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The dynamics of internal gravity waves is modelled using WKB theory in
position-wavenumber phase space. A transport equation forthe phase-space
wave-action density is derived for describing one-dimensional wave fields
in a background with height-dependent stratification and height- and time-
dependent horizontal-mean horizontal wind, where the meanwind is coupled
to the waves through the divergence of the mean vertical flux of horizontal
momentum associated with the waves. The phase-space approach bypasses the
caustics problem that occurs in WKB ray-tracing models when the wavenumber
becomes a multivalued function of position, such as in the case of a wave
packet encountering a reflecting jet or in the presence of a time-dependent
background flow. Two numerical models were developed to solve the coupled
equations for the wave-action density and horizontal mean wind: an Eulerian
model using a finite-volume method, and a Lagrangian “phase-space ray tracer”
that transports wave-action density along phase-space paths determined by
the classical WKB ray equations for position and wavenumber.The models
are used to simulate the upward propagation of a Gaussian wave packet
through a variable stratification, a wind jet, and the mean flow induced
by the waves. Results from the WKB models are in good agreementwith
simulations using a weakly nonlinear wave-resolving modelas well as with a
fully nonlinear large-eddy-simulation model. The work is astep toward more
realistic parameterizations of atmospheric gravity wavesin weather and climate
models. Copyright c© 2013 Royal Meteorological Society
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1. Introduction

It is well established that gravity waves play an
important role in the dynamics of the atmosphere.
Excited in the troposphere through processes such as
flow over topography, convection, and jet imbalance, they
transport momentum and energy into the stratosphere and
mesosphere, where they break and deposit their momentum.

This forcing – known as gravity-wave drag – helps maintain
the large-scale circulation in the middle atmosphere. In
climate models and models used for weather forecasting,
gravity-wave drag must be parameterized, since the models
cannot resolve the entire range of gravity-wave scales,
much less the even smaller scales involved in gravity wave
breaking and wave-turbulence interactions. For an overview
of atmospheric gravity waves and the parameterization
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of gravity-wave drag in weather and climate models
see Fritts and Alexander(2003), Kim et al. (2003) and
Alexanderet al. (2010).

Many parameterization schemes (Lindzen 1981;
Alexander and Dunkerton 1999; Warner and McIntyre
2001; Song and Chun 2008) are based on Wentzel-Kramer-
Brillouin (WKB) theory (Bretherton 1966; Grimshaw
1975; Müller 1976), where the amplitude, wavelength and
frequency of the waves are represented as functions of
space and time that vary slowly compared to the scales
of the waves themselves. WKB theory leads to theray
equations, which describe the propagation and evolution
of wave properties along paths everywhere parallel to the
local group velocity. Numerical models based on the ray
equations, colloquially known asray tracers, have been
used for the interpretation of gravity wave observations
(e.g. Eckermann 1992; Marks and Eckermann 1995;
Hertzoget al. 2002) and for studying the evolution of
gravity wave fields in realistic large-scale flows. Examples
of the latter include the three-dimensional ray tracer
developed bySong and Chun(2008) to simulate gravity-
wave drag induced by cumulus convection and the ray
tracer used bySenf and Achatz(2011) for studying the
impact of thermal tides on the propagation and dissipation
of gravity waves.

Gravity-wave-drag parameterizations based on WKB
theory (such as that ofWarner and McIntyre 2001) neglect
the effect of transience in the large-scale flow on the
waves. Given a (discrete or continuous) spectrum of
emitted waves and an instantaneous background state,
these schemes use steady-state WKB theory to calculate
the wave properties at all heights and the mean flow is
modified accordingly based on parameterization-specific
rules related to, for example, static instability and critical
levels. However, the steady-state assumption is probably
not justified when there are significant interactions between
gravity waves and solar tides (Senf and Achatz 2011) or
between small-scale parameterized waves and large-scale
explicitly resolved waves (discussed in several studies on
internal waves in the upper ocean interacting with inertial
waves, seeVanderhoffet al. 2008, 2010, and references
therein). Indeed, current general circulation models have
horizontal resolutions of tens of kilometres and therefore
resolve a large part of the gravity-wave spectrum (e.g.
Watanabeet al.2008). It is likely that in such cases the time
scale of the background variations is not long compared to
that of the evolution of the wave packet (not to be confused
with the period of the waves themselves). The steady state
approximation is also not consistent with localized wave
packets excited by a transient source, such as a convective
event, which induce a time-dependent mean flow.

As will be shown, when transience in the background
is accounted for, solutions to the ray equations tend to
become multivalued functions of space. This is an example
of thecausticsproblem (Lighthill 1978), where two or more
rays intersect and the ray equation for wave-action density
(the quantity representing wave amplitude in WKB theory)
becomes ill-defined. The formalism used byHertzoget al.
(2002) (following Dewar 1970; Dubrulle and Nazarenko
1997) avoids the caustics problem by casting the WKB
equations in the form of a transport equation for the wave-
action density in position-wavenumber phase space. The
same formalism was also used byBühler and McIntyre
(1999) to study propagation of Kelvin-Helmoltz shear-
generated gravity waves through the summer stratosphere.

A particular way in which the background becomes time
dependent is through the forcing due to the divergence of
the momentum flux associated with the waves themselves.
Sutherland (2001) showed that the propagation of a
horizontally periodic, vertically compact wave packet is
strongly modified by the interaction between the waves and
the wave-induced mean flow, a phenomenon known asself
acceleration, and that a weakly nonlinear∗ system coupling
the wave packet to the induced mean flow – but neglecting
other wave-wave interactions – is sufficient to capture most
of the nonlinear dynamics (note that unlike, for example, the
effect of breaking waves or waves encountering a critical
level, this kind of mean flow forcing is reversible). The
gravity-wave momentum flux in a WKB model is a function
of position, wavenumber and wave action density so it can
be readily coupled to an equation for the mean flow to yield
a weakly nonlinear WKB model.

The same approach for overcoming the caustics problem
is already in common use in the field of surface gravity
waves in the ocean. There, the wave-action-density equation
is solved for forecasting and engineering purposes in either
a position-wavenumber or a position-frequency-direction
formulation. Both are employed operationally by various
wave models (see, e.g.,Booij et al. 1999; WAMDI Group
1988; Benoitet al. 1996; Tolman 1991) and are coupled in
the same weakly nonlinear manner with ocean circulation
models (seeDietrichet al.2011; Rolandet al.2009, 2012).

The aim of the present study is to use WKB theory to
describe the propagation of a gravity wave packet in a time-
dependent background flow while accounting for the effect
of the waves on the background flow. We show that the
phase-space WKB approach is able to describe the weakly
nonlinear coupled system while avoiding the caustics
problem. For simplicity, the Boussinesq approximation is
used, and the study is restricted to horizontally uniform,
vertically localized gravity wave packets. Simple test cases
are presented to illustrate the effects of the wave field on the
mean flow and of the wave-induced mean flow on the wave
field.

Two numerical algorithms are proposed for solving the
phase-space WKB equations coupled to an equation for
the evolution of the mean flow. The first uses a finite-
volume method to solve the transport equation for wave-
action density in position-wavenumber phase space, and the
second is a ray tracer (in phase space) that exploits the area
preserving property of the phase space flow. Simulations
with the WKB models are compared to simulations with
two explicitly wave-resolving models – a weakly nonlinear
model and a fully nonlinear large-eddy-simulation (LES)
model.

The paper is structured as follows. In section2, an
explanation and derivation of the theory is given. In section
3, the ray equations are reviewed and the caustics problem
that arises in, for example, cases of self-accelerated wave
packets and wave packets encountering a strong wind jet is
illustrated. The equations governing the weakly nonlinear
evolution of gravity-wave packets using WKB theory in
phase space are derived in section4. The two numerical
implementations of the weakly nonlinear phase-space WKB
equations as well as the two validation models are described
in section5. Finally, section6 presents the results of a series

∗Some authors (e.g.Fritts and Dunkerton 1984) refer to this system as
“quasi-linear”
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of experiments, with an emphasis on test cases which lead
to caustics.

2. The weakly nonlinear Boussinesq equations

The theory developed here for the weakly nonlinear
evolution of internal gravity wave packets assumes that
the background is a variably stratified fluid with a time-
and height-dependent horizontal-mean horizontal flow.
The influence of the Coriolis force is neglected, as are
molecular viscosity and diffusion. The waves propagate
in the xz-plane, have constant horizontal wavenumberk
and time- and height-dependent vertical wavenumber and
amplitude. We make the standard WKB assumption that
the background fields and wave properties vary on time
and space scales long compared to the period and vertical
wavelength of the waves.

Except for the increase in wave amplitude with height
in a stably stratified environment, the dynamics of internal
gravity waves can be well described by the Boussinesq
equations:

Du

Dt
+

∂p

∂x
= 0 , (1a)

Dw

Dt
+

∂p

∂z
− b = 0 , (1b)

Db

Dt
+N2w = 0 , (1c)

∂u

∂x
+

∂w

∂z
= 0 , (1d)

whereu andw are the horizontal and vertical components of
velocity,p is the departure from the background hydrostatic
pressure divided by a constant reference density,N is
the height dependent Brunt-Väis̈alä frequency,b is the
buoyancy, andg is the constant acceleration due to gravity.
For application to the atmosphere,N andb are defined in
terms of potential temperatureθ = θ0 + θ(z) + θ′(x, z, t),
where θ0 is a constant andθ(z) a fixed profile, via
N2 = (g/θ0)dθ/dz andb = gθ′/θ0. The two-dimensional
material derivative is

D

Dt
=

∂

∂t
+ u

∂

∂x
+ w

∂

∂z
. (2)

To derive the equations governing the weakly nonlinear
dynamics of the waves, we begin by linearizing (1) about
a time- and height-dependent horizontal flowU(z, t). Next
we derive the WKB ray equations governing the evolution
of gravity waves in the linearized system. Finally we let
U(z, t) evolve in time depending on the divergence of the
vertical flux of horizontal momentum associated with the
waves.

The linearized equations may be written

∂u′

∂t
+ U

∂u′

∂x
+ w′ ∂U

∂z
+

∂p′

∂x
= 0 , (3a)

∂w′

∂t
+ U

∂w′

∂x
+

∂p′

∂z
− b′ = 0 , (3b)

∂b′

∂t
+ U

∂b′

∂x
+N2w′ = 0 , (3c)

∂u′

∂x
+

∂w′

∂z
= 0 , (3d)

whereu′ = u− U , w′ = w, p′ = p andb′ = b.

We assume a solution to (3) in the form of a single
gravity-wave packet with period and wavelength small
compared to the scales of the background and follow the
development inAchatzet al. (2010) by postulating the
ansatz







u′(x, z, t)
w′(x, z, t)
b′(x, z, t)
p′(x, z, t)







=

∞
∑

j=0

ǫj ℜ























ûj(Z, T )
ŵj(Z, T )

b̂j(Z, T )
p̂j(Z, T )









exp

[

ikx+
iΘ(Z, T )

ǫ

]















,

(4)

where ǫ is a small parameter,̂uj , ŵj , b̂j and p̂j are
single-valued time- and height-dependent complex wave
amplitudes,Z = ǫz andT = ǫt are “slow” height and time
coordinates,k is the constant horizontal wavenumber, and
Θ(Z, T )/ǫ is the fast-varying time- and height-dependent
part of the wave phase. FollowingHayes(1970), we define

m(Z, T ) =
∂Θ

∂Z
, ω(Z, T ) = −∂Θ

∂T
, (5)

the time- and height-dependent vertical wavenumber and
frequency.

Inserting (4) into (3) and collecting terms in powers ofǫ
yields







−iω̂ 0 0 ik
0 −iω̂ −N im
0 N −iω̂ 0
ik im 0 0















û0

ŵ0

b̂0/N
p̂0









+ ǫ





















−iω̂ 0 0 ik
0 −iω̂ −N im
0 N −iω̂ 0
ik im 0 0















û1

ŵ1

b̂1/N
p̂1









+









∂û0/∂T + (∂U/∂Z)ŵ0

∂ŵ0/∂T + ∂p̂0/∂Z

(1/N)∂b̂0/∂T
∂ŵ0/∂Z























= O
(

ǫ2
)

, (6)

where
ω̂ ≡ ω − kU (7)

is the intrinsic frequency(i.e. the frequency observed in a
reference frame moving with the mean flow). ToO (1),

MMM









û0

ŵ0

b̂0/N
p̂0









= 0 ,

where MMM ≡







−iω̂ 0 0 ik
0 −iω̂ −N im
0 N −iω̂ 0
ik im 0 0






. (8)

For nontrivial solutions to (8), the determinant ofMMM must
vanish, yielding

ω̂2 = (ω − kU)2 =
N2k2

k2 +m2
(9)
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and

(û0, ŵ0, b̂0/N, p̂0) = a

(

−i
ω̂

k
, i

ω̂

m
,
N

m
,−i

ω̂2

k2

)

, (10)

wherea is a complex constant whose magnitude represents
the wave amplitude in nondimensional units defined such
that |a| > 1 implies the waves are “statically unstable”.
Equations (9) and (10) are the dispersion relation and
polarization relations for gravity waves in a uniform
background withN andU equal to their instantaneous local
values. For convenience we introduce the functions

Ω±(m, z, t) ≡ kU(z, t)± kN(z)√
k2 +m2

, (11)

which will be used later to derive the ray equations. Note
that the subscript onΩ± corresponds to the sign of the
intrinsic horizontal phase speed.

Multiplying the O (ǫ) terms in (6) by the complex
conjugate of the polarization relations vector in (10)†,
using (9) and (10) once more, and transforming back into
the fast time and height variables yields the wave-action
conservation law

∂A

∂t
+

∂(cgzA)

∂z
= 0 , (12)

wherecgz ≡ ∂Ω±/∂m is thegroup velocity, andA ≡ E/ω̂
is the wave-actiondensity, withE the wave total energy
density (energy per unit mass)

E ≡ 1

4

(

|û0|2 + |ŵ0|2 +
|b̂0|2
N2

)

=
|b̂0|2
2N2

. (13)

Equation (12) governs the evolution of the wave amplitude
|a|, which satisfies

|a|2 =
2m2ω̂

N2
A . (14)

The equation for the evolution of the mean flow is obtained
by writing (1a) in the flux form

∂u

∂t
+

∂
(

u2
)

∂x
+

∂(uw)

∂z
+

∂p

∂x
= 0 . (15)

Averaging in x over one horizontal wavelength of the
perturbations eliminates thex-derivatives and the linear
perturbation terms and gives the momentum conservation
law for a horizontally periodic wave packet with vertically
varying amplitude:

∂U

∂t
= −∂(u′w′)

∂z
, (16)

where the overbar denotes averaging overx assuming
periodic boundary conditions. Equation (16) can be used to
couple the mean flow to the linearized Boussinesq equations
(3). Using the definition of wave-action density and the
polarization relations (10) one can show that the horizontal

†SinceMMM is anti-Hermitian, the conjugate-transpose of a vector in its
(right) nullspace is in itsleft nullspace. SeeAchatzet al.(2010) for details.

mean of horizontal momentum flux is

u′w′ = Akcgz , (17)

and, with (12), that

∂

∂t
(U − kA) = 0 , (18)

which expresses the connection between the mean
momentum and the wavepseudomomentumP = kA
(shown byAcheson 1976). Notice that for gravity waves in
a shear flow, wave action is conserved, as opposed to wave
energy which is exchanged with the mean flow. It can be
shown using Hamiltonian methods (Scinocca and Shepherd
1992; Bühler 2009) that pseudomomentum, defined as the
conserved perturbation quantity associated with symmetry
of the Hamiltonian and the mean flow with respect to
translation in space, can be written (in the small amplitude
limit) as

P =
b′

N2

(

∂u′

∂z
− ∂w′

∂x

)

, (19)

and, using (4), (9) and (10) that, toO (ǫ), (19) is equivalent
to P = kA. Since, from (10), b′ andw′ are out of phase
by π/2, the horizontal-mean vertical flux of buoyancy
b′w′ vanishes, so unlike the horizontal mean horizontal
momentum, the horizontal mean buoyancy (and hence the
stratificationN2) does not change with time due to the
passage of the wave packet. From the horizontal mean of
(1c), it follows that the horizontal-mean vertical wind must
also vanish (as discussed byAchatzet al.2010).

3. Ray tracing and caustics in physical space

Prognostic relations for the local frequency and
wavenumber may be derived from (5) and (11)
(Bretherton and Garrett 1968; Hayes 1970). Together
with the wave-action conservation law (12), these are the
ray equations

dgz

dt
=

∂Ω±

∂m
= ∓ Nkm

(k2 +m2)
3

2

≡ cgz , (20a)

dgm

dt
= −∂Ω±

∂z
= ∓ k√

k2 +m2

dN

dz
− k

∂U

∂z
≡ ṁ ,

(20b)

dgω

dt
=

∂Ω±

∂t
= k

∂U

∂t
, (20c)

dgA

dt
= −A

∂cgz
∂z

, (20d)

where

ḟ ≡ dgf

dt
≡ ∂f

∂t
+ cgz

∂f

∂z
(21)

is the time derivative of the quantityf in a frame
moving with the local group velocity. The system (20) thus
describes the variations in wave properties along paths,
known asrays, parallel to the local group velocity.

Variations inU and N lead to changes inm and ω.
Equation (20d) and any two of (20a)-(20c), with the third
constrained by (9), may be solved as an initial value
problem for the properties of the wave field at a point
moving along a ray. A model that solves these equations
for a collection of points representing an entire wave field
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WKB theory and weakly nonlinear gravity-wave dynamics 5

is called aray tracer. A challenge in developing a ray tracer
is to calculate the derivative ofcgz on the right hand side
of (20d) from information on the discrete and irregularly
distributed set of ray points.

The ray equations are a powerful tool for the description
of gravity-wave packets but they are limited by the WKB
assumption that at each location there is exactly one local
phase and amplitude. If a solution evolves in such a way
that multiple ray points are at the same position, but
have different values of(m,ω,A) and hencecgz, then the
derivative on the right hand side of (20d) will be undefined.
Such a situation is an indication of acaustic, a set of points
at which multiple rays intersect (see, e.g.,Lighthill 1978).

Unfortunately, the formation of a caustic is not the
exception but the rule for gravity waves propagating through
realistic background flows. In the remainder of this section,
we present examples of caustics arising under different
circumstances. In each case, equations (20a) and (20b),
together with the ray equation for horizontal position

dgx

dt
= U ± Nm2

(k2 +m2)
3

2

≡ cgx (22)

(obtained by differentiating (11) with respect tok with z, m
and t constant), are solved numerically for a collection of
ray points initially located atx = 0, uniformly distributed
in z, and all having the same initial value ofm. The
wave-action equation and the feedback of the waves on the
background are neglected. In each example,k is positive,m
is initially negative and the frequency is given byω = Ω+.
The rays initialized this way represent a wave field with
initially upward group velocity. In each case, a constant
Brunt-Väis̈alä frequency ofN = 2× 10−2 s−1 is used.

Figure 1a shows rays associated with waves with
horizontal wavelengthλx = 3 km and initial vertical
wavelengthλz = 3 km reflected by a wind jet of the form

U(z) = U0 sech

[

(z − z1)
2

Σ2
U

]

, (23)

with peak velocityU0 = −5 m s−1, half-width ΣU = 3
km and centre atz1 = 70 km. During the reflection of the
wave packet, there are simultaneously ray points with both
upward and downward vertical group speed at points below
the reflecting level.

One might not be interested in reflected wave packets,
for example in a gravity-wave-drag parameterization,
so in practice the downward propagating ray points
might be ignored. Nevertheless, caustics tend to form
in other commonplace circumstances. Figure1b shows
rays corresponding to nearly hydrostatic waves propagating
through a weak background wind (amplitude 2 ms−1) that
varies sinusoidally in the vertical (wavelength 50 km).
The waves initially have the same wavelengths everywhere
(λx = 30 km andλz = 3 km) but due to the slightly varying
wind shear, parts of the wave field (represented by the lower
rays atx = 0 in the figure) “overtake” the parts immediately
above. This may be explained as follows: According to
(20b), m increases (decreases) along rays wheredU/dz
is negative (positive). For nearly hydrostatic waves, the
magnitude of the vertical group speed, given by (20a),
decreases with increasing|m|. Since herem < 0 (the waves
have positive vertical group speed), the parts of the wave
field initially in a background withdU/dz < 0 develop

higher vertical group speed than the rest of the wave field.
The occurrence of caustics due to overtaking is typical of
many types of dispersive waves, as discussed byBrown
(2000).

Caustics often occur when the background wind is
time dependent, for example in the problem discussed
by Broutman and Young(1986) of high-frequency gravity
waves in the upper ocean propagating through a large-
scale inertial wave. An example of time-dependence leading
to caustics is shown in figure1c, in which a Gaussian
wave packet withλx = 2 km andλz = 2.9 km propagates
through its own “induced mean flow” – the mean wind
equal to the waves’ pseudomomentum (see equation19).
In the weakly nonlinear limit, such a background wind
propagates upward together with the wave packet. The mean
wind at various times is indicated by the thick grey lines
in the figure. This is a test case taken fromSutherland
(2006b) illustrating the phenomenon ofmodulational
instability. When |m| < k/

√
2, group velocity increases

with increasing|m|. As such, the lower flank of the wave
packet is accelerated by positive background wind shear
while the upper flank is decelerated by negative background
wind shear, and again caustics occur due to overtaking. The
data for the background mean wind were taken from weakly
nonlinear wave-resolving simulations described in section
6.5.

A phenomenon related to caustics is that of acritical
level. This is a level in a a shear flow where the background
wind speed equals the horizontal phase speed of the waves.
As the waves approach such a level, their group speed
approaches zero but their vertical wavenumber tends to
infinity (unlike near a reflecting level, wherem passes
through zero). Critical levels may be considered “caustics
at infinity”. An example of waves approaching a critical
level is shown in figure1d. The only difference from the
example with the reflecting level is that the jet (equation
23) is in the same direction as the horizontal phase speed
of the waves and has an amplitudeU0 = 8 ms−1. As
they approach a critical level, waves overturn and break
due to the large local buoyancy gradients associated with
increasing|m| or else they decay due to viscous forces
associated with the increasing velocity shear (proportional
to |m|). Although the wave action equation (20d) diverges
at a critical level like it does approaching a caustic, this is
not merely an artifact of the WKB assumptions and the ray-
tracing equations. There really is a build-up of wave action
near a critical level and the system does become strongly
nonlinear. The effect of the waves on the mean flow at a
critical level must be treated with a suitable gravity-wave-
drag parameterization scheme, regardless of how the waves
are modeled.

The caustics problem is discussed in some detail in the
review paper byBroutmanet al. (2004).

4. WKB in phase-space

Broutmanet al. (2004) propose using Maslov’s method to
solve the caustic problem in physical space. This entails
solving the ray equations (or, where possible, the exact
linear equations) in wavenumber space wherever caustics
form in physical space and mapping the solution back into
physical space using the inverse Fourier transform. The
method has been shown to work well in cases where there
are no caustics in wavenumber space (where position is
a multivalued function of wavenumber) such as stationary
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Figure 1. Examples of the caustics problem in physical space: (a) rays (thin lines) associated with waves encountering a reflectingjet (thick line); (b)
waves propagating through a slowly varying alternating wind; (c) modulationally unstable waves propagating through their own induced mean flow (cf.
section6.5); (d) waves encountering a critical level due to a positive jet. Markers are placed along rays at intervals of 100 minutes in (a) and (d), 500
minutes in (b), and 33 minutes in (c).

hydrostatic mountain waves (Broutman and Rottman 2002)
and trapped lee wave (Broutmanet al. 2006) but becomes
complicated when caustics occur in both physical space
and wavenumber space. The same method was applied by
Brown (2000) to one-dimensional surface gravity waves in
a time-dependent background.

The caustics problem disappears altogether in the
formalism of Hertzoget al. (2002), where the WKB
equations are recast as a transport equation for a
wave-action density in position-wavenumber phase space
(hereafter simplyphase space). This avoids the need
to dynamically switch between the physical space and
wavenumber space representations and is the approach
adopted in the present study. The derivation presented here
mainly followsHertzoget al. (2002).

Consider a superposition of noninteracting WKB
fields {mα(z, t), Aα(z, t)}, whereα ∈ R is a continuous
parameter, each obeying the ray equations

dgAα

dt
+Aα

∂cgα(z, t)

∂z
=

∂Aα

∂t
+

∂

∂z
[cgα(z, t)Aα]

= 0 , (24a)

and

dgmα

dt
=

∂mα

∂t
+ cgα(z, t)

∂mα

∂z

= − ∂Ω±(z,m, t)

∂z

∣

∣

∣

∣

m=mα

, (24b)

where cgα ≡ cgz(mα, z, t), and the phase-space wave-
action density defined by

N (z,m, t) ≡
∫

R

Aα(z, t)δ [m−mα(z, t)] dα , (25)

where δ is the Dirac delta function. We begin by
differentiating (25) with respect to time:

∂N
∂t

=

∫

R

[

∂Aα

∂t
δ(m−mα) +Aα

∂

∂t
δ(m−mα)

]

dα

=

∫

R

[

∂Aα

∂t
δ(m−mα)

−Aα

∂mα

∂t

∂

∂m
δ(m−mα)

]

dα . (26)

Using (24a), we can rewrite (26) as

∂N
∂t

=

∫

R

[

−∂(cgαAα)

∂z
δ(m−mα)

−Aα

∂mα

∂t

∂

∂m
δ(m−mα)

]

dα . (27)

Rearranging terms in the integrand gives

∂N
∂t

=

∫

R

{

− ∂

∂z
[cgαAαδ(m−mα)]

−Aα

(

cgα
∂mα

∂z
+

∂mα

∂t

)

∂

∂m
δ(m−mα)

}

dα , (28)

which, using (24b), becomes

∂N
∂t

=

∫

R

{

− ∂

∂z
[cgαAαδ(m−mα)]

−dgmα

dt
Aα

∂

∂m
δ(m−mα)

}

dα . (29)

SinceAα(z, t) anddgmα/dt are functions only ofz andt,
they may be taken inside the partialm derivative:

∂N
∂t

=

∫

R

{

− ∂

∂z
[cgαAαδ(m−mα)]

− ∂

∂m

[

dgmα

dt
Aαδ(m−mα)

]}

dα , (30)
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and the integral overα can be interchanged with the partial
z andm derivatives to give

∂N
∂t

= − ∂

∂z

∫

R

cgαAαδ(m−mα) dα

− ∂

∂m

∫

R

dgmα

dt
Aαδ(m−mα) dα . (31)

From the definition of theδ function, cgα(z, t) may be
replaced withcgz(m, z, t) in the first integral anddgmα/dt
with ṁ(m, z, t) ≡ dgm/dt in the second, and both factors
may be taken outside of the respective integrals to leave,
finally,

∂N
∂t

+
∂(cgzN )

∂z
+

∂(ṁN )

∂m
= 0 . (32)

Equation (32) describes the transport of phase-space wave-
action densityN by the phase-space velocity field(cgz, ṁ).
From (20a) and (20b),

∂cgz
∂z

+
∂ṁ

∂m
=

∂

∂z

(

∂Ω±

∂m

)

− ∂

∂m

(

∂Ω±

∂z

)

= 0 , (33)

i.e. the phase-space velocity is divergence-free, and
thereforeN is conserved along trajectories in phase space:

DrN (z,m, t)

Dt
≡ ∂N (z,m, t)

∂t
+ cgz

∂N (z,m, t)

∂z

+ ṁ
∂N (z,m, t)

∂m
= 0 . (34)

Given an initial distribution of phase-space wave-action
densityN0(z,m), one can calculate its distribution for any
time by evolvingN using (32) (the Eulerian view) or
by simply advectingN0 conservatively along phase-space
trajectories using (34) (theLagrangianview).

The phase-space wave-action density may be coupled to
the prognostic equation for the mean flow (16) using (17)
and (25) to write

u′w′ =

∞
∫

−∞

kcgzN (m, z, t)dm , (35)

so that

∂U

∂t
= − ∂

∂z

∞
∫

−∞

kcgzN (m, z, t)dm , (36)

where we are implicitly assuming the induced mean flow is
affected only by the self-interaction of each member of the
superposition of wave fields that make upN . Interaction
between wave fields may also project on the horizontal
mean, since the flux of horizontal momentum associated
with one wave field, labeledα1, due to another, labeledα2,

u′
α1
w′

α2
=

1

4

[

ûα1
ŵ∗

α2
exp

(

Θα1
−Θα2

ǫ

)

+û∗
α1
ŵα2

exp

(

−Θα1
−Θα2

ǫ

)]

, (37)

whereΘα/ǫ is the fast-varying time- and height-dependent
part of the phase of wave packetα (compare with the
notation in the WKB ansatz (4)) is not in general zero. This
effect is not captured by the WKB model since it depends
on the relative phases of the two fields (information not
contained inN ) and can lead to small-scale features in
the mean flow which would violate the WKB assumption
of a slowly varying background. We will see that small-
scale features do appear in the induced mean flow in wave-
resolving simulations but that the behaviour of the waves
and of the large-scale structure are well predicted by the
weakly nonlinear WKB model.

5. Description of the numerical models

In this section we describe the two numerical implementa-
tions for solving the equations governing the evolution of
the phase-space wave-action density and the mean flow, as
well as the wave-resolving models used to validate both the
WKB models and the underlying theory.

5.1. WKB models

The first model uses a finite-volume method to solve
the Eulerian form of the phase-space wave-action-density
equation (32). Wave-action density is defined on a two
dimensional position-wavenumber grid while the mean flow
is defined only on the position grid. The second model
is a ray tracer in phase space that solves the Lagrangian
form of the phase-space wave-action-density equation (34).
Wave-action density is defined on a discrete set of ray
points in phase space that propagate along rays defined by
the phase-space-velocity field(cgz, ṁ) and transport the
conserved wave action density. In order to approximate the
integral in the computation of the momentum flux in (35),
attached to each ray point is a rectangle whose area is
conserved but whose shape changes with time depending
on the straining effect of the phase-space flow. For initially
quasimonochromatic and spatially localized wave packets,
this model is much more efficient than the Eulerian model
since it need only update the solution on points with nonzero
wave-action density and not on the entire phase-space
domain.

5.1.1. Eulerian model: finite-volume method

In the Eulerian model,N (z,m, t) is defined on a regular
grid of rectangular cells in position-wavenumber space, and
the large-scale background fieldsN(z) andU(z, t) and the
mean momentum fluxu′w′(z, t) are defined on the position
grid using the staggered arrangement shown in figure2.

A standard fourth-order Runge-Kutta scheme (e.g.
Durran 2010) is used for the time integration, with the
time step dynamically adapted to satisfy a CFL condition.
The flux ofN is calculated using a second-order MUSCL
upwind scheme with the MC limiter (Kemm 2010). The
MUSCL scheme is stable for transport problems with sharp
gradients, such as occur in the wavenumber direction near
a quasimonochromatic wave packet, while being much less
diffusive than a simple first-order upwind scheme in regions
where the solution is smooth. The components of the phase-
space-velocity field(cgz, ṁ) needed to compute the fluxes
of the wave-action density are calculated in each Runge-
Kutta sub-step (since they depend on time throughU(z, t))
using the ray equations (20a) and (20b).

Copyright c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc.00: 1–25 (2013)
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Figure 2. A finite-volume cell for the Eulerian WKB model: The grid for
variables depending only on height is staggered as shown.

Equation (36) is used to calculate the time evolution
of the mean flowU(z, t). The total horizontal-mean
momentum fluxu′w′ is computed at each heightz by
summing the integrand over them domain, i.e.

u′w′
i = −

∑

j

Nimjk

(k2 +m2
j )

3

2

|kNi,j |∆m , (38)

where∆m is the width of a grid cell in the wavenumber
direction. The absolute value applied tokNi,j ensures
the correct sign ofu′w′ is obtained for both branches of
Ω±. A centred difference approximation is used for the
z-derivative ofu′w′. The mean wind is updated at each
Runge-Kutta sub-step.

Periodic boundary conditions are used in thez direction,
while on the boundaries in them direction, a no-inflow
condition was used, i.e. the value ofN outside the
considered domain is assumed to be zero. Since the
boundaries in them direction arede factohigh- or low-
wavenumber cut-off scales for the model, the domain should
be chosen large enough that significant wave energy does
not leave the system.

5.1.2. Lagrangian model: phase-space ray tracer

The Lagrangian model exploits the fact that wave-action
density is conserved on rays in phase space so that ray
particles need only be initialized in the region where the
wave packet is initially localized.

In order to calculate the wave-induced mean-flow
tendency using (36), the momentum fluxu′w′ must be
integrated in spectral space (which is not trivial sinceN
is only known on the discrete and irregularly distributed
set of ray points). To that end, we calculate the average
momentum flux in a height interval betweenz andz +∆z:

1

∆z

z+∆z
∫

z

u′w′dz =
1

∆z

∞
∫

−∞

z+∆z
∫

z

kcgzNdzdm

=
1

∆z

∫

R∩RZ

kcgzNdzdm , (39)

whereR is the phase-space region of nonzeroN andRZ =
(z, z +∆z)× (−∞,∞). The regionR becomes deformed
in time due to the strain and shear in the phase-space
flow (cgz, ṁ), but its areaAR is preserved because of the
divergence-free property of the phase space velocity (see

equation33), i.e.

dAR

dt
=

d

dt

∫

R

dzdm

=

∮

∂R

(cgz, ṁ) · ν̂ dl

=

∫

R

(

∂cgz
∂z

+
∂ṁ

∂m

)

dzdm = 0 , (40)

where∂R is the boundary ofR, ν̂ is the outward directed
unit vector normal toR, dl is a line element in∂R, and
the two-dimensional version of the divergence theorem has
been used. We approximateR by attaching to each ray
particle a small rectangle and let one side of the rectangle
(say∆m) change with time while keeping the area fixed
(see figure3). There are obviously more sophisticated

z

m

z1

z2

RRz

(a)

z

m

z1

z2

R
Rz

(b)

Figure 3. Schematic illustration of the area-preserving property of the
phase-space flow, showing the region of nonzero wave-actiondensityR
and rectangles attached to ray particles (a) at the initial time and (b) at a
later time.R is deformed by the phase-space velocity (cgz ,ṁ) (indicated
by vectors). The momentum flux in the interval(z1, z2) is calculated by
integrating overR ∩RZ .

methods for tracking the evolution ofR, but none that we
have tried give better results than this simple approach,
which also generalizes easily to higher dimensions.

Associated with each ray particle is thus its phase space
position (z,m), its conserved phase-space wave-action
density N , and the width∆m and conserved area of
the phase-space rectangle attached to it. For the results
presented below, two columns of ray particles, each column
at a slightly different wavenumber, were initialized as
shown schematically in figure4a. Using two columns
instead of one allows the distribution of ray particles to
adjust in a realistic way to shear in thecgz field.

The same staggered position grid as in the Eulerian model
is used forU , N and u′w′. For each ray particle, the
integral in (39) is evaluated analytically over the portion of
the attached rectangle contained within each interval in the
fixedU grid (see figure4b):

u′w′
(i)

ray = −
(

∆zi
∆z

)

m2
∫

m1

Nikm

(k2 +m2)
3

2

|kN|dm

=

(

∆zi
∆z

)

Nik|kN|
[

1

(k2 +m2
2)

1

2

− 1

(k2 +m2
1)

1

2

]

,

(41)
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Figure 4. Schematic illustration of the momentum-flux calculation using
the phase-space ray tracer: (a) initial position of ray particles and
rectangles; (b) partition of a rectangle at a later time so that the mean
momentum flux due to the portion of the rectangle lying within each grid
cell is computed separately.

wherem1 = (m− ∆m
2 ), m2 = (m+ ∆m

2 ), and∆zi/∆z
is the fraction of the rectangle contained within thei-th

interval on the fixed grid. The resultingu′w′
(i)

ray is added
to the corresponding elementu′w′

i in the fixed grid array.
Once the momentum flux due to all ray particles has been
accounted for, a simple running average filter with window
width ∆smooth of three grid cells is applied tou′w′ to
remove small-scale features arising due to the coarseness
of the ray-particle distribution, and then the mean flow
tendency is computed from (36) using a centred difference
approximation to thez derivative (as in the Eulerian model).

The time evolution ofz andm is computed using (20a)
and (20b), in Lagrangian form:

Drz

Dt
=∓ Nkm

(k2 +m2)
3

2

≡ cgz , (42a)

Drm

Dt
=∓ k√

k2 +m2

dN

dz
− k

∂U

∂z
≡ ṁ , (42b)

and that of∆m using

Dr

Dt
(∆m) = ṁ(m2, z)− ṁ(m1, z) . (43)

Values ofN , dN/dz anddU/dz at ray-particle positions
are obtained by linear interpolation from the respective
values on the fixed grid. Again the standard fourth-order
Runge-Kutta scheme is used for the time integration.

Periodic boundary conditions are used in thez direction,
i.e. ray particles leaving the top of the domain reenter
through the bottom. No boundary conditions are needed in
them direction in this model.

5.2. Validation models

For validation of the WKB models we use both a
one-dimensional model that solves the weakly nonlinear
Boussinesq equations for a wave field with constant
horizontal wavenumberk and a fully nonlinear large-eddy-
simulation model for solving the Boussinesq equations in
two dimensions.

5.2.1. Weakly nonlinear wave-resolving model (WNL)

The one-dimensional weakly nonlinear model solves the
system (3) assuming a perturbation field of the form







u′(x, z, t)
w′(x, z, t)
b′(x, z, t)
p′(x, z, t)






= ℜ























û′(z, t)
ŵ′(z, t)

b̂′(z, t)
p̂′(z, t)









eikx















, (44)

where û′, ŵ′, b̂′ and p̂′ are complex height- and time-
dependent fields, coupled to the equation for the mean flow:

∂U

∂t
= −1

4

∂

∂z
(û′ŵ′∗ + û′∗ŵ′) . (45)

The pressure is computed by solving the Poisson equation
obtained from setting the divergence of the velocity
tendency to zero.

The model uses a staggered grid with the vertical-
wind perturbation defined on the grid-cell boundaries and
the horizontal-wind, pressure and buoyancy perturbations
defined at the grid-cell centres. The Brunt-Väis̈alä
frequencyN and the mean flowU are also defined at
the grid-cell centres. The usual fourth-order Runge-Kutta
scheme is used for the time integration, and centred finite
differences for the spatial derivatives. The discrete Fourier
transform is used to solve the Poisson equation for the
pressure at every Runge-Kutta sub-step.

Some explicit kinematic viscosityν and thermal
diffusivity µ are required for stability of the model. For all
simulations, both are set to10−2 m2s−1 (a typical value for
the stratopause region). Dissipation has little effect on the
gravity waves studied here, which have wavelengths of a
few kilometres (the time scale of viscous decay(νk2)−1 >
10 days is long compared to the simulation times of less
than a day).

5.2.2. Fully nonlinear large-eddy-simulation model
(INCA)

The other validation model is the large-eddy-simulation
model INCA (http://www.inca-cfd.org) which solves the
fully nonlinear Boussinesq equations (1) using the
adaptive local deconvolution method (ALDM) (Hickel et al.
2006) as subgrid-scale-turbulence parameterization. See
Remmler and Hickel(2012, 2013) for a detailed model
description and validation of the LES scheme against direct
numerical simulations of weakly and strongly stratified
flow. For consistency, the same explicit viscosity and
diffusion parameters are used as in the weakly nonlinear
model.

The use of the fully nonlinear model also serves as a
reference to validate the weakly nonlinear theory on which
the WKB analysis is based, i.e. to test how well the weakly
nonlinear dynamics, which neglect wave-wave interactions,
can describe the propagation of wave packets in a time- and
space-dependent background flow and their interaction with
the background flow.

6. Numerical results

The WKB and validation models were used to simulate
the propagation of an initially quasimonochromatic wave

Copyright c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc.00: 1–25 (2013)
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packet with thez-dependent buoyancy amplitude

Ab(z) = a0
N2

0

m0
exp

[

− (z − z0)
2

2σ2

]

, (46)

i.e. a Gaussian envelope centred atz0 and with half-width
σ. N0 is the local Brunt-V̈ais̈alä frequency atz = z0 and
m0 is the initial vertical wavenumber of the wave packet.
The nondimensional amplitudea0 is defined so that the
threshold criterion for static stability,N2 + ∂b/∂z > 0,
will be satisfied everywhere in the wave packet ifa0 <
1. The polarization relations (10) imply the following
initial perturbation fields for the wave-resolving validation
models:

b′(x, z, t0) = Ab(z) cos(kx+m0z) , (47a)

u′(x, z, t0) = Ab(z)
m0

k

ω̂0

N2
0

sin(kx+m0z) , (47b)

w′(x, z, t0) = −Ab(z)
ω̂0

N2
0

sin(kx+m0z) , (47c)

where ω̂0 is the intrinsic frequency of the initially
quasimonochromatic wave packet. Note that due to thez-
dependent amplitude ofw′, the initial condition (47) does
not satisfy the nondivergence constraint (1d). In all wave-
resolving simulations, theO (ǫ) divergent part is removed
before the first time step. The initial wave-energy density is,
using (10),

E(z, t0) =
1

2

[

u′2(x, z, t0) + w′2(x, z, t0) +
b′2(x, z, t0)

N2
0

]

=
A2

b(z)

2N2
0

. (48)

In the WKB models, the choice of the initial wave-
action density corresponding to (48) is not unique. All
that is required is that the integral of̂ωN over m
equal E. The definition (25) calls for a delta function
(a truly quasimonochromatic wave packet), a discrete
approximation to which is

N (z,m, t0) =















A2
b(z)

2N2
0 ω̂

1

∆m0
,

if m0 − ∆m0

2 < m < m0 +
∆m0

2

0 , otherwise

,

(49)
where∆m0 is a small wavenumber interval. We generally
took ∆m0 to be the width of a single finite-volume cell
in the Eulerian WKB model. A measure of the sensitivity
to the width of the wavenumber interval is the relative
variation of the group speed across the interval

∆cgz
cgz(m0)

≈ 1

cgz(m0)

∂cgz
∂m

∣

∣

∣

∣

m0

∆m0

=

(

1− 3m2
0

m2
0 + k2

)

∆m0

m0
. (50)

It follows that when∆m0/m0 is small, the patch of nonzero
N initially moves with approximately uniform group speed
and relatively little spurious dispersion is introduced. In the
experiments presented here, the exact value of∆m0 does
not make much difference as long as it is much smaller than

m0. A convenient by-product of the region of nonzeroN
having a finite width is that the energy density can never
become infinite, for example at a reflecting level (see section
6.4 and appendixB) unlike in conventional ray-tracing in
physical space.

We conducted a set of experiments in which the
gravity-wave packet propagates through different large-
scale background fields: an initially uniform background, a
background with varying stratification, a weak wind jet, and
a wave-reflecting wind jet. The physical parameters used for
the various experiments are summarized in Table1 and the
model parameters in Table2.

Each simulation was done both with no initial mean flow
at the position of the wave packet (“case 1”) and with an
initial mean flow that, to leading order, propagates together
with the wave packet (Acheson 1976; Sutherland 2006b),
viz.

Uind(z, t0) = kA(z, t0) = k
A2

b(z)

2N2ω̂
(51)

(“case 2”). It follows from (18) that in the weakly nonlinear
limit, Uind remains equal to the wave pseudomomentum
kA. While the inclusion of the initial wave-induced mean
flow is preferred by some authors, we will see that at later
times, in the upper part of the domain (whereUind(t0) = 0)
there is little difference between the simulations with and
without an initial wave-induced mean flow. This is to be
expected from (18), which says that the local mean-flow
tendency depends only on the local wave pseudomomentum
tendency and not directly on the large-scale structure of the
U field.

The two diagnostic quantities we will use to compare the
WKB and validation models are the mean flowU(z, t) and
the wave-1 energy densityE. For the WKB models,E is
calculated by integrating the intrinsic frequency times the
wave-action density over the wavenumber domain:

EWKB =

∫

N ω̂ dm , (52)

for the weakly nonlinear validation model, it is

EWNL =
1

4

(

|û′|2 + |ŵ′|2 + |b̂′|2
N2

)

, (53)

and for the fully nonlinear model, it is the horizontally-
averaged energy density contained in the first horizontal
Fourier mode of the velocity and buoyancy fields.

6.1. Hydrostatic wave packet propagating through a
uniform background

First we consider a wave packet propagating through a
uniform stratification withN(z) = N0 = 0.02 s−1. The
waves are “hydrostatic” with horizontal wavelengthλx =
30 km and initial vertical wavelengthλz0 = 3 km (k =
2.1× 10−4 m−1 andm0 = −2.1× 10−3 m−1). The wave
packet has half-widthσ = 5 km and is initially centered
at z0 = 30 km. The spatial domain has a total height of
lz = 100 km. We consider wave packets with amplitudes
a0 of 0.1, 0.5 and0.8.

For the Eulerian WKB model a wavenumber domain of
−0.007 m−1 < m < −0.0005 m−1 was used, withnz =
500 cells in thez direction andnm = 70 in them direction.
The initial wave-action-density distribution had width in
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Test case Background Wave packet Domain size
and run time

Hydrostatic

wave packet in a

uniform background

N0 = 2× 10−2 s−1 λx = 30 km,λz0 = 3 km

k = 2π/λx, m0 = −2π/λz0

ω = Ω+

σ = 5 km, z0 = 30 km

a0 = 0.1, 0.5, 0.8

lx = 30 km

lz = 100 km

tmax = 800 min

Variable

stratification

N0 = 2× 10−2 s−1

aback = 0.8

M = 2π/(20 km)

z1 = 50 km

λx = 30 km,λz0 = 3 km

k = 2π/λx, m0 = −2π/λz0

ω = Ω+

σ = 5 km, z0 = 30 km

a0 = 0.5

lx = 30 km

lz = 100 km

tmax = 800 min

Wind jet N0 = 2× 10−2 s−1

U0 = 20 m s−1

z1 = 50 km

ΣU = 3 km

λx = 30 km,λz0 = 3 km

k = 2π/λx, m0 = 2π/λz0

ω = Ω−

σ = 5 km, z0 = 20 km

a0 = 0.5

lx = 30 km

lz = 100 km

tmax = 800 min

Reflecting jet N0 = 2× 10−2 s−1

U0 = 5 m s−1

z1 = 70 km

ΣU = 3 km

λx = 3 km,λz0 = 3 km

k = 2π/λx, m0 = 2π/λz0

ω = Ω−

σ = 5 km, z0 = 40 km

a0 = 0.2

lx = 3 km

lz = 100 km

tmax = 300 min

Modulationally

unstable wave packet

(s)table, (m)etastable, (u)nstable

N0 = 2× 10−2 s−1 λx = 2 km

λz0 = 1.4(s), 2.9(m), 5(u) km

k = 2π/λx, m0 = −2π/λz0

ω = Ω+

σ = 3.2 km, z0 = 30 km

a0 = 0.12(s), 0.21(m), 0.42(u)

lx = N/A∗

lz = 50 km

tmax = 200 min

Table 1. Summary of test case parameters. Refer to equations (46), (47), (54), and (56) for the forms of the wave packet, background buoyancy
perturbation and background jet.tmax is the total model time of the simulations.∗The fully nonlinear model was not run for the modulational
instability experiment.

Eulerian WKB
(finite-volume method)

Lagrangian WKB
(“ray tracer”)

Validation models
Weakly nonlinear LES (“INCA”)

(U, S, J)
m ∈ [−.007,−.0005] m−1

nz × nm = 500× 70

(R)
m ∈ [−.01, .005] m−1

nz × nm = 500× 140

(MI)
m ∈ [−.012, .002] m−1

nz × nm = 500× 140

(∆t)max = 1 s

CFL = 0.5

∆m0 = 10−4 m−1

∆m0 = 10−4 m−1

nz = 500

nray = 2× 200

(U, S, J, R)
∆z = 200 m

∆smooth = 600 m

(MI)
∆z = 100 m

∆smooth = 300 m

∆t = 1 s

ν = µ = 10−2 m2s−1

nz = 2048

(U, S, J, R)
∆z ≈ 50 m

(MI)
∆z ≈ 25 m

∆t = 1 s

nx × nz = 64× 2048

(U, S, J)
∆x ×∆z = 470 m× 50 m

(R)
∆x ×∆z = 47 m× 50 m

CFL = 0.5

ν = µ = 10−2 m2s−1

(MI)
no LES simulations

Table 2. Summary of model-configuration parameters (U = uniform background; S = variable stratification; J = background jet; R = reflecting jet;
MI = modulationally unstable wave packet).∆x and∆z are the grid-cell sizes in the various models and∆t is the time step (where applicable).
CFL is the CFL number appropriately defined for the Eulerian WKB and fully nonlinear LES models. In the Eulerian WKB model the time step
is the smaller of(∆t)max and the time step determined by the CFL condition.
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12 J. Muraschko et al.

the wavenumber direction equivalent to one grid cell, or
∆m0 = 10−4 m−1. For the ray tracer, the ray particles
in each of the two columns were initialized at equally
spaced intervals betweenz = 10 km andz = 50 km and
at m = m0 −∆m0/2 and m = m0 +∆m0/2. The total
number of rays wasnray = 2× 200. The same resolution
in z for the large-scale fields was used as in the Eulerian
model (so that there was exactly one ray particle in each
column per interval on the fixed grid). The wave-resolving
weakly nonlinear model usednz = 2048 points while the
fully nonlinear model was run in a domain of widthlx = 30
km (one horizontal wavelength) withnx × nz = 64× 2048
grid cells. Figure5 shows the initial wave-action density in
the WKB models and the initial buoyancy field atx = 0 in
the wave-resolving models.
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Figure 5. Initial condition for thea0 = 0.5 case of the hydrostatic wave
packet in a uniform background. Left: phase-space wave-action densityN
in the WKB finite-volume model and ray-particle distribution inthe WKB
ray tracer (circles; size proportional toN ). Right: initial buoyancy atx = 0
in the wave-resolving models.

The mean momentum fluxu′w′ initially has the same
Gaussian profile as the wave-action density. It therefore
decelerates the mean flow on the lower flank and accelerates
it on the upper flank. Figure6 shows near perfect agreement
between the induced mean flows and wave-energy densities
simulated by the WKB models and the wave-resolving
models after 200 minutes. In case 1 (panels a, b and d)
this generates a dipolar background shear flow in the early
part of the simulation. In case 2 (panel c), by construction,
the momentum flux acts to propagate the initial background
flow perturbation upward with the wave packet so no
negative mean flow is left behind in the wake of the wave
packet. As pointed out byDosser and Sutherland(2011),
the negative mean flow in case 1 is exactly equal to the
negative of the initial wave pseudomomentum. In both cases
1 and 2 the total horizontal momentum is conserved.

Since the stratification is uniform, (20b) implies that
changes in wavenumber depend only on the shear in the
mean flow. Therefore, in case 1,ṁ becomes positive on
the lower and upper flanks of the wave packet and negative
in the middle, deflecting the wave-action density signal to
less negative wavenumbers (longer wavelengths) and more
negative wavenumbers (shorter wavelengths), respectively.
In case 2, the shear already present in the initial background
flow affectsṁ and theN distribution accordingly. This is

illustrated for the casea0 = 0.5 in figure 7. Note that as
expected, the mean flow in the upper part of the domain –
above 35 km – is very similar in cases 1 and 2.

For comparison, the energy density from a purely linear
wave-resolving simulation (without the wave-induced mean
flow) is also plotted in figure6. As pointed out by
Fritts and Dunkerton(1984), one effect of the induced mean
flow is to broaden the wave packet and to reduce its peak
amplitude. This comes about because, for hydrostatic wave
packets, the mean flow changes the vertical wavenumber,
and hence the vertical group speed, in such a way as to
accelerate the leading flank and decelerate the trailing flank
(this is not the case for very nonhydrostatic wave packets,
cf. section 6.5). Fritts and Dunkerton(1984) also found
that the interaction between the wave packet and its wave-
induced mean flow can lead to “dislocated critical levels”
that cannot be explained with linear theory. As one would
expect, the departure of the weakly nonlinear solutions
from the prediction of linear dynamics increases with wave
packet amplitude. Thea0 = 0.1 simulations induce only
very weak shear in the background flow and thus very little
change to the group velocity distribution in the wave packet,
which therefore remains close to Gaussian (figure6a).

Caustics develop during the later evolution of the wave
field in both cases 1 and 2. Figure8 shows the positions
of the ray particles after 500 minutes in the simulations
with a0 = 0.5, with a curve drawn connecting initially
adjacent ray particles. Caustics occur wherever a horizontal
line would intersect the curve more than once, indicating
that there is nonzero wave amplitude at more than one
wavenumber at the same height (i.e. rays in physical space
are crossing). In the figure this can be seen in the lower
part of the wave packet in case 1 and in the upper part in
case 2, where initially lower placed particles have overtaken
initially higher placed particles.

The similarity between the results obtained with the
weakly nonlinear and the fully nonlinear models supports
the claim ofSutherland(2006b) that the propagation of a
horizontally periodic, vertically compact wave packet can
be represented well as long as the interaction between
the waves and the mean flow is accounted for. Higher
harmonics of the waves do not play a significant role.

6.2. Wave packet propagation through a stationary
buoyancy field

In the next experiment, the wave packet propagates through
a variable background stratification associated with the
buoyancy fieldN2

0 z +B(z), where

B(z) =















abackN
2
0

M
[1− cos (M(z − z1))] ,

if z1 ≤ z ≤ z1 + 2π/M

0 , otherwise

, (54)

which may be interpreted as the zero-frequency limiting
case of a long-wavelength resolved gravity-wave packet
through which the waves parameterized using WKB theory
propagate. The background perturbationB(z) has lower
limit z1 = 50 km, vertical wavenumberM = 2π/(20 km),
and a nondimensional amplitudeaback = 0.8 (again defined
relative to the threshold for static stability). In this case
the total Brunt-V̈ais̈alä frequency is given byN(z) =
√

N2
0 + dB/dz. In the WKB models, bothN anddN/dz

Copyright c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc.00: 1–25 (2013)

Prepared usingqjrms4.cls



WKB theory and weakly nonlinear gravity-wave dynamics 13

−0.05 0 0.05
15

20

25

30

35

40

45

50

55

60

U [ms−1]

z 
[k

m
]

0 0.5
E [m2s−2]

(a)

−1 0 1
15

20

25

30

35

40

45

50

55

60

U [ms−1]

z 
[k

m
]

0 5 10
E [m2s−2]

(b)

−1 0 1
15

20

25

30

35

40

45

50

55

60

U [ms−1]

z 
[k

m
]

0 5 10
E [m2s−2]

(c)

−4 −2 0 2 4
15

20

25

30

35

40

45

50

55

60

U [ms−1]

z 
[k

m
]

0 10 20 30
E [m2s−2]

 

 

LES
WNL
wkbFV
wkbRAY
LD

(d)

Figure 6. Mean flow (left) att = 200 minutes induced by the wave packet propagating through an initially uniform background and the corresponding
horizontal-mean wave-energy density (right) simulated by all four models. (a) Wave packet amplitudea0 = 0.1 case 1; (b)a0 = 0.5 case 1; (c)
a0 = 0.5 case 2; (d)a0 = 0.8 case 1. (LES: fully nonlinear wave-resolving model; WNL: weakly nonlinear wave-resolving model; wkbFV: Eulerian
WKB finite-volume model; wkbRay: WKB ray tracer; LD: linear dynamics).
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Figure 7. Snapshot att = 100 minutes of the wave packet with initial amplitudea0 = 0.5 propagating through a uniform background in (a) case 1
and (b) case 2. Contours in the left panels show the wave-action density from the Eulerian WKB model (contour interval5× 106 m3 s−1) and the
circles indicate the positions of the ray particles in the Lagrangian WKB model (size proportional toN ). Centre panels show a cross-section of buoyancy
at x = 0 from the weakly nonlinear model. Right panels show the mean flowfrom the Eulerian WKB model (grey) and the weakly nonlinear model
(black).

are computed analytically from (54) and stored on the grid
as shown in figure2.

Based on simple addition, one might expect that if
aback + |a0| > 1, when the wave packet reaches the level of
minimum static stability in the background, it will become
statically unstable. Perhaps counterintuitively, however,
one can show (see appendixA) that the wavelength and
amplitude of the waves change in such a way that the
minimum total static stability occurs as the centre of the
wave packet reaches the point ofmaximumstatic stability
in the background. For the hydrostatic waves used here,
asaback → 1 then |a0| would have to be at least 0.76 for

the possibility of static instability occurring (for details see
equation64 in appendixA). However, in a more general
case with feedback from the waves on the large-scale flow,
the interaction of a statically stable wave packet with a
statically stable background is unlikely to lead to static
instability.

Figure 9 shows the distribution of wave-action density
predicted by the WKB models as the wave packet
moves through the background buoyancy perturbation. The
deflection of the wave packet in this region is dominated by
the derivative ofN(z), so there is little difference between
cases 1 and 2 in this experiment. As in the first experiment,
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Figure 8. Distribution of ray particles att = 500 minutes from the experiment with the wave packet witha0 = 0.5 propagating through a uniform
background for (a) case 1 and (b) case 2. Examples of caustics are indicated by the horizontal lines intersecting the curves connecting the ray particles.
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Figure 9. As in figure7 but att = 500 minutes in the test case with a variable background stratification. The dashed line in the right panels shows the
totalN2 (with values indicated on the upper horizontal axis). The contour interval for the wave-action density (left panels) is5× 105 m3 s−1.

caustics can be observed on the upper and lower flanks of
the wave packet in both cases.

Figure 10 shows the wave-packet energy density as
a function of height and time for case 2 from all
models. Before it interacts with the large-scale buoyancy
perturbation, the wave packet propagates vertically, slightly
perturbed by the induced mean flow as in the previous
experiment. As the waves interact with the large-scale
buoyancy field and their wavenumber changes, the wave-
packet energy density also changes so as to globally
conserve wave action. This may be most easily understood
if we for the moment neglect the time-dependent
background wind. In that case (as is shown in appendix
A), the physical-space wave-action densityA at the centre
of the wave packetzc(t) is inversely proportional to the
vertical group velocity. Since in this experiment the wave
packet is almost hydrostatic (i.e.|k| ≪ |m|), its vertical

group velocity and intrinsic frequency satisfy

ω̂ ≈ Nk

|m| , cgz ≈ Nk

|m|2 . (55)

It can be seen in figure9 that |m| is reduced as the wave
packet passes through the region of reducedN2. From (55),
A(zc)∝ c−1

gz ≈|m|/ω̂ and therefore the wave energy at the
centre of the wave packetE(zc) ∝ |m| is also reduced. The
presence of the weak wave-induced mean flow alters this
picture only slightly.

Figure 11 shows the wave-induced mean flowU from
case 2 as a function of height and time. Where the
wave energy is small, there is (as one would expect)
almost no momentum transfer to the mean flow. Also
shown in the figure is a comparison betweenU and
the pseudomomentumP at t = 500 minutes from the
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Figure 10. Horizontally averaged wave energy density versus time and height for the test case with variable stratification (for case2).

t [min]

z 
[k

m
]

U, WKB ray−tracer

0 200 400 600 800
0

20

40

60

80

t [min]

U, fully nonlinear model

0 200 400 600 800
0

20

40

60

80

t [min]

z 
[k

m
]

U, WKB finite−volume model

0 200 400 600 800
0

20

40

60

80

t [min]

U, weakly nonlinear model

0 200 400 600 800
0

20

40

60

80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0 0.2 0.4 0.6
35

40

45

50

55

60

65

[ms−1]

z 
[k

m
]

t = 500 min

 

 

U=P, WNL
U, LES
P, LES

U [ms−1]

Figure 11. Mean flowU for all models from the test case with varying stratification (for case 2). Right panel shows the pseudomomentumP from the
wave-resolving models att = 500 minutes.

wave-resolving simulations (calculated using (19)). The equality (18) is satisfied by construction for the weakly-

nonlinear model, while for the fully nonlinear model the

correspondence is very close.
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16 J. Muraschko et al.

The mean flows produced by the two validation models
are almost identical. The most striking difference between
the results from the WKB and validation models is the
presence of small-scale structures inU andE in the wave-
resolving models. These are probably due to wave-wave–
mean-flow interactions (of the sort discussed at the end
of section 4) which begin to occur as the phase-space
wave-action density becomes spread out in the wavenumber
dimension. Since the WKB models do not account for
any wave-wave interactions, they cannot reproduce these
features.

6.3. Wave packet propagation through a wind jet

Next we consider the case where a “hydrostatic” gravity
wave packet propagates through a horizontal wind jet. The
wave packet is the same as in the previous cases except that
it is initially centred atz0 = 20 km. The background wind
has the initial profile

Ujet(z) = U0 sech

[

(z − z1)
2

Σ2
U

]

, (56)

with z1 = 50 km, U0 = 20 m s−1 andΣU = 3 km. The
jet profile and wave packet are chosen so that the wave
packet does not encounter a critical level, whereU equals
the horizontal phase speed of the waves. Since the jet is
positive, the horizontal phase velocity of the wave packet
is therefore chosen to be negative by taking the negative
root in (9), i.e. ω = Ω−, and a positive initial vertical
wavenumberm0.

The jet refracts the wave packet in much the same way as
does the variable stratification in the previous experiment.
Figure12 shows the energy density for case 1 as a function
of height and time. Again, it can be explained in terms of the
wavenumber velocityṁ. As the waves propagate through
the lower flank of the jet, the vertical wavenumber becomes
smaller due to the wind shear, simultaneously reducing
the wave packet energy density. Figure13 shows good
agreement between the induced mean flow, i.e.U(z, t)−
Ujet(z), from case 1 simulated by the WKB models and
the wave-resolving models after 500 minutes, as the wave
packet passes through the peak of the jet. There are again
small-scale structures inU in the wave-resolving models,
but they do not seem to affect the wave energy above the
jet. Notice that the mean flow “left behind” in the wake of
the wave packet has positive sign in this case because the
horizontal phase speed, and hence the pseudomomentum,
of the wave packet is negative.

This is the only experiment in which there is a large
difference between the weakly nonlinear and fully nonlinear
wave-resolving models. In the region of the jet, the
wave energy in the weakly nonlinear model (and the
WKB models) is strongly reduced and there is almost no
momentum transfer to the mean flow, while in the fully
nonlinear model there is a significant induced mean flow
(which is nevertheless of much smaller amplitude than the
background jet).

Figure 14 shows the phase-space wave-action-density
distribution from cases 1 and 2 also att = 500 minutes.
Caustics occur again on the upper and lower flanks of the
wave packet in both cases. In this experiment too there is
little qualitative difference between cases 1 and 2.

6.4. Reflection by a wind jet

If the wind jet is strong enough, WKB theory predicts
that, notwithstanding the violation of the scale separation
assumption, the vertical wavelength of the waves tends to
infinity before the vertical wavenumber changes sign (see,
e.g., Sutherland 2010), i.e. the wave packet is reflected.

Assume for simplicity a uniform stratification and (for
the moment) a steady horizontal mean flow. As the waves
propagate, the vertical wavenumber adjusts in such a way
as to keep the frequency, given by the dispersion relation
(11), constant. Reflection occurs ifm passes through zero,
i.e., if

U0 ≥ N

k

(

1− k
√

k2 +m2
0

)

, (57)

wherem0 is the vertical wavenumber of the waves before
they encounter the jet.

We consider this time a “non-hydrostatic” wave packet
with wavelengthsλx = 3 km andλz0 = 3 km, half-width
σ = 5 km, and centre initially atz0 = 40 km. To avoid
modulational instability as the vertical wavelength becomes
large (discussed in section6.5), the relatively low initial
amplitudea0 = 0.2 is chosen. Again the horizontal phase
speed is chosen to be negative to exclude the possibility
of a critical level. For these simulations, the jet is again of
the form (56), but is centred atz1 = 70 km and has a peak
velocity ofU0 = 5 m s−1 (equation (57) predicts reflection
if U0 ≥ 2.8 m s−1).

To accommodate the reflection of the waves, the Eulerian
WKB model required a larger wavenumber domain
(straddling them = 0 line) chosen to be−0.01 m−1 <
m < 0.005 m−1 with nm = 140 grid points.

Figure15 compares the wave energy for case 1 obtained
with the WKB and wave-resolving models. The WKB
models are able to accurately simulate the reflection of the
wave packet. Figure16 shows the phase-space wave-action
density and ray particle distributions 140 minutes after the
wave packet was launched. Again there is little difference
between cases 1 and 2. Figure17 shows good agreement
between the induced mean flow simulated by all models far
from the reflecting level. In the region where the incident
and reflected waves overlap, both wave-resolving models
produce an obvious small scale signal in the induced mean
flow that is not predicted by the WKB models.

The linear, steady-state version of this test case admits
an analytic solution, detailed in appendixB, which can be
compared to the results of simulations with the WKB and
wave-resolving models (in linear mode). To approximate a
steady wave-train, a much longer wavepacket with initial
buoyancy amplitude

Ab(z) =
a0
2

N2
0

m0

(

tanh
z − z0 + σ

β

− tanh
z − z0 − σ

β

)

, (58)

wherez0 = 80 km, σ = 65 km andβ = 2 km (essentially
a smooth boxcar function betweenz = 20 km and z =
150 km) was used, the jet was moved up toz1 = 170 km,
and the height of the domain was increased to accomodate
the jet and the wide wave packet. The idea was to see
that wave energy does not steadily accumulate near the
reflecting level. For this experiment the feedback on the
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Figure 12. Horizontally averaged wave energy density of the wave packet propagating through a wind jet (for case 1).
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Figure 13. Wave-induced mean flow generated by the wave packet
propagating through a wind jet (for case 1) att = 500 minutes (LES: fully
nonlinear wave-resolving model; WNL: weakly nonlinear wave-resolving
model; wkbFV: Eulerian WKB finite-volume model; wkbRay: WKB ray
tracer).

mean flow due to the waves was switched off (in the weakly
nonlinear version, the solution in the wave-resolving models
– but not in the WKB models – becomes very irregular
below the reflecting level as the reflected waves propagate
through the alternating induced mean flow, but this is
unrelated to the caustics problem). Figure18 shows the
mean wave energy in the wave-resolving (linear) model and

in the WKB models. The total wave energy in the layer just
below the reflecting level reaches a plateau once the flux of
downward- and upward-propagating waves become equal,
and the value of the energy at the plateau is close to that
calculated in the appendix for the steady-state case. As the
width of the initial condition in wavenumber space is made
smaller (the initial condition approaches a delta function),
the analytic phase-space solution approaches the prediction
of conventional physical-space ray-tracing, in which the
wave-action density becomes infinite at the reflecting level
but the wave-energy integrated over any interval (possibly
including the reflecting level) converges to a constant finite
value. The key property of the phase-space representation
is that even as the group speed approaches zero, the
wavenumber velocity remains nonzero, so points following
the phase-space flow spend only a finite amount of time in
the vicinity of the reflecting level.

6.5. Modulationally unstable wave packets

The final test case is a nonhydrostatic wave packet propagat-
ing through a uniformly stratified resting background. This
is the test case used bySutherland(2006b) to investigate
modulational instability (see alsoSutherland 2006a). A
wave packet becomes modulationally unstable if its vertical
wavelength is large enough compared to its horizontal
wavelength (such that|m| < 0.7|k|). In this regime, the
effect of the wave-induced mean flow is to decelerate the
leading edge of the wave packet and accelerate the trailing
edge, causing the packet to narrow and, if unstable, its
amplitude to grow. The narrowing of the wave packet makes
this test case inherently difficult for a model based on WKB
theory, which assumes an amplitude envelope that varies
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Figure 14. As in figure7 but att = 500 minutes in the test case with a wind jet. The dashed line in the right panels shows the wind jetUjet(z) (with
values indicated on the upper horizontal axis). The contourinterval for the wave-action density (left panels) is5× 105 m3 s−1.
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Figure 15. Horizontally averaged wave energy density of the wave packet reflected by a wind jet (for case 1).

slowly in space. Nevertheless, as will be shown, the WKB
models remain well-behaved even in the most unstable
case and reproduce some of the large-scale features of the
solution if not the fine-scale details.

Three wave packets with horizontal wavelengthλx = 2
km, half-width σ = 3.2 km and centres atz0 = 30 km
were simulated with the weakly nonlinear wave-resolving
model and both WKB models in a vertical domain of height

lz = 50 km. The first case is a modulationally stable wave
packet with initial vertical wavenumberm0 = −1.4k and
amplitudea0 = 0.12, the second is a “metastable” wave
packet withm0 = −0.7k and a0 = 0.21, and the third is
a modulationally unstable wave packet withm0 = −0.4k
anda0 = 0.42. We present only the results from “case 2” –
i.e. with the initial wave-induced mean flow (51) – but those
from case 1 are similar. No LES simulations were done for
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Figure 16. As in figure14 but att = 140 minutes in the test case with reflection by a wind jet. The contour interval for the wave-action density (left
panels) is5× 104 m3 s−1.
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Figure 17. The wave-induced mean flow generated by the wave packet
encountering a reflecting wind jet for case 1 att = 140 minutes (LES:
fully nonlinear wave-resolving model; WNL: weakly nonlinearwave-
resolving model; wkbFV: Eulerian WKB finite-volume model; wkbRay:
WKB ray tracer). Note that the agreement between the two WKB models
and between the two validation models is so close that it is difficult to
distinguish the two pairs of curves.

this experiment since the weakly nonlinear results closely
match those of the fully nonlinear simulations reported in
Sutherland’s paper (his figure 3).

The spatial resolution for all models was twice as high
as for the earlier test cases in order to accommodate
the narrowing of the wave packet. The Eulerian WKB
model used a wavenumber domain of−0.012 m−1 < m <
0.002 m−1 with nm = 1400 cells in them direction. As
usual, the initial wave-action-density distribution had width
in the wavenumber direction equivalent to one grid cell, or
∆m0 = 10−4 m−1. For the ray tracer, 400 ray particles

were initialized in two columns betweenz = 20 km and
z = 40 km on either side ofm = m0. Refer to table2 for
the full details.

Figure19 shows the wave-induced mean flow simulated
with all three models. To facilitate comparison with
Sutherland(2006b), the mean flow is normalized by its
maximum value in the initial condition and plotted in a
reference frame moving with the initial group velocity of
the wave packet.

The modulationally stable wavepacket (panel a) behaves
similarly to the hydrostatic wavepacket in section6.1 in
that the wave-induced mean flow causes the wave packet
to broaden. The WKB models agree well with the wave
resolving model. On the other hand, the mean flow causes
the metastable and unstable wave packets (panels b and c) to
narrow and amplify and their centres to decelerate relative
to their initial group speed. The WKB models capture this
behaviour qualitatively quite well (although the Eulerian
model overestimates the deceleration of the unstable wave
packet). In the wave resolving simulations the mean flow
develops a fine structure which is not captured by the
WKB models. Although there are differences between the
WKB and wave-resolving models, this is a case where
a conventional ray-tracer would fail due to the formation
of caustics (compare figure1c, for which the mean flow
induced by the metastable wave packet was used as the
background for the rays).

7. Summary and discussion

WKB theory in position-wavenumber phase space has
been used to develop a weakly nonlinear model for the
evolution of internal gravity waves coupled to a time-
dependent mean flow. Because standard WKB theory
assumes that frequency and wavenumber are single-valued
functions of time and space, it breaks down in the presence
of caustics, such as those occurring in cases of wave
reflection and in cases where a time-dependent background
leads to wave packets overtaking each other. Contrary to
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Figure 18. Horizontally averaged wave energy density of the very long wave packet reflected by a wind jet from the wave-resolving linear model and the
WKB models (in linear mode). The right panel shows the mean energyin the layer between 150 and 168 km as a function of time. Once the downward
(outgoing) waves balance the upward (incoming) waves, the wave energy reaches a plateau at the value corresonding to a case of a steady wave train
reflected by a jet. The energy in the layer predicted by the analytic solution to the steady state WKB problem (see appendixB) indicated by dashed
horizontal line.

practice in common gravity-wave-drag parameterizations,
the interaction between small-scale gravity waves and solar
tides (Senf and Achatz 2011) and between parameterized
gravity waves and highly variable resolved gravity waves
require that background transience be taken in account.
Especially – but not only – under such circumstances,
caustics can quickly become a problem. The caustics
problem disappears in the phase-space approach used by
Hertzoget al. (2002) and implemented here, where the
ray equations for wavenumber and wave-action density in
physical space (A) are replaced by a conservation equation
for wave-action density in phase spaceN (m, z, t).

In passing from conventional WKB theory in physical
space to WKB theory in phase space, one has some freedom
to choose the exact form of the phase-space wave-action
density function. The initial condition forN corresponding
to the WKB ansatz for a quasimonochromatic wave packet
has a delta-function dependence on wavenumber. In a
numerical treatment of the phase-space WKB model, the
delta function must be approximated by a wavenumber
interval of nonzero phase-space wave-action density, the
simplest example being uniformN in the interval between
m0 − 1

2∆m0 andm0 +
1
2∆m0 andN = 0 for all otherm

(equation49). The size of∆m0 is not related to and should
not be confused with the width of the Fourier transform
of the Gaussian envelope in physical space (i.e. inversely
proportional to the width of the envelope). A convenient
side-effect of a finite value of∆m0 is that the phase-
space wave-action density is nowhere infinite. Moreover,
thephysical-spacewave-action densityA (the integral ofN
overm) is also nowhere infinite, as it is in the conventional
ray-tracing solution at the singular point in the example ofa
steady wave train being reflected by a shear layer (discussed
in section6.4and appendixB). Because of the dependence
of group velocity on wavenumber, the finite width of the
initial condition also implies that the solution will spread
out in space. As such, in extreme situations, such as near
a reflecting level, the vertical distribution of energy density
should be compared to a wave-resolving model or analytic
solution in terms of averages over finite height intervals
rather than in terms of point values. This is very compatible
with a model using the finite-volume method which predicts
averages over grid-cells rather than point values.

Two numerical implementations of the model have been
shown to agree well with both a wave-resolving weakly
nonlinear model and a fully nonlinear model. The Eulerian
WKB model solves the phase-space wave-action-density
conservation equation using a finite-volume method, and
the Lagrangian WKB model transports ray particles with
attached rectangular elements of constant area and wave-
action density along rays in phase space. In both models,
the mean flow evolves depending on the divergence of
the momentum flux calculated by integrating a function
of wave-action density either over the whole wavenumber
dimension (Eulerian model) or over the area of each of the
rectangular elements (Lagrangian model). The Lagrangian
model is made more robust by allowing the rectangles
attached to the ray particles to change shape depending
on the straining effect of the phase space flow. This
extra degree of flexibility allows the model to give good
results with fewer ray particles (a comparable result can be
obtained in many cases with rectangles of fixed shape and
more ray particles per unit length in the vertical).

For problems like the propagation of a single wave
packet, where the wave-action-density distribution is highly
localized in position and wavenumber, the Eulerian model is
inefficient because it must integrate the wave-action-density
equation over a domain large enough to include all positions
and wavenumbers accessible to the wave packet. Due to
the conservation of wave-action density along phase-space
rays, the Lagrangian model only needs to integrate the ray
equations on a set of ray particles that initially covers the
region of nonzeroN . Also, for a more realistic case of
waves propagating in an environment varying in all three
dimensions, the Eulerian approach would require a six-
dimensional computational domain and is thus less practical
with present computational capabilities. On the other hand,
the Eulerian model uses a very robust numerical scheme,
does not require smoothing of the momentum flux, and
generally agrees better with the weakly nonlinear wave-
resolving model (see figures10, 11 and12). Furthermore,
in the case of an initially broad spectrum of waves, the
Eulerian model can be competitive with the Lagrangian in
terms of performance. Eulerian wave-action models are in
operational use for oceanic surface-wave forecasting (where
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Figure 19. Normalized wave-induced mean flow from the modulational instability experiment simulated with the weakly nonlinear wave-resolving
model and both WKB models: (a) stable case (m0 = −1.4k, a0 = 0.12), (b) metastable case (m0 = −0.7k, a0 = 0.21), and (c) unstable case
(m0 = −0.4k, a0 = 0.42). Plots are in the reference frame moving with the initial group speed at the centre of the wave packet.

either a four-dimensional position-wavenumber or a four-
dimensional position-frequency-direction phase space is
needed), so clearly a two-dimensional atmospheric gravity-
wave problem can also be solved operationally. Since
the heaviest computational effort in oceanic wave-action
models relates to the computation of thenonlinear four-
wave-interaction component, there is hope that the approach
could also be suitable for solving the merelyweakly

nonlinear problem of three-dimensional gravity waves in
the atmosphere without extensive further simplification.

Five test cases were presented: (i) a nearly hydrostatic
gravity wave packet propagating upward through an initially
resting background with uniform stratification; (ii) the
same wave packet propagating through a background
stratification varying slowly with height (but not with time);
(iii) the same wave packet propagating through and being
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refracted by a localized wind jet; (iv) a nonhydrostatic wave
packet being reflected by a sufficiently intense wind jet;
(v) a nonhydrostatic wave packet subject to modulational
instability when its vertical wavelength becomes large
enough compared to its horizontal wavelength. In each
case caustics occur, either due to the waves encountering
a reflecting jet, or due to transience in the background
associated with feedback of the waves on the background.
All experiments were done with and without an initial mean
flow perturbation that propagates together with the wave
packet. Other than near the height where the wave packet
is initialized, there are only small differences between the
results with and without the extra initial mean flow.

In all cases the WKB models agree well with the wave-
resolving models, with the partial exception of the most
modulationally unstable nonhydrostatic wave packet. The
latter was always going to be a challenge for the WKB
models since the amplitude variation is on the same scale
as the vertical wavelength. Otherwise, the most prominent
difference is the formation of small-scale structures in
the induced horizontal mean flow in the wave-resolving
models in cases where the wave packet propagates through
a nonuniform background. These structures probably arise
through wave-wave interactions which the WKB models
cannot account for. In most cases they have a weak effect
on the large scale structures and on the propagation of the
waves (but they might have other consequences for local
mixing and turbulence and would be worthy of study in
their own right). In all cases the weakly nonlinear and the
fully nonlinear models produce similar results, indicating
that higher harmonics of the waves do not play a significant
role in the propagation of vertically compact horizontally
periodic wave packets. It is sufficient to represent the wave-
induced mean flow (as observed bySutherland 2006b). The
only significant difference between the two wave-resolving
models occurs in the case where the wave packet is refracted
by a background wind jet. The fully nonlinear model is
the only one to develop small-scale structures in the wave-
induced mean flow within the region of the background jet.

While we have focused exclusively on a one-dimensional
wave packet with a horizontal mean background flow,
the phase-space WKB theory with mean-flow coupling
generalizes to any number of spatial dimensions. While the
Eulerian model as implemented here could quickly become
computationally intractable in more than one dimension,
the Lagrangian approach seems promising for application in
an improved parameterization of unresolved gravity waves
in a weather or climate model. Most current schemes
neglect both the horizontal propagation of wave packets
and the effect of horizontal variations on their propagation,
even though these have been shown to be important
(Song and Chun 2008; Hashaet al. 2008; Senf and Achatz
2011).

For applying the phase-space WKB models to the
gravity-wave-drag parameterization problem, the Boussi-
nesq approximation would have to be relaxed so that the
amplitude of the waves can grow as the ambient density
decreases. For that reason, adapting both WKB models
to the pseudo-incompressible equations (Durran 1989), is
the subject of ongoing work. In addition, a rule would be
needed for depositing momentum to the mean flow when
the waves reach overturning (breaking) amplitude, such as
maintaining the wave-action density at the threshold for
static stability above the breaking height, resulting in an
enhanced forcing of the mean flow (along the lines of

Lindzen 1981). Similar considerations might be necessary
with regard to other nonlinear dissipation mechanisms such
as modulational instability.

A. Static stability of a wave packet in a varying
background

A flow of a Boussinesq fluid (governed by equations1)
is statically stable if the local vertical buoyancy gradient
is everywhere less than the mean squared background
buoyancy frequencyN2. During the passage of an internal-
gravity-wave packet with buoyancy amplitudeb̂ = aN2/m,
the flow is everywhere stable if the nondimensional
amplitude of the waves satisfies|a| < 1. In this section we
examine the purely linear variation ofa as an initially stable
wave packet propagates through a background stratification
varying with height.

Suppose the centre of the wave packet is initially located
at heightz0 and the waves have vertical wavenumberm0

and amplitudea0 at time t0. Suppose further that the
background stratification varies with height, withN(z0) =
N0. One might expect that the system is most likely to
become statically unstable when the waves reach the height
where the background isleaststatically stable, and thus that
static instability is possible only if|a0| > min(N2/N2

0 ).
In fact, however, one can show from WKB theory that
the wavelength and amplitude of the waves change as the
background changes such that static instability is most
likely where the background ismoststable.

For simplicity assume the background wind is zero
(thereby neglecting the momentum flux due to the waves)
and the background stratification is independent of time.
From (20c), the wave frequencyω is therefore conserved
following the group velocity, and from the dispersion
relation (11) one has

m2(zc) =
N2(zc)

N2
0

(k2 +m2
0)− k2 , (59)

wherezc(t) is the height of the centre of the wave packet at
time t.

Since the centre of the wave packet moves with the local
group velocity, the wave-action density at the centre of the
wave packetAc obeys

dAc

dt
=

dAc

dzc

dzc
dt

= cgz(zc)
dAc

dzc
= −Ac

dcgz
dzc

, (60)

where the ray equation for wave action (20d) has been used.
Equation (60) implies that cgz(zc)Ac is constant. Using
(14), (20a), and the assumption thatω is constant following
the centre of the wave packet, (60) and (59) give

|a(zc)|2 =
m(zc)

m0
|a0|2 (61)

= |a0|2
[

N2(zc)

N2
0

(

k2

m2
0

+ 1

)

− k2

m2
0

]
1

2

. (62)

Therefore, if|a0| < 1, then |a(zc)| can only exceed unity
where

N2(z)

N2
0

>
|a0|−4 + k2

m2

0

1 + k2

m2

0

> 1 , (63)
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that is, where the background static stability isincreased
relative toN0.

If the perturbation to the background stratification takes
the form of a large-scale gravity wave with nondimensional
amplitudeaback, thenmax(N2) = N2

0 (1 + |aback|). Static
instability will only occur if

|aback| >
|a0|−4 − 1

1 + (k/m0)
2 . (64)

For the hydrostatic waves used in the experiment with
variable stratification in section6.2, as |aback| → 1, the
initial wave packet amplitude|a0| would have to be at
least 0.76 for the possibility of static instability occurring.
In a more general case with feedback from the waves on
the large scale flow, the interaction of a statically stable
hydrostatic wave packet with a statically stable large scale
wave is unlikely to ever lead to static instability.

B. Energy density in a steady linear wave train
reflected by a shear flow

An analytic solution may be derived for the energy density
as a function of height for the steady-state linear version
(i.e., without feedback of the waves onto the mean flow)
of the test case, described in section6.4, featuring waves
reflected by a jet.

Suppose that at the heightz0 the phase-space wave-
action density is uniformly distributed between the positive
wavenumbersm10 and m20 with value N0 and zero for
all other positivem, cf. (49). In a steady-state solution,
the region of nonzero wave-action density is confined
between the two characteristic curvesm1(z) and m2(z)
passing through the pointsm1(z0) = m10 andm2(z0) =
m20. Since the background is independent of time, the
characteristics are curves of constantΩ−, such that for the
curvemj(z),

Ω−[z,mj(z)] = kU(z)− kN
√

k2 +m2
j (z)

≡ ωj (65)

is constant (by symmetry we need consider only the upward
propagating branch, withk > 0, m > 0 and ω̂ < 0). This
may be rearranged to yield

m2
j (z) =

N2

ĉ2pj(z)
− k2, (66)

where ĉpj(z) = ωj/k − U(z) is the intrinsic horizontal
phase speed. The reflecting levelzrj is the minimumz for
whichmj(z) = 0, i.e. such that

ĉpj(z
r
j ) = −N

k
. (67)

The energy density as a function ofz is, by the definition
(52),

E(z) = 2N0
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(68)

where the factor 2 accounts for the upward and downward
propagating branches.

The integral of the intrinsic frequency is, for constantN
andk,

∫
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so that
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Figure20 shows, for various values of∆m00 ≡ m20 −
m10 (indicated by different shades of grey), the phase-
space region of nonzeroN and the energy density as a
function of height for a steady train of waves with horizontal
and average vertical wavelength (far from the reflecting
level) 3 km and amplitudea0 = 0.2 atz = z0 encountering
the background jet (56) used in the test case. As∆m00

becomes small, the graph approaches that of the prediction
of conventional ray-tracing (in physical space)

Econv(z)

E(z0)
=

m00

m0(z)

[

k2 +m2
0(z)

k2 +m2
00

]

, (71)

where m00 = 1
2 (m10 +m20), indicated by the heavy

dashed line. The latter becomes infinite at the singular
reflecting level, while the solution (70) remains finite
for all finite ∆m00. The equivalence of (70) and (71)
in the limit ∆m00 → 0 can be shown analytically by
expanding the integrand in (68) in a Taylor series inm(z)−
m1(z), integrating, and then using (66) to calculate the
leading order dependence ofm2(z)−m1(z) on∆m00. For
comparison the energy density versus height from the linear
simulation with the finite-volume phase-space WKB model
is also shown in figure20. It is smoother than the analytic
result due to the diffusion inherent to the numerical method.
The mean energy density in the layer 150 km< z < 168
km converges to a constant as∆m00 → 0 and is close to
the value observed in the wave-resolving and WKB models
(compare right panels of figures20and18).
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Figure 20. Phase-space region of nonzeroN bounded by characteristicsm1(z) andm2(z) (left) and energy density versus height (middle) for a steady
wave train encountering the jet (56), plotted for different values of∆m0/m0. The prediction of conventional ray tracing (in physical space) is indicated
by the heavy dashed line (“∆m00 = 0”), and the energy density from the finite-volume model is indicated by the fine dashed line (“FV”). Right panel:
average energy density in the interval 150 km< z < 168 km (compare with right panel of figure18).
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