packet is initially located

difference is the formation of small-scale structures ﬁ{gefr:ti?t %'Ld chtV‘{?xistha\ée Veglscealfwr?%/grmihma?&trhe
the induced horizontal mean flow in the wave-resolvi roSr:éJstr(;(t)ificatilon va()ries l\j\ﬁ& hei rl:t Wit ) —
models in cases where the wave packet propagates thro %kg gnt, Z0) =

a nonuniform background. These structures probably arisg One m|ght expect that the system is most likely to
through wave-wave interactions which the WKB rnodeFéecome statically unstable Whe_n the waves reach the height
cannot account for. In most cases they have a weak offdhere the background Isaststatically stable, and thus that

. . . oy . . . . 2 2
on the large scale structures and on the propagation of Hé/C instability is possible only ifag| > min(N*/Ng).

waves (but they might have other consequences for lo |fact, however, one can show from WKB theory that
mixing and turbulence and would be worthy of study i e wavelength and amplitude of the waves change as the

their own right). In all cases the weakly nonlinear and t ckground changes such that static instability is most

fully nonlinear models produce similar results, indicgtin! <€y Where the background isoststable.

that higher harmonics of the waves do not play a significant”O" Simplicity assume the background wind is zero
role in the propagation of vertically compact horizontall{fn€reby neglecting the momentum flux due to the waves)

periodic wave packets. It is sufficient to represent the wa!d the background stratification is independent of time.
induced mean flow (as observed ®ytherland 200§bThe From €09, the wave frequency is therefore conserved
only significant difference between the two wave-resolvin@!lowing the group velocity, and from the dispersion
models occurs in the case where the wave packet is refradgggtion (1) one has
by a background wind jet. The fully nonlinear model is
the only one to develop small-scale structures in the wave- 2(2,) = N?(z) (k2 2y 1.2
. e ; : m-(z.) = +ms) — k-, (59)
induced mean flow within the region of the background jet. Ng 0

While we have focused exclusively on a one-dimensional
wave packet with a horizontal mean background flowherez.(t) is the height of the centre of the wave packet at
the phase-space WKB theory with mean-flow couplintgnet.
generalizes to any number of spatial dimensions. While theSince the centre of the wave packet moves with the local
Eulerian model as implemented here could quickly becomeup velocity, the wave-action density at the centre of the
computationally intractable in more than one dimensiowave packetd. obeys
the Lagrangian approach seems promising for application in
an improved parameterization of unresolved gravity waves dA, dA. dz.
in a weather or climate model. Most current schemes 3, = ‘1.
neglect both the horizontal propagation of wave packets
and the effect of horizontal variations on their propagatiowhere the ray equation for wave acticd®d() has been used.
even though these have been shown to be importgifuation 60) implies thatc,.(z.)A,. is constant. Using
(Song and Chun 20Q&ashaet al. 2008 Senf and Achatz (14), (204, and the assumption thatis constant following

dA, deg
= ol g, = A,

(60)

2011). the centre of the wave packe$dj and 69) give

For applying the phase-space WKB models to the
gravity-wave-drag parameterization problem, the Boussi- s m(z),
nesq approximation would have to be relaxed so that thda(zc)|” = = —lao| (61)
amplitude of the waves can grow as the ambient density 0 .
decreases. For that reason, adapting both WKB models o [N%(ze) [ K? K272
to the pseudo-incompressible equatiobsiffan 1989, is = lao| N2 T,Tg +1)- T,Tg - (62)

the subject of ongoing work. In addition, a rule would be
needed for depositing momentum to the mean flow WheRerefore, if|ao| < 1, then|a(z.)| can only exceed unity
the waves reach overturning (breaking) amplitude, such\ggere

maintaining the wave-action density at the threshold for N2(2) lao|~* + 71373

static stability above the breaking height, resulting in an . . >1, (63)
enhanced forcing of the mean flow (along the lines of Ng 1+ :Tg
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that is, where the background static stabilityinsreased where the factor 2 accounts for the upward and downward
relative toNg. propagating branches.

If the perturbation to the background stratification takes The integral of the intrinsic frequency is, for constant
the form of a large-scale gravity wave with nondimensionahdk,
amplitudeapaer, thenmax(N?) = NZ(1 + |apack|). Static
instability will only occur if

1
/d)(m)dm:N/ﬁdm
V1+ 5z
mo e
k k2

+ a constant

lao| ™ — 1

L+ (k/mo)” e

‘abuck| >
= Nklog

For the hydrostatic waves used in the experiment with
variable stratification in sectioB.2, as |apeck| — 1, the

initial wave packet amplitudeay| would have to be at so that
least 0.76 for the possibility of static instability ocaag.

In a more general case with feedback from the waves oG (1) = 2N kN,
the large scale flow, the interaction of a statically stable

(69)

hydrostatic wave packet with a statically stable largeescal log ma(2) 4 /14 mégZ)
wave is unlikely to ever lead to static instability. . F
o . . Clog|m@ [Ty Mm@,

B. Energy density in a steady linear wave train y &l w !
reflected by a shear flow

. . . . 1 ma(z) 1 mg(z) r r
An analytic solution may be derived for the energy density og|—p— T + = y 21 <2< 2z
as a function of height for the steady-state linear version 0 2> 2

(i.e., without feedback of the waves onto the mean flow)

of the test case, described in sectidd, featuring waves (70)

reflected by a jet.

Suppose that at the height the phase-space wave-
action density is uniformly distributed between the positi

wavenumbersn;y and mqo with value NV, and zero for

all other positivem, cf. (49). In a steady-state solution,
the region of nonzero wave-action density is confingg,

between the two characteristic curves (z) and mo(2)
passing through the pointg;(z¢) = mio andma(z) =

mag. Since the background is independent of time, tlg)
characteristics are curves of constént, such that for the

curvem;(z),

O [zom; (2)] = KU (2) — ——e (65)
k2 4+ m3(z)

EOJj

Figure 20 shows, for various values adkmgg = mog —

myo (indicated by different shades of grey), the phase-
space region of nonzerd” and the energy density as a
function of height for a steady train of waves with horizdnta
and average vertical wavelength (far from the reflecting
el) 3 km and amplitude, = 0.2 atz = z; encountering

the background jet56) used in the test case. A&myg
becomes small, the graph approaches that of the prediction
f conventional ray-tracing (in physical space)

K

where mgg = %(m10+m20), indicated by the heavy
dashed line. The latter becomes infinite at the singular

Eco’rw (Z) _
E(20) mo(2)

moo {kQ +m3(z) (71)

k2 4+ mj,

is constant (by symmetry we need consider only the upwdfdlecting level, while the solution7() remains finite

propagating branch, witk > 0, m > 0 andw < 0). This
may be rearranged to yield

2 _ N? 2

where é,;(z) = w;/k — U(z) is the intrinsic horizontal
phase speed. The reflecting lew¢lis the minimumsz for
whichm;(z) = 0, i.e. such that

. N

cpj(zj) =7 (67)
The energy density as a functionofs, by the definition

(52,
ma(z)
/ w(m)dm, z<z]
my(z)

E(z) = 2Ny (2) (68)

mo(z
/ w(m)dm, 27 <z< 2z}
0
0 z > zh

Copyright(© 2013 Royal Meteorological Society
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for all finite Amgg. The equivalence of70) and (/1)

in the limit Amgy — 0 can be shown analytically by
expanding the integrand i6®) in a Taylor series imn(z) —
m1(z), integrating, and then using®) to calculate the
leading order dependenceiof(z) — mq(z) on Amgg. For
comparison the energy density versus height from the linear
simulation with the finite-volume phase-space WKB model
is also shown in figur@0. It is smoother than the analytic
result due to the diffusion inherent to the numerical method
The mean energy density in the layer 150 knx < 168

km converges to a constant asng, — 0 and is close to
the value observed in the wave-resolving and WKB models
(compare right panels of figur@® and18).
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Figure 20. Phase-space region of nonzevobounded by characteristies; (z) andma(z) (left) and energy density versus height (middle) for a steady
wave train encountering the jé&), plotted for different values ahmg /mo. The prediction of conventional ray tracing (in physicaasg) is indicated

by the heavy dashed line&'mgo = 0”), and the energy density from the finite-volume model is iatkdl by the fine dashed line (“FV”). Right panel:
average energy density in the interval 150 kme < 168 km (compare with right panel of figuil).
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