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Summary

The climate system can be regarded as a dynamic nonlinear
system. Thus, traditional linear statistical methods fail to
model the nonlinearities of such a system. These nonlinea-
rities render it necessary to find alternative statistical
techniques. Since artificial neural network models (NNM)
represent such a nonlinear statistical method their use in
analyzing the climate system has been studied for a couple
of years now. Most authors use the standard Backpropaga-
tion Network (BPN) for their investigations, although this
specific model architecture carries a certain risk of over-=
underfitting. Here we use the so called Cauchy Machine
(CM) with an implemented Fast Simulated Annealing
schedule (FSA) (Szu, 1986) for the purpose of attributing
and detecting anthropogenic climate change instead. Under
certain conditions the CM-FSA guarantees to find the
global minimum of a yet undefined cost function (Geman
and Geman, 1986).

In addition to potential anthropogenic influences on cli-
mate (greenhouse gases (GHG), sulphur dioxide (SO2)) nat-
ural influences on near surface air temperature (variations of
solar activity, explosive volcanism and the El Ni~nno=Southern
Oscillation phenomenon) serve as model inputs. The simula-
tions are carried out on different spatial scales: global and
area weighted averages. In addition, a multiple linear regres-
sion analysis serves as a linear reference.

It is shown that the adaptive nonlinear CM-FSA algorithm
captures the dynamics of the climate system to a great extent.
However, free parameters of this specific network architec-
ture have to be optimized subjectively. The quality of the
simulations obtained by the CM-FSA algorithm exceeds the
results of a multiple linear regression model; the simulation

quality on the global scale amounts up to 81% explained
variance. Furthermore the combined anthropogenic effect
corresponds to the observed increase in temperature Jones
et al. (1994), updated by Jones (1999a), for the examined
period 1856–1998 on all investigated scales. In accordance
to recent findings of physical climate models, the CM-FSA
succeeds with the detection of anthropogenic induced
climate change on a high significance level. Thus, the CM-
FSA algorithm can be regarded as a suitable nonlinear sta-
tistical tool for modeling and diagnosing the climate system.

1. Introduction

Modern climatology is facing the question
whether an anthropogenic induced climate
change is already observable in climatic vari-
ables, e.g. near-surface air temperature. Because
the climate system can be regarded as a nonlinear
system (Houghton et al., 2001), traditional linear
statistical models are not capable of describing
the climate system in its full complexitiy and
thus fail to answer this question.

Since nonlinear Neural Network Models
(NNM) provide a statistical solution to this prob-
lem their application towards analyzing the
climate system has been studied for a couple of
years, see for example Grieger and Latif (1993),
Hsu et al. (1997), Hsieh and Tang (1998) and
Walter et al. (1998). For their investigations most



authors use the standard NNM, the Backpropaga-
tion Network (BPN) (Rumelhart et al., 1986),
although the BPN algorithm has one big disad-
vantage: it cannot guarantee to reach the global
minimum of a yet undefined cost function and
thus carries a certain risk of over-=underfitting.

In an earlier work (Sch€oonwiese et al., 1997),
where the BPN architecture was used, we
obtained a GHG-signal of 0.8�–1.3 �C and a
combined GHGþ SU signal of 0.5–0.8 �C for
the period 1866 to 1994. Here we will present
an updated simulation (1856–1998) and further-
more use a more sophisticated simulation techni-
que, the so-called Cauchy Machine (CM), for the
purpose of simulating, attributing and detecting
anthropogenic climate change signals in ob-
served variations of near-surface air temperature.
In contrast to the BPN, the CM and its imple-
mented Fast Simulated Annealing (FSA) learn-
ing algorithm (Metropolis et al., 1953), (Szu,
1986), see Section 3.1, guarantee under certain
conditions to reach the global minimum of any
given cost function (Geman and Geman, 1986).
Thus, in this work the CM-FSA architecture is
applied for the attribution and detection of an-
thropogenic climate change.

The data used for this approach is described in
Section 2, whereas Section 3 explains the basic
concepts of neural network models, with an
emphasis on the CM-FSA in Section 3.1. Section
4 deals with the crucial issue of statistical isola-
tion of climatological cause-effect relations. The
preprocessing of the data is briefly outlined in
Section 5. The results of our approach are pre-
sented in Section 6 and the paper ends with some
conclusions drawn from our results in Section 7.

2. Climatic fundamentals and data

A change in average net radiation at the top of
the atmosphere, because of a change in either
solar or infrared radiation, is called a radiative
forcing.

Such a radiative forcing perturbes the balance
between incoming and outgoing radiation. Over
time climate responds to this pertubation to re-
establish a radiative balance. Thus, a positive
radiative forcing tends to warm the surface and
vice versa. For example an increase in atmo-
spheric CO2 concentration leads to a reduction
in outgoing infrared radiation and a positive

radiative forcing. Therefore the global mean sur-
face temperature change due to a change in a
specific radiative forcing can be written as

�Ts ¼ �F � �; ð1Þ
where �F is the change in the forcing and � is
the nearly invariant1 climate sensitivity param-
eter. The invariance of � has made the radiative
forcing concept a convenient measure to estimate
the global annual mean temperature response
(�Ts) to a certain forcing mechanism.

The radiative effects of the major GHGs
beside CO2 (e.g. Methane (CH4), Nitrous Oxide
(N2O), Halocarbons (mainly CFC-11) and Ozone
(O3)) are often represented by an equivalent CO2

concentration which is the CO2 concentration
that gives a radiative forcing equal to the sum
of the forcings for the individual GHG. We used
a representation of anthropogenic GHG forcing
in terms of CO2 equivalents also used by
Houghton et al. (2001).

Anthropogenic aerosols scatter and absorb
short-wave and long-wave radiation thereby per-
turbing the energy budget of the atmosphere and
exerting a direct radiative forcing (direct effect).
In addition, aerosols serve as cloud condensation
and ice nuclei thereby modifing the radiative
properties and lifetime of clouds (difficult to esti-
mate indirect effect). Because anthropogenic sul-
fate aerosols have only a atmospheric lifetime of
a few days this forcing may be directly propor-
tional to the corresponding SO2 emissions and is
therefore believed to be strongest over industria-
lized regions of the northern hemisphere. We
used the updated SO2 emission data from
Charlson et al. (1992), the obtained signals are
referred to as SU. Other than sulphate aerosols,
e.g. black carbon aerosol, organic carbon aerosol,
have not been considered in this work.

Radiative forcing may lead to climate varia-
tions but climate variations can also be initialized
from internal interactions between components
of the climate system. Therefore a distinction
between externally and internally induced natural
climate variability has to be made. Thus, a cer-
tain knowledge about natural climate variability
is necessary for the isolation of anthropogenic
cause-effect relations, see Section 4 for statistical
details.

1 Typically about 0.5 K=Wm�2 (Ramanathan et al., 1985).
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Variations in the solar output are a source for
externally induced natural climate variability.
However, only since the late 1970s variations
of solar irradiance have been measured directly
and therefore it is necessary to use other proxy
data, e.g. sunspot numbers (Stevens and North,
1996), of the solar activity to deduce variations at
earlier dates. In the simplest type of reconstruc-
tion a proxy measure is calibrated against recent
measurements and extrapolated backwards using
a linear relationship. The time series used here to
describe solar forcing is from Lean et al. (1995)
and Lean and Rind (1999) respectively and
shows clearly the well known 11-year solar cycle
imposed by a longer modulation.

Episodic, explosive volcanic eruptions lead to
a significant enhancement of the aerosol concen-
tration in the stratosphere. The most dramatic
recent volcanic event was the eruption of Mt.
Pinatubo in 1991 which reached a peak forcing
of about �3 W=m�2 in late 1991 (Hansen et al.,
1998), thus tending to cool the earth’s surface.
Stratospheric aerosol levels have meanwhile
fallen well below the peak values of 1991 to
1993 and are comparable to the low levels seen
in 1979 (Houghton et al., 2001). Explosive vol-
canism whose ejecta reach the stratosphere and
form climate relevant sulfate aerosols is consid-
ered here in terms of heating anomalies as pro-
vided by Grieser and Sch€oonwiese (1998).

Furthermore we used a reconstructed time ser-
ies of the El Ni~nno=Southern Oscillation (ENSO)
phenomenon provided by Staeger (1998) based
on Jones (1999b). The linear correlation between
these two series for the time period 1866–1998
amounts to 0.96. ENSO is the primary natural
climate variability factor in the 2–7 year domain.
El Ni~nno is defined by anomalies of sea surface
temperatures (SST) in the eastern tropical Paci-
fic, while the Southern Oscillation Index (SOI) is
a measure of the atmospheric circulation response
in the Pacific-Indian-Ocean region.

ENSO is generated by ocean-atmosphere
interactions in the tropical Pacific but affects cli-
mate globally. Beside having fundamental conse-
quences on local climate ENSO seems to have a
global influence: during and following El Ni~nno,
the global mean surface temperature increases as
the ocean transfers heat to the atmosphere (Sun
and Trenberth, 1998). The shift of rainfall loca-
tions in the tropics due to an ENSO event alters
the heating patterns of the atmosphere which
forces large scale waves in the atmosphere.
These establish meridional teleconnections, that
extend to mid-latitudes altering the winds and
changing the jet stream and storm tracks
(Trenberth et al., 1998) which may lead to mod-
ified weather patterns in mid-latitudes as well.

Annual time series of observed surface tem-
perature variations were used in our simulations

Fig. 1. Schematic illustration of the model
configuration used. Weights within the input
layer drawn solid, within the processing layer
dashed and weights from processing to output
layer drawn dotted. The number of processing
units shown does not reflect the number of pro-
cessing units for our simulations
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for the period 1856–1998, 1892–1995 for the
area weighted averages respectively. A high qual-
ity data set of mean global and mean hemispheric
surface air temperature provided by Jones et al.
(1994) and updated regulary by Jones (1999a)
served as the target function in our modeling
approach. The area weighted time series used
were derived from Jones et al. (1994) and Jones
(1999a) respectively, the area design is according
to Hansen and Lebedeff (1987).

A schematic model configuration is shown
in Fig. 1, whereas global surface temperatures

anomalies for the time period 1856–1998 (target
function) are shown in Fig. 2. The forcing time
series considered above (model inputs) are
shown in Fig. 3.

3. Neural network models

The spirit of neural network modeling is to use
fully nonlinear functions and use a large number
of terms so that model mismatch errors are not a
concern. Instead of matching the architecture of
the model to a problem, a model is used that can
describe almost anything, and careful training of
the model is used to constrain it to describe the
data.

NNM have their biological foundations in study-
ing the learning mechanisms of the brain (Adrian,
1926), (Rosenblatt, 1958) and (Grossberg, 1982)
and attempt to transfer these learning capabilities
into the language of Neurocomputing (Anderson
and Rosenfeld, 1986). NNM learn inherent data
features using a data subset as training data and
test these learned features using a unknown verifi-
cation subset. This technique is called cross-vali-
dation (Stone, 1974).

The standard NNM is still the Backpropaga-
tion Network (BPN) (Rumelhart et al., 1986).

Fig. 2. Global temperature anomalies 1856–1998 (Jones
et al., 1994), updated by (Jones, 1999a)

Fig. 3. Forcing mechanisms used in our
simulations. Units are: GHG forcing,
CO2 equivalent concentrations [ppm]¼
parts per million by volume (Houghton
et al., 2001); SO2 forcing data from
(Charlson et al., 1992) [mg=m2]; ENSO
forcing, normalized pressure anomalies
[hPa] data from (Staeger, 1998) based on
(Jones, 1999b); heating rate anomalies
[W=m2] due to explosive volcanism pro-
vided by (Grieser and Sch€oonwiese,
1998) and solar forcing [W=m2] (Lean
et al., 1995), (Lean and Rind, 1999)
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The BPN is based on a supervised learning algo-
rithm to find the global minimum of a yet unde-
fined cost function. There exists no objective
criteria to adjust free parameters (e.g. learning
constant, number of processing units) of the
model properly (Freeman and Skapura, 1992),
and thus the BPN carries a certain risk of being
stuck in local minima of the cost function which
might lead to false simulation results.

The CM, see Section 3.1 for details, uses a
stochastic learning law instead, which, under
certain conditions, guarantees to reach the glo-
bal minimum of a cost function (Geman
and Geman, 1986) and thus reduces the risk of
overfitting.

The input to a typical NNM is a vector of ele-
ments ðxkÞ, here the choosen climate forcings,
see Section 2, therefore the NNM used in this
application consists of five input neurons (poten-
tial forcings) and one output (surface tempera-
ture) neuron, see again Fig. 1 for a schematic
illustration of the model configuration used.

One big disadvantage of non-linear statistical
models is that their behavior for non-stationary
processes is not well understood. The inputs in
our model (GHG, SU, solar activity, volcanism
and ENSO, see Fig. 3) as well as our target
function (mean global surface air temperature,
see Fig. 2) all reveal some characteristic time
structures. For example, the GHG forcing shows
a progressive trend, whereas the SU forcing shows
a more unsteady behaviour. Even in mean global
surface air temperature series a linear trend of
roughly 0.6 �C for the period 1856–1998 is
obvious. Trendy series are non-stationary. To
ensure that our model captured all characteristics
of the data anyhow, we had to make sure that the
whole range of amplitudes of the time series con-
sidered is covered during the training process of
the CM-FSA. Otherwise the model would fail to
simulate a reasonable cause-effect relation for e.g.
a high GHG forcing value if such a high value
never occured during training. This can be done
by selecting the values for training and validation
so that the model is given the ability to learn the
cause-effect relations associated with extreme
values. We used 75% of the data for training
and the remainder for validation. Using this
approach the problems of modeling non-stationary
time series with a non-linear model can be avoided
for the better part.

3.1 Simulated Annealing
and the Cauchy Machine

The BPN relies on the minimization of the mean
square error �2

�2 ¼ 1

2

X

n

½yðxkÞ � YðxkÞ� ð2Þ

between the networks output (Y) and the given
test data (y), which in the case considered here is
observed surface temperature variations. xk are
the k¼ 5 dimensional input forcings introduced
in Section 2 and n is the length of the record. The
BPN then tries to reduce �2 by means of gradient
descent down an error surface with a topology
that is not well understood (Freeman and
Skapura, 1992). This carries the risk of being
caught in local minima of the �2-hyperplane
because only downward steps were allowed.

If caught in a local minimum the effect is that
the network appears to stop learning and the error
does not decrease any further with additional
training.

In this section a method for reducing the pos-
sibility of falling into local minima is presented.
This method is called Simulated Annealing (SA)
because of its strong analogy to the physical
annealing process done to metals and other sub-
stances. A statistical method analogue to the one
used in the physical annealing process was intro-
duced by Metropolis et al. (1953).

With this now so-called Metropolis algorithm
the first analogy between a physical thermodyna-
mical system and mathematical function minimi-
zation has been introduced into statistics. Prior to
the introduction of the Metropolis algorithm all
other algorithms converged to the nearby solu-
tion as quick as possible. The Metropolis algo-
rithm on the other hand is able to get out of local
minima of the function to be minimized. Thus,
with this algorithm the famous traveling sales-
man problem of finding the shortest cyclical
itenirary for a traveling salesman who must visit
each of N cities in turn has been effectively
‘solved’.

To perform a simulated annealing process with
a neural network we have to postulate that it is
possible to extend the analogy between informa-
tion theory and statistical mechanics to allow
us to place our NNM in contact with some heat
reservoir at some yet undefined, temperature.

Attributing and detecting anthropogenic climate change 5



If so, during the simulated annealing process we
can gradually lower the system temperature
while processing takes place in the network in
the hopes of avoiding local minima on the energy
landscape, i.e. the �2-hyperplane.

To perform this process, we have to simulate the
effects of temperature on our model. In a physical
system, molecules have an average kinetic energy
proportional to the temperature of the system.
Thereby individual molecules may have more or
less kinetic energy than the average and random
collisions may cause a molecule to gain or lose
energy. This behaviour can be simulated in a
NNM by adding a stochastic element to the proces-
sing. Instead of a deterministic procedure the sys-
tem is heated to a certain temperature T and the
output of each neuron is determined stochastically
according to the Boltzmann distribution

P�

P�
¼ exp�ðE��E�Þ=T ; ð3Þ

where P� is the probability of being in the �th
global state and E� is the energy of this state.

If only binary outputs are allowed to describe
the state of the network, than for a single neuron,
yk, with the network energy Ea for yk ¼ 1 and Eb

when yk ¼ 0, regardless of the previous state of
yk, we can set yk ¼ 1 with a probability of

pkðyk � 1Þ ¼ 1

1þ exp��Ek=T
; ð4Þ

where �Ek ¼ Eb � Ea. Equation (4) ensures that,
every so often, a neuron will update so as to
increase the energy of the system, thus helping
the system to get out of local minima by moving
upward on the �2-hyperplane. Because of the
fact that a change of a single units output will
change the state of the whole model this algo-
rithm can be regarded as a local decision rule.

As processing continues, the control parameter
T is reduced gradually. In the end, there will be a
high probability that the system is in a global
energy minimum which is corresponding to a
global minimum of �2.

The system energy of such a network can be
computed from

E ¼ � 1

2

Xn

i¼1

Xn

j¼1j 6¼i

wijyiyj; ð5Þ

where wij is the weight between neuron i and
neuron j, yi and yj are the outputs of neuron i

and j, respectively, and n is the total number of
processing neurons in the network.

The function to be minimized when using a
CM is not the least square error Eq. (2), but the
information theoretic quantity G, known as infor-
mation gain or relative entropy (Ackley et al.,
1986)

G ¼
Xq

i¼1

P1i log2

P1i

P2i

¼
Xq

i¼1

P1i log2P1i �
Xq

i¼1

P1i log2P2i: ð6Þ

Here P1i and P2i are two symbol probabilities of
two sources S1 and S2 each containing q symbols.

The second term of the right side of Eq. (6) is
not the entropy of a source. The log2 P2i terms
are weighted by the S1 probabilities, P1i, rather
than by the S2 probabilities P2i. Thus, G can be
thought of as a measure of the distance, in bits,
from source S2 to source S1. The term P2i in Eq.
(6) is dependant on the networks weights wij, so
that G can be altered by altering these weights.
The learning law of a CM can thus be written as

@G

@wij

¼ � 1

T
ðp�ij � pþij Þ; ð7Þ

where p�ij and pþij are the so called co-occurrence
probabilities which compute the frequency that
neurons i and j both are active, i.e. an output
value of 1, if averaged over all possible combi-
nations of patterns. The weight updates are then
calculated according to

�wij ¼ "ðpþij � p�ij Þ; ð8Þ
where " is a learning constant which has to be
carefully chosen ð½0<"� 1�Þ. From Eq. (8) it is
obvious that the weights will continue to change
as long as the two co-occurrence probabilities
differ. For a more complete derivation of Eq.
(7) the reader is referred to Rumelhart and Mc
Clelland (1986).

As a suitable annealing schedule we used

TðtnÞ ¼
T0

1þ tn

ð9Þ

given in (Szu, 1986), where T0 is the initial tem-
perature of the system and tn is a discrete time
variable corresponding to the n-th training step.
In contrast to the annealing schedule given in
(Geman and Geman, 1986) Eq. (9) is called fast
simulated annealing (FSA) (Szu, 1986).

6 A. Walter and C. D. Sch€oonwiese



The training algorithm of a CM can thus be
described as follows:

1. one training vector is clamped to the visible
units of the network.

2. annealing of the network according to the
annealing schedule Eq. (9) until equilibrium
is reached at a desired maximum tempera-
ture.

3. The network is run for several more proces-
sing cycles, after each cycle the pairs of neu-
rons with yk ¼ 1 (on) are simultaneously
determined.

4. The co-occurrence results from step 3 are
averaged.

5. Steps 1 to 4 are repeated for all training
vectors. To get an estimate of pþij the co-occur-
rence results for each pair of connected units
are averaged.

6. The visible units are unclamped and the net-
work is annealed until equilibrium is reached
at a desired minimum temperature.

7. The network is run for several more proces-
sing cycles. After each cycle the pairs of
connected units with simultaneous values
yk ¼ 1 (on) are determined.

8. The co-occurrence results from step 7 are
averaged.

9. Steps 6 through 8 are repeated as often as in
step 5. The co-occurrence results are again
averaged to get an estimate of p�ij for each
connected pair of units.

10. The appropriate weight change is computed
using Eq. (7)

11. Steps 1 through 10 are repeated until pþij and
p�ij are sufficiently small.

Beside the analysis of near-surface air tempera-
ture variations this work is aimed at the attribution
and detection of anthropogenic climate change.
Therefore, in a first step, the isolation of cause-
effect relations is performed using the CM-FSA.
After the successful statistical isolation of these
relations detection studies based on a test of
one-sided Gaussian distribution are performed.

4. Statistical isolation of cause-effect
relations and detection strategy

This study is aimed at the statistical assessment
of climatic cause-effect relations, especially the
estimation of the anthropogenic influence on

surface temperature. Thus, the results will reveal
a characteristic time-structure and magnitude (in
Kelvin [K]). In this text we will refer to this spe-
cific structure as a signal, e.g. GHG-signal. The
presence of natural climate variability implies
that this statistical isolation of relevant cause-
effect relations is basically a signal-in-noise
problem. Furthermore the signals have to be esti-
mated reliably to obtain a meaningful detection
variable in the second step.

Despite the fact that the CM has no linear
components, such an estimation can be obtained
by driving the CM in its final configuration, i.e.
frozen weights, with one forcing time-series at a
time, thus setting all other inputs to their mean.

The term detection in this context refers to the
process of demonstrating that a simulated climate
change is significantly different than can be
explained by natural climate variability alone.
To get a realistic estimation of this natural cli-
mate variability it is necessary to consider all
potential natural and anthropogenic climate for-
cing mechanisms in the simulation at the same
time. The unexplained parts of the simulations
(residuals) are added to these statistically
extracted causes of climate variability so that a
potential signal is tested on a certain significance
level against all other extracted signals plus resid-
uals. This way we obtain what we call climate
noise.

If the ratio between an anthropogenic green-
house forcing signal at a given location x and
time t Santhrðx; tÞ and the standard deviation of
climate noise snoiseðxÞ is denoted by a detection
variable dðx; tÞ, it is possible to compute the
space-time related probability of climate change
on a certain significance level a(Si)

Santhrðx; tÞ>aðSiÞ � snoiseðxÞ ð10Þ
which leads to the definition of the detection
variable dðx; tÞ

dðx; tÞ � Santhr

snoise

; ð11Þ

which is based on the signal-to-noise ratio (Von
Storch and Zwiers, 1999).

The probability P of an anthropogenic climate
change, i.e. the significance level, can thus be
computed using

Pðz� jdðx; tÞjÞ ¼ erf

�
dðx; tÞffiffiffi

2
p

�
; ð12Þ

Attributing and detecting anthropogenic climate change 7



where

erfðxÞ ¼ 2ffiffiffi
�
p
ðx

0

expð�u2Þ du ð13Þ

is the error function which can be treated with
numerical methods (Press et al., 1992). Equation
(12) can be applied here because snoise is sufficient-
ly Gaussian distributed which was tested using a
Kolmogorv-Smirnoff test (Press et al., 1992).

5. Preprocessing of the data

Due to the fact that with the exception of global
or hemispheric mean temperature all spatial data
sets represent variations in time and space a pre-
analysis using empirical orthogonal functions
(EOF) (Preisendorfer, 1988) was performed for
the area weighted time series of near surface air
temperature. In this way we obtain 72 time-
related principal components ranked according
to their explained variance instead of 72 climate
variable time series at 72 different areas. This
transformation can be written as

zðx; tÞ ¼
Xm

j¼1

�jEOFjðxÞPCjðtÞ; ð14Þ

where zðx; tÞ is the original space-time related
data field transformed into m time-related princi-
pal components PCjðtÞ and a series of space-
related principal components called empirical
orthogonal functions EOFjðxÞ. The factor �j is
the eigenvalue and quantifies the amount of var-
iance of the related principal component existent
in the original data. The EOFj provides the infor-
mation about the weight of the corresponding PC
existent at the related point of space. The PCjðtÞ
serve further on as the target function of the anal-
ysis on the area weighted scale. In default of a
objective criterion for how many PCj(t)’s to use
here the first four principal components, which
explain well over 50% of the total variance of
the original data field, have been selected as tar-
get functions for the investigations on the area
weighted scale, see Fig. 4.

The dominant EOF 1 in Fig. 4 holds 32% of
the total variance and represents approximately
the global mean temperature series shown in
Fig. 2 whereas EOF 2 roughly refers to internal
climate variability which is likely to be caused by
ENSO (Staeger, 1998). Higher EOFs can not be

identified that easy with processes in the climate
system.

6. Results and interpretation

Figure 5 shows the simulation and the corre-
sponding anthropogenic signals obtained using
the CM-FSA algorithm described in Section
3.1. The simulation as well as the plotted signals
are the average signals of thirty model runs to
reduce the (low) probability of falling into local
minima of the cost function.

The simulation quality amounts to 81%
explained variance (0.9 correlation). A similar
Multiple Linear Regression Model (MLR) driven
by the same forcing time-series ends up with an
explained variance of 75% on the global scale

Fig. 4. Relative explained variance vs. PC number. The
explained variance flattens after PC4. The first four PC’s
explain well over 50% total variance of the original data
field

Fig. 5. Results of the global CM simulation (dashed) and
the corresponding GHG-signal (short-dashed), SU-signal
(dashed-dotted) and the combined anthropogenic signal
(dotted). Also shown are observed global temperature
anomalies (solid) provided by (Jones et al., 1994), (Jones,
1999a) respectively
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(Walter, 2001), results not shown. An identical
simulation using a BPN lead us to an explained
variance of 84% (Walter and Sch€oonwiese, 2002).
Thus, if all parameters of the CM-FSA as well as
the BPN have been chosen correctly, it can be
concluded that at least for global surface tem-
perature, there is only little nonlinearity effec-
tive. If the CM-FSA algorithm found the global
minimum of the cost function it can furthermore
be concluded that the BPN results mentioned suf-
fered from a slight overfitting.

The signal amplitudes shown in Fig. 5 amount
to 0.90 K for the GHG forcing, �0.28 K for the
SU forcing and 0.66 K for the combined anthro-
pogenic forcing (GHG and SU). The combined
anthropogenic signal reflects the observed trend
of 0.60 K (Jones, 1999a) for the analyzed time
period rather well. Recent simulations by Gen-
eral Circulation Models (GCM), came up with
similar results. Johns et al. (2003) used a coupled
Atmosphere-Ocean GCM which included a
representation of the anthropogenic sulfur cycle
and both direct and indirect forcings from sulfate
aerosols. For the historical period 1860 to present
they obtain a GHG-signal of roughly 1.0 K which
is very similar to our findings. Similar results
were obtained by Roeckner et al. (1999) also
using a coupled AOGCM. For the period 1860
to 2000 they obtained a GHG-signal of 0.9 K.
In the case of an absent SU forcing their simu-
lated temperature increase evolves too fast com-
pared to the observational record. Beside this we
find in accordance with the results of Roeckner
et al. (1999) and Stott et al. (2000) a more pro-
nounced warming due to anthropogenic GHG
emissions over land than over ocean. Stott et al.
(2000) give a range of about 0.2 K=decade warm-
ing for recent decades, which is close to our
results. Furthermore the recent IPCC report
(Houghton et al., 2001) gives similar signal
amplitudes for the above forcing mechanisms.

We obtained the largest model-data discrep-
ancy in the period 1900 to 1920, see Fig. 5.
Two factors which could be responsible for this
model-data difference in this period are (i) mid-
latitude land clearance may have increased the
albedo and caused slightly greater cooling than
simulated (Bonan et al., 1992), and (ii) warming
may be underestimated in the early stage of the
instrumental record because of sparse data cover-
age (Jones et al., 1999).

A remarkable feature of the SU signal carried
out is its time structure: a moderate cooling due to
anthropogenic emissions of Sulfur dioxide until
the 1940’s, followed by a rather pronounced cool-
ing effect for the time period 1940 to 1970 and a
rather weakend cooling from there on. This time
structure is consistent with federal environmental
legislation for most industrialized nations.

Realistic simulations and signal amplitudes in a
physical sense have been carried out for the north-
ern and southern hemisphere as well (Walter,
2001), results not shown.

On the area related scale the CM-FSA simu-
lated a maximal anthropogenic (GHGþ SU)
effect over northern America (1.13 K) and over
Central Asia (1.17 K), (Walter, 2001), results not
shown. These results are reasonable in a physical
sense because of the enhanced heat capacity of
these regions. In the northern Atlantic region a
rather weak warming (0.11�K) is simulated by
the CM-FSA. This effect is due to an enhanced
downwelling of surface water (Smethie, 1993)
and is shown by physical models as well, see
again (Houghton et al., 2001).

To ensure that the CM has captured all rele-
vant mechanisms, the residuals of the simulations
have to be tested. This is usually done with test-
ing for Gaussian distribution of the residuals e.g.
Kolmogorov-Smirnov test (Press et al., 1992). In
case of a nonlinear model the residuals undergo
nonlinear transformations during the training of
the network, therefore the residuals do not have
to be Gaussian distributed. An alternative statis-
tical method for testing this kind of residual is
the autocorrelation function (Von Storch and
Zwiers, 1999). Because the elements of a white
noise process are independant it follows that their
autocorrelation function �ð�Þ is

�ð�Þ ¼ 1 : � ¼ 0

0 : � 6¼ 0
;

�
ð15Þ

where � is the lag.
The autocorrelation function of the residual for

the global scale is shown in Fig. 6, also shown is
the 95% confidence interval. For � ¼ 1; 2 there is
a slight autocorrelation obvious. This is due to
the inertia of the climate system. Within the cli-
mate system most temperature information is
stored via the oceans SST, thus it is possible to
model global near surface air temperature evolu-
tion as an autoregressive process. For lags greater
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than 2 the autocorrelation coefficient shows no
significant deflection from zero. Thus it can be
concluded that the CM-FSA captured all relevant
time structures and that the remaining residual
can be treated as noise. On the area weighted
scale the autocorrelation function of the residuals
show the same properties (Walter, 2001), results
not shown.

To obtain a useful detection variable one has to
look for a statistical relationship between the
PCjðtÞ’s introduced in Section 5 and the forcings
of interest. The observed spatio-temporal varia-
tions of the near surface temperature can be
written as

zðx; tÞ ¼ Santhr þ Snat þ "; ð16Þ
where zðx; tÞ is the original data field, Santhr is the
combined (GHGþ SU) anthropogenic signal,
Snat are the natural signal, i.e. effects due to vol-
canism, ENSO and solar variations, and " is the
unexplained residual. By testing the proportion
between Santhr against Snat þ " one obtains an
assessment of the signal-to-noise ratio, and in
consequence of the confidence level of the detec-
tion of an anthropogenic induced climate change.

In Fig. 7 the results for such a detection
approach on the global scale are shown. Here
the solid line represents the residual of the global
CM-FSA simulation plus the natural signals
(solar, volcanism and ENSO) obtained. This
combination of unexplained variability and nat-
ural climate variations is what we call climate
noise, see Section 4. The dotted lines represent
the 95%, 99% and 99.9% significance levels,
which can be computed using Eq. (10). The
obtained anthropogenic signals (GHG-signal:
dashed, SU-signal: dashed-dotted and combined
anthropogenic GHGþSU: thick solid) do not

agree with the assumption of a undisturbed cli-
mate system. The GHG-signal as well as the
combined anthropogenic signal are detectable
with a probability of >99.9%. The GHG-signal
exceeds this significance level in 1961. Because
of the cooling effect of SO2-emission the com-
bined anthropogenic signal exceeds this level not
until 1983. The SU-signal comes short of exceed-
ing the 99% significance level and thus can only
be detected with a probability of >95%. From
these results it can be concluded, that it is
virtually certain that an increase in global near
surface air temperature because of the anthropo-
genic emissions of GHGs has already happened.
Furthermore it is very likely that in the analyzed
time period SO2 emissions contributed a substan-
tial cooling effect to the global near surface air
temperature evolution. Thus, it is again virtually
certain, that for the time period 1856–1998
at least the low frequent trend in the obser-
vations of global near surface air temperature is
caused by anthropogenic emissions of GHGs and
SO2.

Figure 8 shows the results from the detection
approach introduced in Section 4 for a probabil-
ity p>90% that an anthropogenic (GHG & SU)
climate change has happened. Because of the fact
that not only the signal but the signal-to-noise
ratio determines the detection of the anthropo-
genic signal the detection strategy introduced
above succeeds at a high confidence level where
the overall standard deviation of climate noise,
i.e. natural signals plus residual, is rather small,
see Fig. 9. Because of a reduced year-to-year
variability this is mainly the case for the tropics

Fig. 6. Autocorrelation function (solid) with corresponding
95% confidence interval (dashed) of the residuals

Fig. 7. Residual and obtained natural signal of the global
CM-FSA simulation (solid), GHG-signal (dashed), SU-signal
(dashed-dotted) and combined anthropogenic signal
GHGþ SU (thick solid). Also shown are the 95%, 99%
and 99.9% significance levels (dotted)
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and oceanic regions due to their large heat capac-
ity and missing orographic effects on the
atmospheric circulation.

However, the detection succeeds on a high
confidence level for the mid-latitudes of the
northern and southern hemisphere as well; this
time because of enhanced signal amplitudes
compared to those in the tropical regions. A lin-
ear MLR did not come up with similar results
(Walter, 2001), results not shown, which is
mainly due to the enhanced simulation quality
of the CM and thus, a reduced standard deviation
of the remaining climate noise. Thus, regions
with a low standard deviation correspond to
regions with a high probability of an anthropo-
genic climate change. In 36 out of 72 considered
areas this probability exceeds 90%.

It is worth mentioning that a similar approach
using the standard BPN yielded better results in
terms of the explained variance (Walter and
Sch€oonwiese, 2002), but as mentioned above this
effect may be due to overfitting which the CM-
FSA tries to prevent.

7. Conclusions

In this work the possibilities of NNM, especially
the CM-FSA, for the purpose of attributing and
detecting anthropogenic climate change have
been studied. An NNM simulation represents
nothing less than a nonlinear optimal fit. There-
fore the results are highly sensitive to the choice
of internal free parameters of the network archi-
tecture, i.e. learning constant " in Eq. (8) and
cooling schedule Eq. (9) respectively. However,
if one carefully selects these parameters, the CM-
FSA algorithm provides a strong nonlinear sta-
tistical tool for climatological data analysis with
a minimized risk of over-=underfitting.

The results we obtained show a significant
anthropogenic climate change for most regions of
the globe, see Fig. 5, Fig. 7 and Fig. 8 respectively.
On the global scale the best estimate of the effect
of anthropogenic GHG and SO2 emissions into
the atmosphere amounts to 0.66 K warming for
the time period 1854 to 1998, which is close
to the observed trend (Jones et al., 1994), (Jones,
1999a).

Thus, in accordance with GCM results, e.g.
(Roeckner et al., 1999), (Stott et al., 2000), we have
to conclude that a significant anthropogenic cli-
mate change is virtually certain and already visible
in the global near surface air temperature record.
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