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Multiple-scale asymptotics is used to analyze the Euler equations for the dynamical

situation of a gravity wave (GW) near breaking level. A simple saturation argument in

combination with linear theory is used to obtain the relevant dynamical scales. As small

expansion parameter the ratio of inverse of the vertical wave number and potential-

temperature and pressure scale heights is used, which we allow to be of the same order

of magnitude here. It is shown that the resulting equation hierarchy is consistent with

that obtained from the pseudo-incompressible equations, both for non-hydrostatic and

hydrostatic gravity waves, while this is not the case for the anelastic equations unless the

additional assumption of sufficiently weak stratification is adopted. To describe vertical

propagation of wave packets over several atmospheric scale heights, WKB theory is used

to show that the pseudo-incompressible flow divergence generates the same amplitude

equation that also obtains from the full Euler equations. This gives a mathematical

justification for the use of the pseudo-incompressible equations for studies of gravity-wave

breaking in the atmosphere for arbitrary background stratification. The WKB theory

interestingly also holds at wave amplitudes close to static instability. In the mean-flow
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equations we obtain in addition to the classic wave-induced momentum-flux divergences a

wave-induced correction of hydrostatic balance in the vertical-momentum equation which

cannot be obtained from Boussinesq or anelastic dynamics.

1. Introduction

The filtering of fast insignificant motion from the equations of atmospheric dynamics

has a long history. It is useful in at least two regards: (i) It provides simplified equation

systems which can help in gaining a deeper conceptual understanding of intricate pro-

cesses; and (ii) it filters fast motions and thus yields dynamical descriptions which allow

much longer times steps than the compressible Euler equations in numerical integrations.

A typical field for the application of filtered equation systems is the dynamics of gravity

waves (Fritts & Alexander 2003). Under the assumption that sound waves only act to

very rapidly adjust to a balanced state, so-called sound proof equations are most often

used in studies of gravity-wave (GW) dynamics. The dynamics is taken to be balanced

with respect to acoustic modes at all times. For processes which have scales exclusively

below the atmospheric scale heights the Boussinesq equations provide an appropriate

simplification. The filtering is achieved by requiring a non-divergent wind. Probably the

major part of our present understanding of GW dynamics has been obtained from these

equations. Nonetheless, for the description of important aspects of GW dynamics we

need more general equations. GWs are typically radiated upwards from the troposphere,

and often cover large altitude differences before they interact with the large-scale flow

(Lindzen 1981, e.g.). An important aspect is the amplitude growth they experience in

their propagation through an increasingly rarified medium. Wave growth finally leads

to instabilities and turbulent breaking which then cause large-scale flow acceleration or
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deceleration and heating or cooling. This growth, however, cannot be obtained from the

Boussinesq equations. A generalization is needed for which several examples exist.

Batchelor (1953) and Ogura & Phillips (1962) have developed what has come to be

known as the anelastic equations. They require the wind weighted by the altitude depen-

dent mean background density of a hydrostatic reference atmosphere to be non-divergent.

This density weighting induces the observed wave growth. The original anelastic equa-

tions, however, suffer from the basic assumption that the potential temperature of the

reference atmosphere may only have a very weak vertical dependence, so that the leading-

order anelastic divergence constraint involves an adiabatic background stratification. This

is in stark contrast with realistic stratifications where, between the GW sources and the

wave breaking altitude, potential temperature typically increases by more than one order

of magnitude.

A generalization of the derivation of the anelastic equations has been given by Lipps

& Hemler (1982) and Lipps (1990). Constant reference potential temperature is not

required any more but it is still assumed that its vertical dependence is weak, and that

the deviations of potential temperature from that of the reference atmosphere are small.

An alternative approach is given by the pseudo-incompressible equations (Durran 1989;

Durran & Arakawa 2007; Durran 2008). Here the argument is the explicit filtering of

any dynamics which allows an exchange between the elastic part of potential energy,

which is carried by the pressure fluctuations, and kinetic energy. In recent work we have

studied these approximations from a mathematical perspective (Klein 2000, 2009; Klein

et al. 2010). For realistic stratifications stronger than those assumed by Ogura & Phillips

(1962), a three time scale regime emerges with sound propagation being fastest, internal

waves of intermediate time scale, and advection the slowest. Thus, even sound-proof

models in which the sound wave propagation time scale is eliminated, still involve fast
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internal wave motions and slow advection, i.e., they describe a two time scale regime.

Given this situation, a thorough multiple-scales analysis for the regime most important

to internal-wave breaking seems in order.

The approach taken here is to consider gravity waves at the threshold of static insta-

bility, to characterize this flow regime by appropriate non-dimensional parameters, and

to then pursue systematic multi-scale asymptotics. We show that the resulting equation

system is, under rather general conditions, consistent with the pseudo-incompressible

equations, which thus offer themselves as the most appropriate reduced sound-proof sys-

tem for the study of GW dynamics near the breaking level. Specifically, in this analysis

we allow for arbitrary background stratification and consider gravity waves for which the

inverse of a typical vertical wave number is small compared to the pressure and potential

temperature scale heights.

The paper is structured as follows. In section 2 we review the results of linear gravity-

wave theory needed here. These are combined in section 3 with a simple saturation ar-

gument to yield the dynamically meaningful scales of the problem. As a small parameter

we introduce the ratio between the inverse of the vertical wave number and potential-

temperature scale height, and carry out a multiple-scale asymptotic expansion for the

Euler equations in this regime. In section 4 it is shown that a corresponding multiple-scale

asymptotics of the pseudo-incompressible equations yields the same equation hierarchy,

while this is not the case for the anelastic equations unless sufficiently weak stratification

is assumed, so that the potential-temperature scale height is considerably larger than

that of the Exner pressure. Note, however, that in the stratosphere, e.g., stratification is

comparable to isothermal or even stronger, while even in the mesosphere, where tempera-

ture actually decreases with height, potential temperature nonetheless has a significantly

positive vertical gradient, so that weak stratification is not an appropriate assumption
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there. The consistency between the compressible and pseudo-incompressible models is

also shown for hydrostatic GWs in section 5. We move on to analyze the dynamics of

GW packets propagating over several atmospheric scale heights, at small wave ampli-

tudes in section 6, and large amplitudes in section 7. We conclude with a summary in

section 8.

2. Linear gravity waves in an isothermal hydrostatic atmosphere

Consider the most simple example of GWs growing in their upward propagation due

to the ambient density gradient: We neglect rotation, use only one dimension in the

horizontal, and also focus on a local tangent plane in cartesian coordinates. Then the

inviscid Euler equations without heat sources can be written

Du

Dt
+ cpθ

∂π

∂x
= 0 (2.1)

Dw

Dt
+ cpθ

∂π

∂z
= −g (2.2)

Dθ

Dt
= 0 (2.3)

Dπ

Dt
+
R

cv
π∇ · ~v = 0 (2.4)

Here ~v = (u,w) is the wind vector with horizontal and vertical components u and w,

respectively.

D

Dt
=

∂

∂t
+ u

∂

∂x
+ w

∂

∂z
(2.5)

is the material derivative. cp and cv are the specific heat coefficients at constant pressure,

respectively, while R = cp−cv is the gas constant. π = (p/p00)R/cp is the Exner pressure,

to be calculated from pressure p and a reference value p00, characterizing conditions at

some reference altitude z00. If T is the temperature then θ = T/π is potential temper-

ature. Finally, g is the gravitational acceleration. For later reference we also note that
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density ρ, potential temperature and Exner pressure are linked via the equation of state

Rρθ = p00π
(1−κ)/κ (2.6)

where κ = R/cp.

Consider now low-amplitude GWs in an atmosphere at rest. The latter, denoted by a

bar, can only depend on altitude, and it must be in hydrostatic equilibrium, i.e.

cpθ
∂π

∂z
= −g (2.7)

We assume

~v = ~v′ (2.8)

θ = θ + θ′ (2.9)

π = π + π′ (2.10)

where all perturbation quantities, denoted by primes, are infinitesimally small. Then the

Euler equations become, under neglect of all nonlinear terms in the perturbation fields

and using (2.7),

∂u′

∂t
+ cpθ

∂π′

∂x
= 0 (2.11)

∂w′

∂t
+ cpθ

∂π′

∂z
= b′ (2.12)

∂b′

∂t
+N2w′ = 0 (2.13)

cpθ
∂π′

∂t
− gw′ + R

cv
cpθπ∇ · ~v′ = 0 (2.14)

where b′ = gθ′/θ is the perturbation buoyancy, and N2 = (g/θ)(∂θ/∂z) the squared

Brunt-Vaisala frequency. It is interesting to note that these equations conserve via

∂E′

∂t
+
∂p′u′

∂x
+
∂p′w′

∂z
= 0 (2.15)
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the perturbation energy

E′ =
ρ

2

(
u′2 + w′2 +

b′2

N2
+
c2p
c2s
θ
2
π′2

)
(2.16)

Here

ρ =
p00

Rθ
π(1−κ)/κ (2.17)

is the density of the reference atmosphere, and cs =
√
γRT the velocity of sound, with

γ = cp/cv. p′ = cpρθπ
′ is the perturbation pressure. Clearly, as the ambient density

decreases the wind amplitudes must increase.

In an isothermal atmosphere with, T = T00 =const., cs is a constant. From (2.7)

and θ = T/π one gets π = exp [− (z − z00) /Hθ] and θ = T00 exp [(z − z00) /Hθ], where

Hθ = cpT00/g is the potential-temperature scale height. One also has N2 = g/Hθ.

Likewise (2.17) yields ρ = ρ00 exp [− (z − z00) /H]. Here H = RT00/g is the density and

pressure scale height, and ρ00 = p00/RT00. Thus motivated, we introduce rescaled fields

~v′′, π′′, and b′′ so that

~v′ = ~v′′ exp
(
z − z00

2H

)
(2.18)

π′ = π′′ exp
(
z − z00

2H
− z − z00

Hθ

)
(2.19)

b′ = b′′ exp
(
z − z00

2H

)
(2.20)

The linearized Euler equations then become

∂u′′

∂t
+ cpT00

∂π′′

∂x
= 0 (2.21)

∂w′′

∂t
+ cpT00

(
∂

∂z
+

1
2H
− 1
Hθ

)
π′′ = b′′ (2.22)

∂b′′

∂t
+N2w′′ = 0 (2.23)

cpT00
∂π′′

∂t
− gw′′ + c2s

(
∇ · ~v′′ + w′′

2H

)
= 0 (2.24)
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Since all of their coefficients are constants they admit wave solutions of the form
~v′′

b′′

π′′

 =


~̃v

b̃

π̃

 exp [i (kx+mz − ωt)] (2.25)

One finds that nontrivial solutions must satisfy the dispersion relation

ω2 =
c2s
2

(
k2 +m2 +

1
4H2

)
±

{[
c2s
2

(
k2 +m2 +

1
4H2

)]2
− c2sk2N2

}1/2

(2.26)

In the limit
[(
c2s/2

) (
k2 +m2 + 1

4H2

)]2 � c2sk
2N2 one recognizes the classical solutions

for GWs,

ω2 =
N2k2

k2 +m2 +
1

4H2

(2.27)

and sound waves,

ω2 = c2s

(
k2 +m2 +

1
4H2

)
(2.28)

Important in the present context are the polarization relations

ũ = i
k

ω

c2s

[
m+

i

H

(
cv
cp
− 1

2

)]
N2

(
1− c2sk

2

ω2

) b̃ (2.29)

w̃ = i
ω

N2
b̃ (2.30)

π̃ = i

c2s

[
m+

i

H

(
cv
cp
− 1

2

)]
cpT00N

2

(
1− c2sk

2

ω2

) b̃ (2.31)

For typical GWs one can safely assume that

m� 1
H

(2.32)

c2sk
2

ω2
� 1 (2.33)

yielding the approximate polarization relations

ũ ≈ −im
k

ω

N2
b̃ (2.34)

w̃ ≈ i ω
N2

b̃ (2.35)
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π̃ ≈ −i ω
2

N2

m/cpT00

k2
b̃ (2.36)

Given the vertical and the horizontal scale of a wave, the dispersion relation determines

the time scale. Given the scale of one of the dynamical fields one can obtain the ones for

the others from the polarization relations.

3. Scale asymptotics of the Euler equations under conditions

favorable to GW breaking

3.1. Scale analysis

Now consider the scales of the nonlinear dynamics of a GW propagating through an

atmosphere at rest. The horizontal spatial scale, the time scale, and the velocity scale

are set exclusively by the wave. The vertical spatial scaling as well as that of all ther-

modynamic fields must also take the background atmosphere into account. Before later

treating the case of hydrostatic gravity waves with considerably longer horizontal than

vertical scale, we here first focus on non-hydrostatic GWs with m and k being of the

same order of magnitude so that we assume

x = Lx̂ (3.1)

z = Lẑ (3.2)

where L is the inverse of a a typical wave number K = 1/L. Likewise we introduce a

typical frequency Ω, and corresponding timescale T = 1/Ω, so that

t = T t̂ (3.3)

We also assume that frequency scale and wave number scale are approximately related

by the GW dispersion relation (2.27). In the non-hydrostatic limit

K � 1/2H (3.4)
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this leads to

Ω = N =
g√
cpT00

(3.5)

Note that we use the isothermal Brunt-Vaisala frequency. For the present purposes this

is appropriate because we are only interested in a rough time scale estimate and because

at those heights in the atmosphere where gravity wave breaking tends to occur the

true Brunt-Vaisala frequency and its isothermal approximation are of the same order of

magnitude. Referring to the conditions of the background atmosphere we also introduce

the non-dimensionalizations

π = Ππ̂ (3.6)

θ = Θθ̂ (3.7)

where, provided z00 is defined to be close to the breaking altitude, reasonable scales for

Exner pressure and potential temperature are

Π = 1 (3.8)

Θ = T00 (3.9)

At least for the velocity scaling one must consider the dynamical wave fields. If we want

to use the polarization relations (2.34) – (2.36) for fixing their scales, one of these has

to be obtained independently. A critical question now is what this one scale, e.g. of the

buoyancy field, can be. Since the most interesting nonlinear dynamics of GWs happens

when they are close to breaking, we focus on the specific regime when at least locally the

buoyancy gradient due to the wave can neutralize that of the background atmosphere,

thus enabling a static instability. It is given by

∣∣∣b̃∣∣∣ = N2/ |m| (3.10)

as long as |m| � 1/2H holds, which is guaranteed by (3.4). A reasonable buoyancy
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scaling for GWs can thus be expected to be

b′ = Bw b̂ (3.11)

with

Bw = N2/K (3.12)

There can be no doubt that this is a rather coarse estimate of the threshold amplitude

at which an instability can set in. It is known that GWs typically get unstable at lower

amplitudes (Fritts et al. 2006; Achatz 2007, e.g.). Still, the critical wave amplitude is

not less than, say, half of the value just given. Moreover, one must not forget that the

estimate is from linear theory, and nonlinear dynamics changes the picture. But again,

we are only interested in orders of magnitude so that the wave buoyancy scale Bw suffices

our purposes. Referring now back to (2.34) – (2.35) ones sees that, provided z00 is defined

to be close to the breaking altitude, velocity can be non-dimensionalized as

~v = U~̂v (3.13)

with velocity scale

U =
Ω
N2

Bw =
Ω
K

=
L
T

(3.14)

which turns out to also be an advective time scale. Note that the corresponding Mach

number M = U/cs is such that

M2 =
U2

γRT00
(3.15)

=
1− κ
κ

ε2 (3.16)

Here

ε =
L
Hθ

= κ
L
H

(3.17)

typically is a small number. Again we note that here Hθ is the isothermal potential-

temperature scale height, which is, however, of the same order of magnitude as the true
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potential-temperature scale height throughout the middle atmosphere, and also over most

of the troposphere. Likewise, referring to (2.36) ones sees that the wave Exner pressure

can be non-dimensionalized by

π′ = Πwπ̂ (3.18)

with wave Exner pressure scale

Πw =
Ω2

N2

K/cpT00

K2
Bw

= ε2 (3.19)

The definition of buoyancy yields

θ′ = O(Θw) (3.20)

with

Θw =
T00

g
Bw

= T00ε (3.21)

Note that Θw/Θ = ε so that the potential temperature fluctuations due to the wave

are O(ε) while those of the Exner pressure fluctuations are O(ε2). The smallness of the

Exner pressure fluctuations justifies the attempt to find soundproof equations for GW

dynamics.

We finally insert the non-dimensionalizations (3.1) – (3.3), (3.6), (3.7), and (3.13) into

the Euler equations (2.1) – (2.4), and finally obtain

ε2
Dû

Dt̂
+ θ̂

∂π̂

∂x̂
= 0 (3.22)

ε2
Dŵ

Dt̂
+ θ̂

∂π̂

∂ẑ
= −ε (3.23)

Dθ̂

Dt̂
= 0 (3.24)

Dπ̂

Dt̂
+

κ

1− κ
π̂∇̂ · ~̂v = 0 (3.25)
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A major gain of the procedure just described is that we obtain one single small param-

eter ε in the non-dimensional equations. The Froude number Fr = U/
√
g/K satisfies

Fr2 = ε (3.26)

so that it cannot be chosen independently from the Mach number any more.

3.2. Scale asymptotics

From the considerations above follows that L is not the only spatial scale to be considered.

Both H and Hθ, taken to roughly be of the same order of magnitude, also characterize

relevant spatial dependence in the vertical, both of the background atmosphere and of

the wave fields. The ratio between the two scales L and Hθ, however, is ε, so that we use

the ansatz 
~̂v

θ̂

π̂

 =
∞∑
i=0

εi


~̂v

(i)

θ̂(i)

π̂(i)


(
~̂x, t̂, ζ

)
(3.27)

where

ζ = εẑ (3.28)

is a compressed vertical coordinate. From the scale analysis above we anticipate that θ̂(0)

and π̂(0) represent the reference atmosphere, which is not supposed to have any other

than large-scale dependence, so that there is no dependence on x̂ and ẑ. In the following

one will see, however, that this need only be assumed for θ̂(0), i.e.,

∂θ̂(0)

∂x̂
= 0 (3.29)

∂θ̂(0)

∂ẑ
= 0 (3.30)

whereas it will be a consequence of the leading-order vertical momentum balance for π̂(0).

The expansion (3.27) will now be inserted into the non-dimensional equations and we

will gather equal powers in ε.
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3.2.1. Momentum equations

Assuming non-zero θ̂(0), the O(1) terms of the two momentum equations (3.22) and

(3.23) yield

∂π̂(0)

∂x̂
= 0 (3.31)

∂π̂(0)

∂ẑ
= 0 (3.32)

i.e. spatially the leading-order Exner pressure can only depend on the compressed vertical

coordinate. As anticipated, it does not have any wave contributions. With this result the

O(ε) of the horizontal momentum equation (3.22) leads to

∂π̂(1)

∂x̂
= 0 (3.33)

Thus π(1) cannot be part of the wave either. As O(ε) of the vertical momentum equation

(3.23) one obtains, using (3.32)

∂π̂(1)

∂ẑ
= −∂π̂

(0)

∂ζ
− 1

θ̂(0)
(3.34)

Using (3.30) and (3.32), this can be integrated in ẑ, yielding[
π̂(1)

]ẑ2
ẑ1

ẑ2 − ẑ2
= −∂π̂

(0)

∂ζ
− 1

θ̂(0)
(3.35)

Taking the limit |ẑ2 − ẑ1| −→ ∞ and assuming sublinear growth of π̂(1) in ẑ one obtains

∂π̂(0)

∂ζ
= − 1

θ̂(0)
(3.36)

This is nothing but hydrostatic equilibrium of the reference atmosphere. This, inserted

into (3.34), also yields

∂π̂(1)

∂ẑ
= 0 (3.37)

which supplements (3.33). Finally, to O(ε2) one obtains from the horizontal momentum

equation, using (3.31) and (3.33),

D0û
(0)

Dt̂
+ θ̂(0)

∂π̂(2)

∂x̂
= 0 (3.38)
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with the definition

D0

Dt̂
=

∂

∂t̂
+ û(0) ∂

∂x̂
+ ŵ(0) ∂

∂ẑ
(3.39)

Likewise, the vertical momentum equation yields, with the help of (3.36),

D0ŵ
(0)

Dt̂
+ θ̂(0)

(
∂π̂(2)

∂ẑ
+
∂π̂(1)

∂ζ

)
=
θ̂(1)

θ̂(0)
(3.40)

3.2.2. Entropy equation

Turning now to the entropy equation (3.24), we obtain to O(1)

D0θ̂
(0)

Dt̂
= 0 (3.41)

Together with the basic assumptions (3.29) and (3.30) this yields

∂θ̂(0)

∂t̂
= 0 (3.42)

i.e. the reference potential temperature is independent of time. Finally, the O(ε) of the

entropy equation gives, again using (3.29) and (3.30),

D0θ̂
(1)

Dt̂
+ ŵ(0) ∂θ̂

(0)

∂ζ
= 0 (3.43)

3.2.3. Exner-pressure equation

To O(1) one obtains from the Exner-pressure equation (3.25), using (3.31) and (3.32),

∂π̂(0)

∂t̂
+

κ

1− κ
π̂(0)

(
∂û(0)

∂x̂
+
∂ŵ(0)

∂ẑ

)
= 0 (3.44)

Integrating over an arbitrary volume V̂ in x̂ and ẑ yields

1
π̂(0)

∂π̂(0)

∂t̂
+

κ

1− κ
1
V̂

∮
V̂

~̂v
(0)
· d~̂S (3.45)

where we have used the Gauß integration theorem, with self-understood notation. By

taking the limit V̂ −→ ∞, and again applying the sublinear growth condition, but now

for ~̂v
(0)

, we obtain

1
π̂(0)

∂π̂(0)

∂t̂
= 0 (3.46)



16 U. Achatz, R. Klein and F. Senf

This supplements (3.41), i.e. the background atmosphere does not depend on time. In-

serting this back into (3.44) one also obtains

∂û(0)

∂x̂
+
∂ŵ(0)

∂ẑ
= 0 (3.47)

To leading order the velocity field is nondivergent. One might be tempted to stop here,

and conclude that GWs near their breaking altitude are to be described by the soundproof

Boussinesq equations. Indeed this is a fruitful approach. If, however, one is also interested

in incorporating wave growth due to ambient density gradients, one inevitably must go

to the next order O(ε) of the Exner-pressure equation. Using (3.31) – (3.33), (3.37), and

(3.47), this is

∂π̂(1)

∂t̂
+ ŵ(0) ∂π̂

(0)

∂ζ
+

κ

1− κ
π̂(0)

(
∂û(1)

∂x̂
+
∂ŵ(1)

∂ẑ
+
∂ŵ(0)

∂ζ

)
= 0 (3.48)

At first impression this is a predictive equation for π̂(1). We offer, however, two arguments

why one can safely assume

∂π̂(1)

∂t̂
= 0 (3.49)

(a) Up to the first term in (3.48), all others are linear in the wave velocity field. If one

assumes that all wave velocity fields are fluctuating so that their volume integral does

not diverge, i.e.

lim
V̂→∞

1
V̂

∫
V̂

dV̂ ~̂v
(0)

= 0 (3.50)

lim
V̂→∞

1
V̂

∫
V̂

dV̂ ~̂v
(1)

= 0 (3.51)

then, integrating (3.48) accordingly, and using (3.33) and (3.37), one obtains (3.49).

(b) The linear theory for GWs at saturation amplitude discussed above yields Exner

pressure fluctuations which are at lowest order O(ε2). Thus one can assume

π̂(1) = 0 (3.52)

which clearly also leads to (3.49).
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The first-order contribution to the Exner pressure, if it exists at all, is thus time inde-

pendent. Since it also does not depend on x̂ and ẑ one might interpret it as part of the

Exner pressure of the reference atmosphere. In principle, one could try and absorb it

into π̂(0), but then the hydrostatic equilibrium (3.36) would not hold any more. Finally,

inserting (3.49) into (3.48) yields

ŵ(0) ∂π̂
(0)

∂ζ
+

κ

1− κ
π̂(0)

(
∂û(1)

∂x̂
+
∂ŵ(1)

∂ẑ
+
∂ŵ(0)

∂ζ

)
= 0 (3.53)

With (3.38), (3.40), (3.43) , (3.47), and (3.52) we have the leading-order closed predic-

tive system, namely the classical Boussinesq approximation for small-scale flows in the

vicinity of some given reference height z00. This system, however, does not describe the

amplification of internal waves as they move vertically over distances comparable to H

in the atmosphere. The first-order correction to the leading-order divergence constraint

as given in (3.53) shows that the effect responsible for this wave amplification appears

only at the next order in the asymptotic expansion. We will thus employ methods of

multiple-scales analysis to systematically describe this process in sections 6 and 7 below.

4. Scale asymptotics of the sound-proof equation systems

Before we do so, we will demonstrate in this section that the pseudo-incompressible

equations are consistent with the scale asymptotics for the full compressible system

including the first-order divergence constraint, whereas the anelastic equations are not

unless the background stratification is small so that Hθ � H.

4.1. The pseudo-incompressible equations

The pseudo-incompressible equations (Durran 1989) can be written as

Du

Dt
+ cpθ

∂π

∂x
= 0 (4.1)

Dw

Dt
+ cpθ

∂π

∂z
= −g (4.2)
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Dθ

Dt
= 0 (4.3)

∇ ·
(
ρθ~v
)

= 0 (4.4)

where the prescribed reference state is assumed to be hydrostatic, i.e. it satisfies (2.7).

Moreover, it satisfies (2.6), or rather

ρθ =
p00

R
π(1−κ)/κ (4.5)

so that (4.4) also takes the form

∇ ·
(
π(1−κ)/κ~v

)
= 0 (4.6)

or rather

w
∂π

∂z
+

κ

1− κ
π

(
∂u

∂x
+
∂w

∂z

)
= 0 (4.7)

which will be used here. The total thermodynamic fields include the reference state so

that one can write

θ = θ + θ′ (4.8)

π = π + π′ (4.9)

Consistent with the above we now assume the same scaling as there, i.e. non-dimensionalize

the pseudo-incompressible equations using (3.1) – (3.3), (3.6), (3.7), and (3.13), and ex-

pand the non-dimensional fields as in (3.27). The reference atmosphere is taken to be

represented by the zero-order expansion. In other words, we assume θ

π

 =

 Θθ̂(0)

Ππ̂(0)

 (ζ) (4.10)

 θ′

π′

 =

 Θθ̂′

Ππ̂′

(~̂x, t̂, ζ) =
∞∑
i=1

εi

 Θθ̂(i)

Ππ̂(i)

(~̂x, t̂, ζ) (4.11)
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We assume a priori that the zero-order thermodynamic fields only depend on ζ, as is

consistent with the findings above. The velocity field is expanded as in (3.27):

~v = U
∞∑
i=0

εi~̂v
(i)
(
~̂x, t̂, ζ

)
(4.12)

The momentum equations in the compressible Euler system and the pseudo-incompressible

system agree completely. It need therefore not be shown that a scale-asymptotic analysis

of these yields the same results. More specifically, while (3.31) and (3.32) are satisfied

by assumption, (3.33), (3.36) – (3.38), and (3.40) follow from the analysis. The same

holds for the analysis of the entropy equation. Both (3.42) and (3.43) are obtained. Only

the comparison between the asymptotics of the Exner-pressure equation (2.4) and the

divergence condition (4.7) requires some consideration. Inserting (4.10) and (4.12) into

(4.7) yields to O(1) the non-divergence condition (3.47), while (3.46) is satisfied by basic

assumption. Finally, the O(ε)-terms of (4.7) yield (3.53).

The only result one cannot obtain is (3.49), i.e. the time-independence of π̂(1). This,

however, is no real problem since we are interested in GW scaling, and can thus assume

(3.52). Thus motivated we will use in the remainder of this work that, consistent with

GW scaling, there is no O(ε) contribution to the Exner pressure.

4.2. The anelastic equations

The anelastic equations (Lipps & Hemler 1982) can be written

Du

Dt
+

∂

∂x

(
p′

ρ

)
= 0 (4.13)

Dw

Dt
+

∂

∂z

(
p′

ρ

)
= g

θ′

θ
(4.14)

Dθ

Dt
= 0 (4.15)

∇ · (ρ~v) = 0 (4.16)
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where the prescribed reference state is the same as above. The deviatory pressure and

potential temperature are p′ = p− p and θ′ = θ − θ. From the definitions one finds

p′

ρ
= R

θ

π
1−κ
κ

(
π

1
κ − π 1

κ

)
(4.17)

The thermodynamic fields are split and scaled as in (3.52) and (4.8) – (4.11). Nondimen-

sionalizing then yields

ε2
Dû

Dt̂
+ κ

∂

∂x̂

{
θ̂(0)

π̂(0)
1−κ
κ

[(
π̂(0) + π̂′

) 1
κ − π̂(0)

1
κ

]}
= 0 (4.18)

ε2
Dŵ

Dt̂
+ κ

∂

∂ẑ

{
θ̂(0)

π̂(0)
1−κ
κ

[(
π̂(0) + π̂′

) 1
κ − π̂(0)

1
κ

]}
= ε

θ̂′

θ̂(0)
(4.19)

Dθ̂′

Dt̂
+ εŵ

dθ̂(0)

dζ
= 0 (4.20)

κ

1− κ
π̂(0)∇̂ · ~̂v + εŵ

(
∂π̂(0)

∂ζ
− κ

1− κ
π̂(0)

θ̂(0)
∂θ̂(0)

∂ζ

)
= 0 (4.21)

The leading order O(ε2) of the horizontal momentum equation gives exactly the result

(3.38) from the Euler equations. From the vertical momentum equation one obtains to

the same order

D0ŵ
(0)

Dt̂
+ θ̂(0)

∂π̂(2)

∂ẑ
=
θ̂(1)

θ̂(0)
(4.22)

which agrees with the corresponding result (3.40) from the Euler equations in the assumed

case π̂(1) = 0, consistent with GW scaling. Also, to leading order O(ε) the anelastic

entropy equation is consistent with the Euler-equation result (3.43). What remains is

the anelastic continuity equation (4.21). To leading order O(1) it yields the same flow

non-divergence (3.47) as obtained from the Euler equations. A difference arises, however,

in the next order O(ε), from which we get

ŵ(0) ∂π̂
(0)

∂ζ
+

κ

1− κ
π̂(0)

(
∂û(1)

∂x̂
+
∂ŵ(1)

∂ẑ
+
∂ŵ(0)

∂ζ

)
− κ

1− κ
π̂(0)

θ̂(0)
ŵ(0) ∂θ̂

(0)

∂ζ
= 0 (4.23)

In comparison to the Euler-equation result (3.53) we are left with an additional term

of relative magnitude κ/(1 − κ) |dθ̂(0)/dζ| = R/cv |dθ̂(0)/dζ|. We conclude that the
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pseudo-incompressible equations are consistent with the Euler equations in the descrip-

tion of non-hydrostatic gravity waves, while the anelastic equations are consistent only if

R/cv 1/θ̂(0) |dθ̂(0)/dζ| � 1/π̂(0)|dπ̂(0)/dζ|, i.e., if the potential temperature scale height

is much larger than that of the Exner pressure multiplied by R/cv. Especially in the

stratosphere and the mesosphere, however, this is typically not the case.

5. Hydrostatic gravity waves

In the above we have assumed non-hydrostatic GWs with equal spatial scales in the

horizontal and in the vertical. Here we show that the consistency between the scale

asymptotics of the Euler equations and the pseudo-incompressible equations also holds

for hydrostatic GWs — actually also potentially influenced by rotation, which we delib-

erately neglect here for simplicity — with longer horizontal than vertical scale. For this

purpose we stick with the spatial non-dimensionalizations (3.1) and (3.2) but introduce

a compressed horizontal coordinate

χ = εx̂ (5.1)

and assume that all fields depend on χ instead of x̂. In other words, we assume the

horizontal and short vertical spatial scale to have a ratio ε. In terms of wave numbers

this means

k = O(εK) (5.2)

m = O(K) (5.3)

As long as K � 1/2H, the dispersion relation (2.27) then yields

ω = O(εN) (5.4)
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Thus, the relevant time scale is by a factor ε longer than assumed in the non-dimensionalization

(3.3) so that we also introduce a compressed time coordinate

τ = εt̂ (5.5)

and assume that all fields depend on τ instead of t̂.

With regard to the wave fields, first note that the instability criterion (3.10) is the

same as for non-hydrostatic GWs so that Bw still is the correct scaling for the wave

buoyancy. In the absence of rotation even hydrostatic waves cannot be destabilized by

their intrinsic shear, while this would be the case otherwise. Then the stability criterion

would have to be modified by considering the Richardson number (Dunkerton 1997).

Here, however, the polarization relations (2.34) and (2.35), using (5.2)–(5.4), then yield

u = UO(1) (5.6)

w = UO(ε) (5.7)

Likewise one obtains from (2.36) for the wave part of the Exner pressure

π′ = ΠO(ε2) (5.8)

5.1. Scale asymptotics of the Euler equations

We therefore assume the following expansions, non-dimensionalizing wind, potential tem-

perature, and Exner pressure as before by U , T00, and Π, respectively:

û =
∞∑
i=0

εiû(i) (χ, ẑ, ζ, τ) (5.9)

ŵ =
∞∑
i=1

εiŵ(i) (χ, ẑ, ζ, τ) (5.10)

θ̂ = θ(0) (ζ, τ) +
∞∑
i=1

εiθ̂(i) (χ, ẑ, ζ, τ) (5.11)

π̂ = π(0) (χ, ẑ, ζ, τ) +
∞∑
i=2

εiπ̂(i) (χ, ẑ, ζ, τ) (5.12)
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Note that we assume a priori that π̂(1) = 0. Inserting this into the Euler equations we

again order by equal powers in ε. Most is very much analogous to the treatment of the

non-hydrostatic situation so that only the main steps will be given here.

5.1.1. Momentum equations

The O(1) terms in the vertical momentum equation yield

∂π̂(0)

∂ẑ
= 0 (5.13)

The lowest nontrivial order in the horizontal momentum equation is O(ε). It leads to

∂π̂(0)

∂χ
= 0 (5.14)

Likewise the same order in the vertical momentum equation gives, using (5.13), the

hydrostatic equilibrium

∂π̂(0)

∂ζ
= − 1

θ̂(0)
(5.15)

To next order, using (5.14), the horizontal momentum equation turns out to be trivial,

while, using (5.13) and (5.15), the vertical momentum equation yields

θ̂(0)
∂π̂(2)

∂ẑ
=
θ̂(1)

θ̂(0)
(5.16)

so that the wave pressure is to lowest order indeed in hydrostatic equilibrium. Time

derivatives appear no sooner than at order O(ε3). The horizontal momentum equation

yields

∂û(0)

∂τ
+ û(0) ∂û

(0)

∂χ
+ ŵ(1) ∂û

(0)

∂ẑ
+ θ̂(0)

∂π̂(2)

∂χ
= 0 (5.17)

while one obtains from the vertical momentum equation, using (5.13), (5.15), and (5.16)

θ̂(0)
(
∂π̂(3)

∂ẑ
+
∂π̂(2)

∂ζ

)
= −

[
θ̂(1)

θ̂(0)

]2

+
θ̂(2)

θ̂(0)
(5.18)

This is an extension of the hydrostatic equilibrium of the wave fields to next order over

(5.16).
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5.1.2. Entropy equation

The lowest nontrivial order of the entropy equation is O(ε). It yields time-independence

of the potential temperature of the reference atmosphere:

∂θ̂(0)

∂τ
= 0 (5.19)

To next order we obtain

∂θ̂(1)

∂τ
+ û(0) ∂θ̂

(1)

∂χ
+ ŵ(1) ∂θ̂

(1)

∂ẑ
+ ŵ(1) ∂θ̂

(0)

∂ζ
= 0 (5.20)

5.1.3. Exner-pressure equation

The lowest non-trivial order of the Exner-pressure equation is O(ε). Together with

(5.13) and (5.14) this yields

∂π̂(0)

∂τ
+

κ

1− κ
π̂(0)

(
∂û(0)

∂χ
+
∂ŵ(1)

∂ẑ

)
= 0 (5.21)

This is the same type of equation as (3.44). In the same manner as there we assume that

spatial dependence of the lowest-order velocity field in χ and ẑ does not diverge, which

leads via Gauß integration to

∂π̂(0)

∂τ
= 0 (5.22)

∂û(0)

∂χ
+
∂ŵ(1)

∂ẑ
= 0 (5.23)

To next order O(ε2) one directly obtains

ŵ(1) ∂π̂
(0)

∂ζ
+

κ

1− κ
π̂(0)

(
∂û(1)

∂χ
+
∂ŵ(1)

∂ζ
+
∂ŵ(2)

∂ẑ

)
= 0 (5.24)

5.2. Scale asymptotics of the pseudo-incompressible equations

Consistency between the Euler equations and the pseudo-incompressible equations de-

mands that the scale asymptotics of the latter is the same, up to all orders discussed

above, for the Euler equations. Since momentum equations and entropy equation agree

between the two systems, one need only show that the scale asymptotics of the pseudo-
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incompressible non-divergence condition (4.7) yields, up to O(ε2), (5.22) – (5.24). We

assume the expansions (5.9) – (5.12), and in addition also that θ̂(0) and π̂(0), which

represent the reference atmosphere, depend exclusively on ζ, just as also derived from

the scale asymptotics of the Euler equations. Then (5.22) is satisfied by assumption. The

lowest non-trivial order of (4.7) is O(ε), yielding directly (5.23). To next order we directly

obtain (5.24).

6. WKB theory

In section 3 we have studied the asymptotics of internal waves in a stratified com-

pressible atmosphere under conditions favorable to wave breaking. The leading-order

equations for length scales of order O(εHθ), i.e., length scales small compared to the

potential temperature scale height, turned out to be the incompressible Boussinesq equa-

tions, while at first order we found divergence corrections that correspond to Durran’s

pseudo-incompressible model. In this section, we demonstrate that these divergence cor-

rections affect the amplification of initially weak internal waves to leading-order as wave

packets travel upwards in the atmosphere to vertical levels comparable to Hθ.

6.1. WKB expansions

To this end we examine the accumulation of first-order effects and how they can affect the

leading-order solution over long times which we resolve by the time variable τ = ε t̂. On

this time scale, wave packets can travel over distances of order O(Hθ) while undergoing

non-trivial deformation and amplification or damping. Additionally, two different hori-

zontal scales x and χ are used in the analysis, where x represents the scales of horizontal

variation in the phase of the wave packet and χ its large-scale horizontal envelope. We

therefore construct WKB-type asymptotic multiscale solutions to the compressible flow

equations from (3.22)–(3.25). Note that perturbation-energy conservation (2.15) suggests
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that

~̂v ∝ ρ−1/2 (6.1)

θ̂′ ∝ θρ−1/2 (6.2)

π̂′ ∝ θ−1
ρ−1/2 (6.3)

The amplitude of a vertically propagating wave is thus affected both by the ambient

density and by the ambient potential temperature. For a low-amplitude wave packet

below the breaking altitude we thus assume

û = εũ(0) (6.4)

ŵ = εw̃(0) (6.5)

θ̂ = εν
(
θ(0) + ε2θ̃(1)

)
(6.6)

π̂ = ε−ν
(
π(0) + ε3π̃(2)

)
(6.7)

so that factors ε and εν describe the density and potential-temperature effect, respec-

tively. The parameter ν may be chosen accordingly, but it does not appear in the further

analysis. We make the usual WKB assumption that each wave field has local amplitude,

wavenumber, and frequency with only slow dependence on space and time (Bretherton

1966), i.e.

ũ(0)

w̃(0)

θ̃(1)

π̃(2)


= <







Û (0)

Ŵ (0)

Θ̂(1)

Π̂(2)


(τ, χ, ζ) + ε



Û (1)

Ŵ (1)

Θ̂(2)

Π̂(3)


(τ, χ, ζ)


exp

(
i
ϕ(τ, χ, ζ)

ε

)


+o(ε) ,

(6.8)
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Local frequency and horizontal and vertical wavenumber are defined as time derivative

and gradient components of the phase, i.e.

ω = − ∂

∂t

(ϕ
ε

)
= −∂ϕ

∂τ
(6.9)

k =
∂

∂x

(ϕ
ε

)
=
∂ϕ

∂χ
(6.10)

m =
∂

∂z

(ϕ
ε

)
=
∂ϕ

∂ζ
(6.11)

Notice that we have not included a quadratic term involving exp(i 2ϕ/ε) in the first-order

terms. This anticipates the leading-order result given below, which shows the leading-

order velocities to be solenoidal. Solenoidal fields produce advective tendencies no earlier

than at second order in the expansions, which we will not consider here. For clarity

of presentation we are also not including a mean flow. We have verified, however, that

the more complete case can be dealt with along the lines outlined below for the large-

amplitude case. The perturbation-energy conservation derived here is then replaced by

wave-action conservation (Bretherton 1966). In the small-amplitude case the mean flow,

however, is not affected by the waves.

Noting that for every of the four fields, e.g the horizontal wind,

∂ũ(0)

∂t̂
= <

[(
−iωÛ + ε

∂Û

∂τ

)
exp

(
i
ϕ

ε

)]
+ h.o.t. (6.12)

∂ũ(0)

∂x̂
= <

[(
ikÛ + ε

∂Û

∂χ

)
exp

(
i
ϕ

ε

)]
+ h.o.t. (6.13)

∂ũ(0)

∂ẑ
= <

[(
imÛ + ε

∂Û

∂ζ

)
exp

(
i
ϕ

ε

)]
+ h.o.t. (6.14)

with Û ≡ Û (0)+ε Û (1) and h.o.t. abbreviating “higher-order terms”, we obtain to leading-

order from the vertical momentum equation (3.23) the hydrostatic balance (3.36), and
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then from (3.22)–(3.25)

−iω 0 0 ik

0 −iω −N im

0 N −iω 0

ik im 0 0


︸ ︷︷ ︸

M(ω, k,m)



Û (0)

Ŵ (0)

1
N

Θ̂(1)

θ̂(0)

θ̂(0)Π̂(2)


= 0 (6.15)

Here N2 = 1/θ̂(0) dθ̂(0)/dζ is the nondimensional squared Brunt-Vaisala frequency. The

formulation in (6.15) has been chosen to explicitly reveal that the relevant matrixM(ω, k,m)

is anti-hermitian. Therefore, only imaginary eigenvalues of M exist which correspond to

traveling wave solutions. To next order we obtain

M



Û (1)

Ŵ (1)

1
N

Θ̂(2)

θ̂(0)

θ̂(0)Π̂(3)


=



−∂Û
(0)

∂τ
− θ̂(0) ∂Π̂(2)

∂χ

−∂Ŵ
(0)

∂τ
− θ̂(0) ∂Π̂(2)

∂ζ

− ∂
∂τ

(
Θ̂(1)

θ̂(0)

)
−∂Û

(0)

∂χ
− ∂Ŵ (0)

∂ζ
− 1− κ

κ
Ŵ (0)

π̂(0)
∂π̂(0)

∂χ


(6.16)

Note that we have used the solenoidality (incompressibility) condition from (6.15), i.e.

kÛ (0) +mŴ (0) = 0, to eliminate the advection terms on the r.h.s. of (6.16).

6.2. Leading-order analysis

At every (τ, χ, ζ), (6.15) represents a linear system of equations for the amplitudes which

has a non-trivial solution only if det(M) = 0. A straight-forward calculation shows that

this is equivalent to

ω2(k,m) = N2 k2

k2 +m2
(6.17)

Of course, (6.17) is the internal-wave dispersion relation for an incompressible Boussinesq

fluid, and this is what was to be expected here, as the flow Mach number considered is

O(ε) implying sound-proof motions, and the length scale of the internal waves, given by
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the inverse of the wavenumber, is εHθ � H, so that vertical density variations do not

play a role at leading order.

Given the dispersion relation (6.17) relating ω to k and m, thereby prescribing the

phase speed of the short internal gravity waves through the Hamilton-Jacobi-equation

∂ϕ

∂τ
+ ω

(
∂ϕ

∂χ
,
∂ϕ

∂ζ

)
= 0 , (6.18)

the system matrix M of the leading-order equations becomes singular, and the vector of

amplitudes has to lie in the null-space of the matrix. Again we leave out the tedious, but

straightforward, details in concluding that one may write the amplitude vector as

Û (0)

Ŵ (0)

1
N

Θ̂(1)

θ̂(0)

θ̂(0)Π̂(2)


=



−im
k
ω
N

i ωN

1

−im
k2
ω2

N


1
N

Θ̂(1)

θ̂(0)
(6.19)

6.3. First-order analysis and the evolution of the wave amplitudes

Equations (6.19) settle the solution of the leading-order equations up to the yet unknown

(buoyancy) amplitude function Ab = 1/N Θ̂(1)/θ̂(0). We obtain an evolution equation for

this quantity from the first-order system (6.16) through a solvability condition: The anti-

hermitian system matrix M is singular once ϕ satisfies the Hamilton-Jacobi equation

for the phase field in (6.18). Multiplying the first-order equations from the left with the

transpose complex conjugate of the adjoint matrices’ null-space vector, i.e. with

(
Û (0) ∗ , Ŵ (0) ∗ , Ab

∗ , θ̂(0) Π̂(2) ∗
)

=
(
i
m

k

ω

N
,−i ω

N
, 1, i

m

k2

ω2

N

)
Ab
∗ (6.20)

then eliminates the l.h.s. of (6.16) and leaves us with a solvability condition for the right-

hand side. The result is an evolution equation for the amplitude function Ab(τ, χ, ζ)

which can be cast in the form of a wave-energy conservation law,

∂E′

∂τ
+∇(χ,ζ) · (~cgE′) = 0 (6.21)
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where, with

ρ̂(0) =
π̂(0)

1−κ
κ

θ̂(0)
(6.22)

being the non-dimensional leading-order density,

E′ =
ρ̂(0)

4

∣∣∣Û (0)
∣∣∣2 +

∣∣∣Ŵ (0)
∣∣∣2 +

1
N2

∣∣∣∣∣ Θ̂(1)

θ̂(0)

∣∣∣∣∣
2
 =

ρ̂(0)

2
|Ab|2 (6.23)

is the perturbation energy of the leading-order internal waves, and

~cg =
(
∂ω

∂k
,
∂ω

∂m

)
(6.24)

is the group velocity of internal wave packets. We note that the fourth equation in (6.16)

is free of expressions resulting from the time derivative in the pressure equation and thus

represents a divergence constraint involving the leading and first-order velocities. This

constraint is again in the pseudo-incompressible form, so that also in this regard the

pseudo-incompressible equations are consistent with the Euler equations, and we could

as well have used the former for obtaining our results.

7. WKB theory for large amplitudes

In the preceding section we had considered the evolution of small-amplitude internal

waves over time scales long enough to let short-wave internal-wave packets travel (verti-

cal) distances comparable with the (mutually comparable) scale heights, H and Hθ. We

found that, due to two reasons, the solvability condition in the first-order theory did not

involve any nonlinear terms despite the fact that these should have appeared according to

plain order-of-magnitude estimates. The two reasons for this absence of nonlinear terms

in the solvability condition were (i) the solenoidality of the leading-order waves, and (ii)

the fact that pressure fluctuations are by one order of magnitude smaller than those of

potential temperature, so that nonlinearities involving the pressure field are relegated to

the next higher order.
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Here we exploit this disappearance of nonlinear terms in constructing a large-amplitude

WKB theory for internal gravity waves near their breaking level, which will again turn

out to be consistent with pseudo-incompressible theory. Notice that the regime considered

corresponds with the one identified in section 3.

7.1. WKB expansions for the large amplitude regime

In line with the afore said we consider

û = ũ(0) (7.1)

ŵ = w̃(0) (7.2)

θ̂ = θ̂(0) + εθ̃(1) (7.3)

π̂ = π̂(0) + ε2π̃(2) (7.4)

Again we make the usual WKB assumption that each wave field has local amplitude,

wave number, and frequency with only slow dependence on space and time, but now

we include higher harmonics in the fast variable ϕ/ε to account for the possibility of

nonlinear effects playing a role at first and higher orders. We also include a mean flow

possibly affected by a wave mean-flow interaction. We thus assume

ũ(0)

w̃(0)

θ̃(1)

π̃(2)


=



Û
(0)
0

Ŵ
(0)
0

Θ̂(1)
0

Π̂(2)
0


(τ, χ, ζ) + <





Û
(0)
1

Ŵ
(0)
1

Θ̂(1)
1

Π̂(2)
1


(τ, χ, ζ) exp

(
i
ϕ(τ, χ, ζ)

ε

)


+ε





Û
(1)
0

Ŵ
(1)
0

Θ̂(2)
0

Π̂(3)
0


(τ, χ, ζ) + <

∞∑
α=1



Û
(1)
α

Ŵ
(1)
α

Θ̂(2)
α

Π̂(3)
α


(τ, χ, ζ) exp

(
iα
ϕ(τ, χ, ζ)

ε

)


+ o(ε)(7.5)

These are inserted into (3.22)–(3.25) and we again order by like powers in ε.
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7.2. Leading-order analysis

To O(ε) we again obtain from the vertical momentum equation (3.23) the hydrostatic

balance (3.36). To next order, O(ε2) for the momentum equations, O(ε) for the entropy

equation, and O(1) for the Exner-pressure equation, we obtain terms multiplied by var-

ious powers of exp (i ϕ/ε). These are are mutually orthogonal upon averaging in the fast

variable ϕ/ε so that we collect like powers.

7.2.1. First-order Fourier components

We find from the terms proportional to exp (i ϕ/ε) in the Exner-pressure equation

(3.25) the important solenoidality

ikÛ
(0)
1 + imW

(0)
1 = 0 (7.6)

and with this altogether from (3.22) – (3.25)

M(ω̂, k,m)



Û
(0)
1

Ŵ
(0)
1

1
N

Θ̂(1)
1

θ̂(0)

θ̂(0)Π̂(2)
1


= 0 (7.7)

where the same system matrix as M as in (6.15) appears, now however with ω replaced

by the intrinsic frequency ω̂ = ω−kÛ (0)
0 −mŴ

(0)
0 . We also note here that below Ŵ

(0)
0 = 0

is shown so that the intrinsic frequency actually differs from the absolute frequency only

by a Doppler term involving the horizontal flow. For the same reasons as above M must

be singular and we obtain the gravity-wave dispersion relation

ω̂2(k,m) = N2 k2

k2 +m2
(7.8)

Note that neither variations in the mean-flow vertical wind nor wave-induced variations

of the background stratification enter here. From the definitions (6.9) – (6.11) one obtains
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the ray-tracing equations (
∂

∂τ
+ ~cg · ∇(χ,ζ)

)
k = 0 (7.9)(

∂

∂τ
+ ~cg · ∇(χ,ζ)

)
m = −k∂Û

(0)
0

∂ζ
(7.10)(

∂

∂τ
+ ~cg · ∇(χ,ζ)

)
ω = k

∂Û
(0)
0

∂τ
(7.11)

where the group velocity

~cg =
(
Û

(0)
0 +

∂ω̂

∂k
,
∂ω̂

∂m

)
(7.12)

now is supplemented by the horizontal mean flow. Thus, the horizontal wave number is

actually constant along rays defined by the local group velocity. The polarization relations

are finally obtained to be (6.19), now however with ω replaced by ω̂.

7.2.2. Mean flow

The mean-flow contributions (zero power in exp (i ϕ/ε)) yield the following results.

From the vertical momentum equation we obtain

Θ̂(1)
0 = 0 (7.13)

while the entropy equation yields

Ŵ
(0)
0 = 0 (7.14)

7.3. First-order analysis

At the next order,O(ε3) for the momentum equations,O(ε2) for the entropy equation, and

O(ε) for the Exner-pressure equation we again collect terms multiplied by like powers of

exp (i ϕ/ε). In passing we note that the terms in the Exner-pressure equation proportional

to exp (2i ϕ/ε) yield the solenoidality

ikÛ (1)
α + imW (1)

α = 0 (α > 1) (7.15)

which we will use frequently below.
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7.3.1. First-order Fourier components

We find from the terms proportional to exp (i ϕ/ε),

M(ω̂, k,m)



Û
(1)
1

Ŵ
(1)
1

1
N

Θ̂(2)
1

θ̂(0)

θ̂(0)Π̂(3)
1



=



−∂Û
(0)
1
∂τ

− Û (0)
0
∂Û

(0)
1
∂χ

− Ŵ (0)
1

∂Û
(0)
0
∂ζ

− θ̂(0) ∂Π̂(2)
1

∂χ
−
(
ikÛ

(1)
0 + imŴ

(1)
0

)
Û

(0)
1

−∂Ŵ
(0)
1

∂τ
− Û (0)

0
∂Ŵ

(0)
1

∂χ
− θ̂(0) ∂Π̂(2)

1
∂ζ

−
(
ikÛ

(1)
0 + imŴ

(1)
0

)
Ŵ

(0)
1

− ∂
∂τ

(
Θ̂(1)

1

θ̂(0)

)
− Û (0)

0
∂
∂χ

(
Θ̂(1)

1

θ̂(0)

)
−
(
ikÛ

(1)
0 + imŴ

(1)
0

) Θ̂(1)
1

θ̂(0)

−∂Û
(0)
1
∂χ

− ∂Ŵ
(0)
1

∂ζ
− 1− κ

κ
Ŵ

(0)
1

π̂(0)
∂π̂(0)

∂χ


(7.16)

Here we have used already that the leading-order mean flow is horizontally homogeneous,

which is derived in (7.24) below. The further procedure is very similar to the one which

led us to (6.21). Multiplying the equations above from the left with the transpose complex

conjugate of the null-space vector of the adjoint of M(ω̂, k,m) one obtains from the real

part

∂E′

∂τ
+∇(χ,ζ) · (~cgE′) = −1

2
<
(
Û

(0)
1

∗
Ŵ

(0)
1

) ∂Û (0)
0

∂ζ
(7.17)

where E′ is again defined as in (6.23). The imaginary part yields a predictive equation

for the large-scale and slow-time part of the wave phase β = arctan(=Θ̂(1)
1 /<Θ̂(1)

1 ) which,

however, is not needed below. Once more using the polarization relations (6.19), with

ω replaced by ω̂, and the ray-tracing equations (7.9) – (7.11) one finally obtains the

principle of wave-action conservation (Bretherton 1966; Grimshaw 1975; Müller 1976)

∂

∂τ

(
E′

ω̂

)
+∇(χ,ζ) ·

(
~cg
E′

ω̂

)
= 0 (7.18)
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7.3.2. Second-order Fourier components

The terms proportional to exp (i 2ϕ/ε) now include nontrivial nonlinear advection

terms,

M (2ω̂, 2k, 2m)



Û
(1)
2

Ŵ
(1)
2

1
N

Θ̂(2)
2

θ̂(0)

θ̂(0)Π̂(3)
2


=



−D1Û
(0)
1 − 1

2 ikΘ̂(1)
1 Π(2)

1

−D1Ŵ
(0)
1 − 1

2 imΘ̂(1)
1 Π(2)

1

− 1
θ̂(0)

D1Θ̂(1)
1

0


(7.19)

where one has

D1 =
1
2

(
Û

(0)
1

∂

∂χ
+ Ŵ

(0)
1

∂

∂ζ
+ ikÛ

(1)
1 + imŴ

(1)
1

)
(7.20)

Note that one has from (7.16)

ikÛ
(1)
1 + imŴ

(1)
1 = −∂Û

(0)
1

∂χ
− ∂Ŵ

(0)
1

∂ζ
− 1− κ

κ

Ŵ
(0)
1

π̂(0)

∂π̂(0)

∂ζ
(7.21)

which can be used to eliminate Û (1)
1 and Ŵ (1)

1 . Then we also observe that M (2ω̂, 2k, 2m)

is non-singular, because ω̂, k, and m are already related by the dispersion relation in

(7.8), and ω̂(2k, 2m) 6= 2 ω̂(k,m). As a consequence, the system can be solved for the

unknowns (Û (1)
2 , Ŵ

(1)
2 , 1/N Θ̂(2)

2 /θ(0), θ̂(0)Π̂(3)
2 ), and no additional solvability constraint

on the right-hand terms arises. Notice that the right-hand side involves the effects of non-

linear advection as well as effects of non-zero pseudo-incompressible velocity divergence

as seen in (7.21).

7.3.3. Higher-order Fourier components

The higher-order terms proportional to exp(i αϕ/ε) for α > 2 yield

M (αω̂, αk, αm)



Û
(1)
α

Ŵ
(1)
α

1
N

Θ̂(2)
α

θ̂(0)

θ̂(0)Π̂(3)
α


= 0 (7.22)
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This homogeneous sequence of linear equations, has again a non-singular system matrix,

for the same reason mentioned earlier, related to the dispersion relation. As a conse-

quence, (
Û (1)
α , Ŵ (1)

α ,
1
N

Θ̂(2)
α

θ̂(0)
, θ̂(0)Π̂(3)

α

)
= 0 (α > 2) (7.23)

i.e. the higher-order terms all vanish.

7.3.4. Mean flow

Finally, the mean-flow terms of the Exner pressure equation yield

∂Û
(0)
0

∂χ
= 0 (7.24)

i.e. the leading-order mean flow is horizontally homogeneous. From the momentum equa-

tions and the entropy equation we obtain, again using (7.21),

∂Û
(0)
0

∂τ
+ θ̂(0)

∂Π̂(2)
0

∂χ

= − 1

2 π̂(0)
1−κ
κ

{
∂

∂χ

(
π̂(0)

1−κ
κ

∣∣∣Û (0)
1

∣∣∣2)+
∂

∂ζ

[
π̂(0)

1−κ
κ <

(
Û

(0)
1 Ŵ

(0)
1

∗)]}
−1

2
<
(
ik Θ̂(1)

1

∗
Π(2)

1

)
(7.25)

θ̂(0)
∂Π̂(2)

0

∂ζ
− Θ̂(2)

0

θ̂(0)

= − 1

2 π̂(0)
1−κ
κ

{
∂

∂χ

[
π̂(0)

1−κ
κ <

(
Û

(0)
1 Ŵ

(0)
1

∗)]
+

∂

∂ζ

(
π̂(0)

1−κ
κ

∣∣∣Ŵ (0)
1

∣∣∣2)}
−1

2
<
(
im Θ̂(1)

1

∗
Π(2)

1

)
(7.26)

Ŵ
(1)
0

∂θ̂(0)

∂ζ

= − 1

2 π̂(0)
1−κ
κ

{
∂

∂χ

[
π̂(0)

1−κ
κ <

(
Û

(0)
1 Θ̂(1)

1

∗)]
+

∂

∂ζ

[
π̂(0)

1−κ
κ <

(
Ŵ

(0)
1 Θ̂(1)

1

∗)]}
(7.27)

Using (6.22) and the polarization relations to be obtained from (7.7) — see also the

analogous result (6.19) obtained from (6.15) — these equations can be further simplified

to

∂Û
(0)
0

∂τ
+ θ̂(0)

∂Π̂(2)
0

∂χ
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= − 1
2ρ̂(0)

{
∂

∂χ

(
ρ̂(0)

∣∣∣Û (0)
1

∣∣∣2)+
∂

∂ζ

[
ρ̂(0)<

(
Û

(0)
1 Ŵ

(0)
1

∗)]}
(7.28)

θ̂(0)
∂Π̂(2)

0

∂ζ
− Θ̂(2)

0

θ̂(0)
+

∣∣∣Θ̂(1)
1

∣∣∣2
2 θ̂(0)

2

= − 1
2ρ̂(0)

{
∂

∂χ

[
ρ̂(0)<

(
Û

(0)
1 Ŵ

(0)
1

∗)]
+

∂

∂ζ

(
ρ̂(0)

∣∣∣Ŵ (0)
1

∣∣∣2)} (7.29)

Ŵ
(1)
0 = 0 (7.30)

The two mean-flow momentum equations, (7.28) and (7.29), demonstrate the influence

of the classic divergence of the corresponding momentum fluxes. Since the zero-order

vertical mean flow Ŵ
(0)
0 vanishes, the vertical momentum equation effectively becomes a

diagnostic equation for the leading-order mean-flow potential temperature Θ̂(2)
0 induced

by the wave related momentum fluxes. Perhaps an interesting additional term is a wave-

induced correction
∣∣∣Θ̂(1)

1

∣∣∣2 /2 θ̂(0) 2
of the hydrostatic balance which already appears in

the analysis of the equations in the hydrostatic limit, see (5.18). Clearly this is a term

we could not derive from the anelastic equations, while it is fully contained in pseudo-

incompressible dynamics! Likewise, since the first-order mean-flow potential temperature

Θ̂(1)
0 vanishes, the mean-flow entropy equation (7.27) becomes a diagnostic equation for

the, actually vanishing, leading-order mean-flow vertical wind Ŵ
(1)
0 induced by heating

due to the, actually vanishing, divergence of the wave related potential-temperature flux.

We note that at fixed wave fluxes, which are predicted from the wave-action conserva-

tion (7.18) and the GW polarization relations analogous to (6.19), (7.28) – (7.30) are four

equations for as many unknowns, i.e. the horizontal mean-flow acceleration ∂Û (0)
0 /∂τ , the

leading-order mean-flow Exner pressure Π̂(2)
0 , and Θ̂(2)

0 and Ŵ (1)
0 . Using (7.24), ∂Û (0)

0 /∂τ

can be eliminated from (7.28), yielding together with (7.29) two coupled linear equations

for Π̂(2)
0 and Θ̂(2)

0 which can be solved by standard means. Reinserting Π̂(2)
0 into (7.28)

one then obtains a predictive equation for the mean-flow horizontal wind. Finally, (7.27)

gives a diagnostic relationship for the leading-order mean-flow vertical wind, which is
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trivially solved by (7.30) so that the mean-flow vertical wind does not only vanish to

O(1) but also to O(ε).

7.4. Discussion

This completes the analysis, which has shown that even in the large-amplitude regime fa-

vorable for internal-wave breaking, the governing equations for a WKB-type wave packet

remain those of the linear pseudo-incompressible system. The reason is simply that the

equations inducing the solvability condition are identical. At the same time we were

able to explicitly write down the full first-order solutions including first-order pertur-

bations induced by nonlinear advection, by a “pseudo-incompressible divergence”, and

by the baroclinic torque effect. Again we stress that the divergence is indeed the one

also predicted from pseudo-incompressible theory which gives special justification for its

equations in the analysis of gravity-wave dynamics in flows with arbitrary background

stratification.

8. Summmary and discussion

The scale asymptotics of the Euler equations has been examined for the case of GWs

near breaking amplitude. The spatial scales taken into account are the horizontal and

vertical wavelength and the potential-temperature scale height which, in the case of

leading-order stratification, is comparable to the pressure scale height. Using linear the-

ory the wave period can be obtained from the wavelengths, thus yielding a time scale.

For fixing the scales of the dynamical fields a simple static instability criterion has been

used to set the magnitude of the potential-temperature fluctuations. The polarization

relations from linear theory have been used to determine therefrom the magnitude of

the wind fluctuations. Non-dimensionalizing the equations in this way, it is shown that

a single nondimensional parameter remains, which is given by the ratio between wave-
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length and the potential-temperature scale height. An expansion in this small parameter

yields an equation hierarchy which turns out to be the same, to leading orders, as to be

obtained from the pseudo-incompressible equations. In this fashion, consistency between

the Euler equations and the pseudo-incompressible equations is shown, at least for con-

ditions favorable to GW breaking. We emphasize that this result is independent of the

strength of the background stratification.

On the contrary, the anelastic equations can be shown to be consistent only for weak

stratification which, however, does not prevail at high altitudes where internal waves

tend to break. We take this as an indication that a safe option for soundproof studies

of GW dynamics beyond simplified, qualitative linear theories is offered by the pseudo-

incompressible equations, while caution might be in place with regard to the anelastic

models. We note, however, that – consistent with the present findings – several studies

have found the anelastic theory to perform as well as the pseudo-incompressible model

under conditions of sufficiently weak stratification (Nance & Durran 1994; Bannon 2001;

Nance 1994; Davies et al. 2003; Klein 2009; Klein et al. 2010), and still quite well even

under more general conditions (Prusa et al. 2008). Nonetheless, weaknesses have been

identified, at least in the non-hydrostatic case, which the pseudo-incompressible theory

does not exhibit.

Using the multiple-scales-asymptotics technique of WKB expansions, we have de-

veloped reduced dynamical equations for small-scale internal gravity wave packets as

they travel large vertical distances comparable to the pressure scale height. Consistent

leading and first-order solutions have been constructed that are valid for amplitudes in

the wave breaking regime. The leading-order solutions are governed by linear pseudo-

incompressible dynamics. At first order we obtain explicit expressions for the influence

of nonlinear advection. The analysis was facilitated by the fact that pressure fluctuations
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even in this large amplitude regime turn out be to negligible in the Exner-pressure equa-

tion. As a consequence, the velocity field remains divergence-free at leading order and is

thus solenoidal. An interesting side result is that in the WKB theory only variations of

the horizontal mean flow play an important role. Neither the vertical wind nor wave in-

duced variations of the stratification have a leading-order impact on the wave properties.

Also interesting might be that the mean flow is not only influenced by the divergence of

the wave-related momentum flux, but also by a wave-induced correction of hydrostatic

balance, which appears neither in Boussinesq nor in anelastic theory!

Recent related work is the one by Shaw & Sheperd (2008, 2009). They discuss closure

schemes for the net nonlinear planetary scale fluxes induced by mesoscale flow fluctu-

ations through wave-action and pseudo-momentum flux terms. While their analysis is

based on the general Hamiltonian formulation of the anelastic and compressible dynam-

ical equations, it does not provide explicit WKB type solutions and a comparison of

the anelastic and pseudo-incompressible models. An interesting difference is that they

consider mean-flow scales which seem to directly yield a simple hydrostatic equilibrium

from the vertical momentum balance which is not influenced by wave fluxes. The devel-

opment of a unifying framework for our work and theirs is an interesting task for the

future. Then rotation could not be neglected anymore, and the interplay between iner-

tia and gravitation would have to be considered. Likewise, one might be interested in

cases with an interaction between GWs and acoustic waves on the one hand or Rossby

waves on the other. Corresponding analyses and comparison with direct integrations of

the compressible and pseudo-incompressible model equations will also be left for future

work.
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