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Abstract

The problem of nonmodal instabilities of inertia-gravity waves (IGW) in the

middle atmosphere is addressed, within the framework of a Boussinesq model with

realistic molecular viscosity and thermal diffusion, by singular-vector analyzes of

horizontally homogeneous vertical profiles of wind and buoyancy obtained from

IGW packets at their statically least stable or most unstable horizontal location.

Nonmodal growth is always found to be significantly stronger than that of normal

modes, most notably at wave amplitudes below the static instability limit, where

normal-mode instability is very weak, whereas the energy gain between optimal per-

turbation and singular vector after one Brunt-Vaisala period can be as large as two

orders of magnitude. Among a multitude of rapidly growing singular vectors for

this optimization time, small-scale (wavelengths of a few 100m) perturbations prop-

agating in the horizontal parallel to the IGW are most prominent. These parallel

optimal perturbations are amplified by a roll mechanism, while transverse pertur-

bations (with horizontal scales of a few km) are to a large part subject to an Orr

mechanism, both controlled by the transverse wind-shear in the IGW at its stat-

ically least stable altitude, but further enhanced by reduced static stability. The

elliptic polarization of the IGW leaves its traces in an additional impact of the roll

mechanism via the parallel-wind shear on the leading transverse optimal perturba-

tion.
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1 Introduction

The importance of gravity waves for the dynamics of the middle atmosphere has been

recognized for quite a while (Hines, 1960). As they propagate upwards from mostly tro-

pospheric sources their amplitude grows due to the vertical ambient density gradient.

Unless they are absorbed at some critical layer (Bretherton, 1966; Booker and Brether-

ton, 1967) or get deflected at wind or stratification gradients (Chimonas and Hines, 1986;

Fritts and Yuan, 1989a; Bühler and McIntyre, 1999) they eventually become subject to

wave breaking. The associated momentum and energy deposition is essential for an under-

standing of the middle atmosphere general circulation (Houghton, 1978; Lindzen, 1981;

Holton 1982, 1983; Garcia and Solomon, 1985). Another effect might be the generation of

turbulence by gravity wave breaking, thus leading to frictional heating rates of relevance

for the mesospheric energy balance. Measurements of turbulent dissipation rates have

been published by Lübken (1997) while Becker and Schmitz (2002) showed these to be in

agreement with respective values diagnosed from a gravity wave parameterization scheme

in a simple general circulation model (GCM). A possible example of a simultaneous obser-

vation of an unstable gravity wave and related turbulence was published by Müllemann

et al. (2003).

The involved processes still present many open questions. Due to the small scales of

the relevant waves they cannot be simulated explicitly in a GCM but must be incorpo-

rated via a parameterization. Among the best-known schemes for this task are those by

Lindzen (1981), Medvedev and Klaassen (1995), Hines (1997a,b), Alexander and Dunker-

ton (1999), and Warner and McIntyre (2001). Already the very diversity of approaches

argues for an unsatisfactory state of knowledge so that one is confronted with an uncom-
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fortably large number of free options in this critical model component. Moreover, recent

direct numerical simulations (DNS) of breaking gravity waves have revealed disagreements

with several schemes (Afanasyev and Peltier, 2001; Fritts et al., 2003).

Studies of unstable gravity waves by DNS seem to be a key tool for a better un-

derstanding of both wave breaking and turbulence excitation. Among these, however,

especially three-dimensional studies (Andreassen et al., 1994; Fritts et al., 1994; Isler et

al., 1994; Winters and D’Asaro, 1994; Lelong and Dunkerton, 1998a,b; Werne and Fritts,

1999; Afanasyev and Peltier, 2001; Fritts at al., 2003) are still, and will continue to be, a

challenge to available computer resources, so that good a priori knowledge about the scales

and structures developing in an unstable gravity wave seems highly desirable. Studies of

the incipient instability phase via normal mode analysis have proven useful for this pur-

pose. Using the Floquet method, such analyzes have been done for monochromatic gravity

waves at higher frequencies by Mied (1976), Klostermeyer (1982, 1983, 1991), Lombard

and Riley (1996), and Sonmor and Klaassen (1997), revealing instabilities at all wave am-

plitudes. To a large part these are three-dimensional, i.e. oblique horizontal propagation

with respect to the unstable wave is a characteristic of many growing modes. The local

instability of inertia-gravity wave packets, with frequencies near the lower inertial bound,

was focus in the studies by Fritts and Yuan (1989b), Yuan and Fritts (1989), Dunkerton

(1997) and Kwasniok and Schmitz (2003). It was shown that for sufficiently low-frequent

waves dynamic instability due to velocity shear in the wave is more important than static

instability. For these waves no strong preference for any horizontal propagation direction

of the unstable modes was found. For monochromatic inertia-gravity waves Yau et al.

(2004) have recently done a normal-mode analysis. There it is shown that at low intrinsic
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frequencies the most rapidly growing modes propagate parallel to the IGW. The authors

attribute this to the elliptic polarization in the horizontal wind of the wave.

In several cases normal modes have been used as initial perturbations to a gravity wave

in nonlinear simulations. This requires either the normal modes to have much shorter time

scales than the gravity wave, or the latter to be a monochromatic wave propagating at

a constant phase speed, admitting the use of Floquet analysis. Then a normal-mode

approach is especially justified when the initial perturbation, provided by an ambient

fluctuation field, can be assumed to be very small so that the leading normal mode has

enough time to develop. At moderate perturbation levels another effect might however

come into play. It is known from several fields that over finite times the transient growth

of so-called singular vectors can be much more rapid than that of normal modes (Farrell,

1988a,b; Butler and Farrell, 1992; Trefethen et al., 1993). This can happen when the

normal modes are not orthogonal, which is most typically the case for dynamical systems,

so that small initial perturbations are possible where large contributions from different

normal modes cancel each other. Provided the time developments of the various normal

modes differ enough, those cancellations are removed subsequently so that the strength of

the perturbation can rise considerably. This has two consequences. First, it can be that

for dynamical states with a growing normal mode the transient growth of a sufficiently

strong initial perturbation is so rapid that it leads the dynamical fields directly into the

nonlinear phase without the normal mode having had time to develop. Then the normal

mode would have been an ill choice for characterizing the incipient instability phase.

Secondly, it can even happen that a state diagnosed from the normal-mode analysis to be

stable experiences transient growth vigorous enough that it can actually lift weak initial
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perturbations to a sufficiently high level for further nonlinear development leading to an

irreversible modification of the dynamical fields. In the gravity-wave context this could

imply turbulence excitation and wave breaking under conditions where this would not

have been expected from a normal-mode analysis. Last, but not least, general gravity

wave packets with a time dependence more complex than constant phase propagation in

general do no allow a normal-mode analysis at all, so that to these wave packets more

general concepts such as singular-vector analyzes must be applied in order to get to grasps

with the incipient instability phase.

One can ask oneself what the most rapidly growing optimal perturbations of a gravity

wave are and what type of wave decay they can lead to. This is the very question we

want to address here. As a starting point we focus on inertia-gravity waves. Both for

better comparability of our results to those of previous studies (Fritts and Yuan, 1989b;

Yuan and Fritts, 1989; Dunkerton, 1997; Kwasniok and Schmitz, 2003) and for simplicity

we additionally first concentrate on the analysis of one-dimensional vertical profiles con-

sidered most representative for the IGW packet in question. In this context we also focus

on short development times (about one Brunt-Vaisala period). The optimally growing

structures for the complete wave packet, their time development, and the dependence on

optimization time are studied in a companion paper (Achatz and Schmitz, 2005).

For this purpose we describe the analyzed IGW packets in section 2. Section 3 in-

troduces the linear models used in the stability analysis and gives a short discussion of

optimal growth in general. For the most simple approximation of an IGW packet, i.e. by

a stratified constant-shear layer, helpful analytic results on optimal growth are derived

in section 4, followed by an analysis of a vertical profile of the IGW at the statically
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least stable horizontal location in section 5. Our results are summarized and discussed in

section 6.

2 Inertia-gravity wave packet

Our study uses the three-dimensional viscous Boussinesq equations with thermal diffusiv-

ity on an f -plane

∇ · v̂ = 0 (1)

∂v̂

∂t
+ (v̂ · ∇)v̂ + fez × v̂ +∇p̂− ez b̂ = ν∇2v̂ (2)

∂b̂

∂t
+ (v̂ · ∇)b̂ + N2ŵ = µ∇2b̂ . (3)

Here v̂ = (û, v̂, ŵ) denotes the three-dimensional velocity field. The buoyancy b̂ = g(θ −

θ(z))/θ0 is a measure of the deviation of the potential temperature θ from a merely

vertically dependent reference profile θ(z), normalized by a characteristic value θ0. g is

the vertical gravitational acceleration. The squared background Brunt-Vaisala frequency

N2 = (g/θ0)dθ/dz is assumed to be a constant. p̂ is the pressure field, normalized by a

constant reference density, f the Coriolis parameter, and ez the vertical unit vector. The

Boussinesq equations can be expected to give a reasonably good approximation of the full

gravity wave dynamics as long as the focus is on processes with vertical scales of the order

or less than the atmospheric scale height. This is the case throughout this study. For

viscosity and thermal diffusivity we take the typical mesospheric values ν = µ = 1m2/s.

The f -plane is located at 45◦ latitude. Our Brunt-Vaisala frequency is N = 10−2s−1. For

later reference we note that under usual boundary conditions the Boussinesq equations
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conserve total energy

E =
1

2

∮

V
dV (|v̂|2 +

b̂2

N2
) . (4)

In the inviscid-nondiffusive limit both (1) – (3) and their linearization about the ref-

erence atmosphere at rest yield as solutions the plane waves




v̂

b̂


 = a<







v±

b±


 ei(K·x−Ω±t)


 (5)

where

Ω± = ±
√

N2(K2 + L2) + f 2M2

K2 + L2 + M2
(6)

(u±, v±, w±, b±) =

(
−KΩ± + iLf

K2 + L2
,
iKf − LΩ±

K2 + L2
,
Ω±
M

,−i
N2

M

)
. (7)

Here K = (K,L, M) is the three-dimensional wave vector. The normalization has been

chosen so that the wave is statically unstable at a > 1.

Having in mind an analysis of the stability of an IGW propagating from the lower

atmosphere into the mesosphere, thereby gaining in amplitude due to the vertical ambient

density gradient, we are less interested in plane wave trains of infinite vertical extent.

Among the gravity wave solutions above the one with the minus sign in front of the

square root has an upwardly directed group velocity if M > 0. From this we obtain the

state of the IGW packet at t = 0, i.e.




V0

B0


 (x) = a<







v−

b−


 eiK·x−z2/σ2

z


 . (8)

Without loss of generality we assume L = 0 so that the wave propagates in the x − z

plane. As vertical extent σz of the packet we use one vertical wavelength Λz = 2π/M .

For the wavelengths we have chosen typical observed values: The horizontal wavelength
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is Λx = 2π/K = 500 km, whereas the vertical wavelength was varied between 3, 6, and 9

km in order to get some information about the effect on our results of varying the ratio

R = f/ |Ω−|. For the examined wavelengths it is R = 0.86, 0.65, and 0.50, respectively.

The maximum of the wave packet is in the center of the vertical domain. There N2+∂b/∂z

minimizes at x = Λx/2, i.e. the statically most unstable region is right in the center of

the x− z plane (Fig. 1). This is where also the total Richardson number

Rit =
N2 + ∂b̂/∂z

(∂û/∂z)2 + (∂v̂/∂z)2
(9)

minimizes if a > 2(1−R2)/(2−R2).

3 Description of an incipient instability

3.1 Linear model

In the following we will be interested in the development of perturbations to the IGW

packet over time scales much shorter than its period. At sufficiently small initial strengths

these are appropriately described in a model obtained by linearizing the Boussinesq equa-

tions about the initial wave packet. The problem is treated on two levels of simplification.

3.1.1 Approximation of the IGW by a one-dimensional profile

As will be seen below and in the companion paper much of the dynamics of an incipient

instability of an IGW is controlled by the conditions near its statically least stable location.

In this part of our study it is therefore approximated by its initial state at the location

x = x0 = Λx/2 (= 250km) where the strongest static instability is to be expected, subject

to the condition following (9). Vertical motion in the IGW is duely neglected (see also Fig.
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1), i.e. we assume W0 = 0. We set v̂ = V0 + v′, b̂ = B0 + b′ and insert this into (1) – (3).

Neglecting all terms quadratic in the perturbations we obtain a set of equations which,

due to a corresponding symmetry in the basic wave packet, does not couple different

wavenumbers in the horizontally parallel (x) and transverse (y) direction. Thus one can

as well set (v′, b′, p′) = (v, b, p)(x, z) exp[i(kx+ ly)] for arbitrary wavenumbers k and l. As

others have done before (e.g. Dunkerton, 1997) we express the horizontal wavenumbers

in terms of parallel wavenumber k‖ and azimuth angle α as (k, l) = k‖(cos α, sin α). For

the further discussion it is also useful to introduce a modified coordinate system, obtained

by rotating the horizontal axes so that in the new coordinates (x‖, y⊥) the x‖-axis points

into the direction of the horizontal wave vector of the perturbation, i.e. we take

x‖ = x cos α + y sin α (10)

y⊥ = −x sin α + y cos α . (11)

With the corresponding horizontal velocity components in perturbation and IGW being

denoted by (U‖, V⊥) and (u‖, v⊥) the model equations then become

ik‖u‖ +
∂w

∂z
= 0 (12)

Du‖
Dt

+ w
dU‖
dz

+ ik‖p− fv⊥ = ν∇2
1u‖ (13)

Dv⊥
Dt

+ w
dV⊥
dz

+ fu‖ = ν∇2
1v⊥ (14)

Dw

Dt
+

∂p

∂z
− b = ν∇2

1w (15)

Db

Dt
+ N2

totw = µ∇2
1b , (16)

where D/Dt = (∂/∂t+ik‖U‖), ∇1 = (ik‖, 0, ∂/∂z), and N2
tot = N2+dB0/dz. Provided the

coriolis effect is weak, which is the case here, one sees from (12)–(16) that v⊥ is coupled

to the other model variables only passively.
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The equations have been discretized using second-order finite central differences on a

staggered grid with u‖, v⊥, b on full and w on intermediate half levels. Boundary condi-

tions are periodic. Unless specified differently the model domain extension was Lz = 3Λz

and the number of grid points (512 or 1024) was chosen large enough to ensure numer-

ical convergence of our results. The pressure Poisson equation, obtained by taking the

divergence of (13)–(15) and using (12), is solved by standard techniques. The time in-

tegration is done by two initial fourth-order Runge-Kutta time steps and a third-order

Adams-Bashforth scheme thereafter. These time-stepping schemes, as well as the solution

of the Poisson equation are discussed in Durran (1999).

As preparation for the constant-shear-layer approximation below we also note that

there is, due to (12), a streamfunction ψ so that (u‖, w) = (−∂/∂z, ik‖)ψ. With this the

model equations can be written

Dζ

Dt
+ ik‖b = ν∇2

1ζ − ik‖
d2U‖
dz2

ψ + f

(
∂v⊥
∂z

+ ik‖u‖

)
ψ (17)

Dv⊥
Dt

+ ik‖
dV⊥
dz

ψ = ν∇2
1v⊥ (18)

Db

Dt
+ ik‖N

2
totψ = µ∇2

1b , (19)

where ζ = (k2
‖ − ∂2/∂z2)ψ is the vorticity component in y⊥-direction.

3.1.2 Approximation by a stratified constant-shear layer

Going one step further one can focus even more on the conditions near the statically least

stable location by approximating (see also Fig. 1) the IGW fields by their tangents there,

i.e. by assuming

U0 = u0 = aΩ−/K (20)

V0 = βz (β = afM/K) (21)
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N2
tot = N2(1− a) , (22)

so that U‖ = uc + βsz and dV⊥/dz = βc, where we write βs,c = β(sin α, cos α) and

uc = uo cos α. Optimal growth in a corresponding nonrotating stratified constant-shear

layer with N2
tot = N2, i.e. without locally reduced static stability, has been studied by

Farrell and Ioannou (1993a) and Bakas et al. (2001) whose results we here use and expand

on. We neglect in (17)–(19), but not in the basic state, the coriolis effect and set

(ψ, ζ, v⊥, b) (z, t) =
∫ ∞

−∞
dm (ψm, ζm, vm, bm) (t) exp

[
i
(
mtz − k‖uct

)
−D

]
(23)

with mt = m − k‖βst a time dependent vertical wavenumber, and D = ν
∫ t
0 dτK2

t (τ) the

viscous-diffusive damping increment (assuming µ = ν), while K2
t = k2

‖ + m2
t . Thus one

obtains the independent three-component systems

dζm

dt
= −ik‖bm (24)

dbm

dt
= −ik‖N

2
totψm (25)

dvm

dt
= −ik‖βcψm (26)

with ζm = K2
t ψm. Note that these equations conserve the quantity vm/βc − bm/N2

tot.

3.2 Normal modes and singular vectors

In using the linear model for a stability analysis of the IGW packet we want to identify

structures most quickly arising from an arbitrary initial perturbation. Growth of these

would indicate an instability possibly leading to turbulent decay. Traditionally normal

mode analysis has been used for this purpose, whereas we want to examine singular

vectors. Both shall be defined here and compared to each other. This shall be done at
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the utmost possible brevity allowing readers to follow the presentation. For details they

are referred to Farrell and Ioannou (1996a,b) and Schmid and Henningson (2001).

For compactness of notation we introduce the complex state vector x of the model

which comprises the N values of all variables, i.e. in general v′ and b′ at all model grid

points, but here all v and b for the one-dimensional model and all (ζm, bm, vm) for the

stratified constant-shear layer. The model equations can then be written shortly as

dx

dt
= A(t)x (27)

with A being a possibly time dependent linear operator mapping the state on its tenden-

cies.

Standard normal modes are actually only well-defined for a time-independent back-

ground. In this case they are the eigenvectors nν of the model operator so that

Anν = −i(ων + iγν)nν . (28)

ων and γν are the frequency and growth rate of the ν-th normal mode. Usually the normal

modes form a complete set so that any initial perturbation can be written as

x(0) =
N∑

ν=1

aνnν (29)

and, due to (27) and (28),

x(t) =
N∑

ν=1

aνe
−iωνt+γνtnν . (30)

In the linear approximation, if there is a leading normal mode, i.e. with larger growth

rate than all others, it will grow more rapidly (for positive growth rate) or decay slower

(for negative growth rate) than the others, and after a sufficiently long transition time it

will arise from any initial perturbation as the dominant feature. A leading normal mode
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with positive growth rate is thus taken as sign of instability of the analyzed background

state. It is further often used to characterize the incipient instability phase before the

nonlinear development is entered.

The possibility of rapid transient growth is examined in a singular-vector analysis.

Different from the normal-mode analysis one needs a definition of the strength of a per-

turbation, i.e. one defines a norm

‖x‖2 = xtMx (31)

where the metric M is positive definite and hermitian. The upper index t denotes trans-

position, and the overbar taking the complex conjugate. Different choices are possible for

the metric. We here use as norm the discretized version of total energy

‖x‖2 =
1

2

∮

V
dV (|v′|2 +

|b′|2
N2

) . (32)

We now ask ourselves what initial perturbation x(0) maximizes for some given finite time

τ the ratio ‖x(τ)‖2 / ‖x(0)‖2. The answer to this question makes use of the propagator

matrix Φ which maps the initial perturbation to its state at t = τ via

x(τ) = Φ(τ)x(0) . (33)

By variational analysis one can show that the desired perturbation initializing strongest

growth is the leading eigenvector pν satisfying

M−1Φ
t
(τ)MΦ(τ)pν = σ2

νpν (34)

with the largest possible eigenvalue σ2
ν , which in turn is the desired (squared) optimal

growth factor ‖x(τ)‖2 / ‖x(0)‖2. Since M is symmetric and positive definite there is a

Cholesky factorization M = N tN where N is upper triangular. In our case it is diagonal,
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as is easily checked. Inserting the factorization into (34) and defining qν = Npν the

eigenvalue problem can be rewritten

LtLqν = σ2
νqν (35)

with

L = NΦ(τ)N−1 . (36)

From (35) one sees that all eigenvalues are positive. Furthermore, the eigenvectors qν

are orthogonal with respect to the euclidian metric, and henceforth also the optimal

perturbations pν with respect to M.

4 Normal modes and singular vectors in the stratified

constant-shear layer

Expressing kinetic energy in terms of ψ and v⊥ one finds that for the constant-shear-layer

case total energy is given, up to an irrelevant constant factor, by E =
∫∞
−∞ dk

∫∞
−∞ dl

∫∞
−∞ dmEklm

with

Eklm =
e−2D

2

(
K2

t |ψm|2 + |vm|2 +
|bm|2
N2

)
, (37)

so that different k and l, i.e. k‖ and α, and different initial vertical wavenumbers m are

completely decoupled in the energy norm. Thus each of the subsystems (24)–(26) must

be considered separately in a singular-vector analysis. This can be done numerically for

arbitrary azimuth angles, but the special advantage of the constant-shear-layer approxi-

mation is that it admits several closed analytical solutions helpful in getting an oversight

of the dependence of optimal growth on the various parameters.
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It is instructive to first neglect in (24)–(26) the time dependence of Kt and mt, yielding

a linear system with constant coefficients and normal-mode solutions

(ψm, bm, vm)± = (1,±NtotKt,±βcKt/Ntot) /(Kt
√

ε+) (38)

(ψm, bm, vm)v = (0, 0, 1) (39)

with eigenfrequencies ω± = ±Ntotk‖/Kt and ωv = 0, where ε+ = 1 + β2
c / |Ntot|2 +

|Ntot|2 /N2. The normalization has been chosen so that all three modes have the same

initial unit energy Eklm = 1. For a > 1 the convention is Ntot = i |Ntot| so that in this

case the first normal mode is growing exponentially, unless damped at small wavelengths

by viscosity and diffusion, while at a < 1 all three modes are damped. One sees that two

possibilities for near-collinearity between the two first or all normal modes arise. If βc = 0

and |Ntot| is small the tow first modes are in structure very close to (1, 0, 0), whereas

for small |Ntot| and large βc/ |Ntot| they are approximately collinear with the third mode.

This collinearity is the very reason for the strong optimal growth discussed below.

Getting back to the real case with time dependent Kt and mt it is useful to exploit

that the subsystem (24)–(25) always yields

d2ζm

dt2
= −N2

totk
2
‖

K2
t

ζm (40)

admitting for large enough |ω±| the WKB solution (Mathews and Walker, 1970; Farrell

and Ioannou, 1993a) ζm(t) ∝ √
Kt exp(±iφ) with φ(t) =

∫ t
0 dt′Ntotk‖/K(t′). Thus we

use for the solution of the general initial-value problem the ansatz, validated a posteriori

below,



ψm

bm

vm




(t) = a+e−iφ




ψ

b

v




+

+ a−eiφ




ψ

b

v



−

+ av




ψ

b

v




v

(41)
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(ψ, b, v)± =
g3/4

K0
√

ε+

(1,±NtotKt,±βcKt/Ntot) (42)

(ψ, b, v)v = (0, 0, 1) (43)

with K0 = Kt(t = 0) and g = K2
0/K

2
t . Note that the WKB solution uses as basis time

dependent generalizations of the normal modes discussed above, which are exact for the

case βs = 0, i.e. α = 0◦. As shown in the Appendix A the approximation yields analytic

approximate optimal-growth factors which in the two limit cases of parallel or transverse

propagation of the perturbation take an especially simple form.

4.1 Parallel singular vectors

In the case α = 0 one has βs = 0, i.e. mt and Kt are constant, and thus the WKB solution

is exact. The available basic shear is transverse to the wave vector, which corresponds

to the situation where the so-called roll mechanism (Moffat, 1967; Ellingsen and Palm,

1975; Landahl, 1980) transfers kinetic energy from the basic state to a perturbation in

which an initial vertical velocity induces a transverse wind component in the presence

of corresponding basic shear. The hence resulting growth factor for the leading optimal

perturbation, given in the appendix, can be approximated for β2
c / |Ntot|2 = 1/ |Ri| À 1 À

|Ntot|2 /N2 by

σ2
1 ≈ e−2D 4

|Ri|
N2

|N |2tot





sin4 φ
2

a < 1

sinh4 |φ|
2

a > 1

. (44)

Via an increase of the collinearity of the involved normal modes both shear and reduced

static stability act to enforce the transient growth, which is reduced by viscous-diffusive

damping. Most notably, it can be strong even for a < 1, when all three normal modes

decay.
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Given a vertical wavenumber m and an optimization time τ one can ask oneself

about the dependence of σ2
1 on k‖, especially at which k‖ optimal growth maximizes.

For a > 1 one finds that due to |φ| = |Ntot| k‖τ/
√

k2
‖ + m2 the leading-term behavior

is σ2
1 = (4/ |Ri|)(N2/ |Ntot|2) exp

{
2τ

[
|Ntot| k‖/

√
k2
‖ + m2 − ν

(
k2
‖ + m2

)]}
so that growth

maximizes, just as for the unstable normal mode, at k‖ = km where

0 =
|Ntot|m2km

(m2 + k2
m)3/2

− 2νk2
m , (45)

i.e. km ≈ m (|Ntot| /2νm2)
1/4

for νm2 ¿ |Ntot| /2, and km ≈ m |Ntot| /2νm2 for νm2 À

|Ntot| /2. In this case the wavenumber location of optimal growth is independent of the

optimization time.

The situation differs for a < 1. For Ntotτ/2π > 1 there are local maxima of σ2
1 where

φ ≈ (2n + 1)π for some positive integer n < (Ntotτ/π − 1) /2, i.e. at k‖ ≈ kn where

kn =
m√[

Ntotτ
(2n+1)π

]2 − 1

. (46)

The number of extrema thus rises with increasing τ where always the one at longest

horizontal wavelength, i.e. k‖ = k0, is least damped by diffusion and viscosity, so that

there σ2
1 ≈ (4/ |Ri|)(N2/N2

tot) for not too strong damping. For Ntotτ/2π < 1 only one

maximum remains which is near

k0 = m

[
Ntot

2νm2 tan (Ntotτ/2)

]1/4

, (47)

as long as in this approximation k0 À m, reducing for Ntotτ/2 ¿ 1 to k0 = m/ (τνm2)
1/4

,

i.e. only slowly increasing with decreasing ν and τ . In contrast to the case a > 1 we thus

here have a dependence of the growth factor on optimization time. For λz = 0.1Λz = 600

m and four representative combinations of a and τ the leading growth factors are shown

in figure 2, giving also a good confirmation of approximation (44).
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The structure of the optimal perturbations is quite interesting. In the appendix it is

also shown that under the same approximations as used for (44) one has for the strongest-

growing structure

a± ≈ ∓1

2

Ntot

|Ntot|
βc

|βc|av . (48)

Inserting this into (41)–(43) yields for βc/ |Ntot| À 1 and |Ntot| /N ¿ 1

ψm =
av

2K0

|Ntot|
|βc|

Ntot

|Ntot|
βc

|βc|
(
eiφ − e−iφ

)
(49)

bm = −av

2
N
|Ntot|
|βc|

Ntot

N

Ntot

|Ntot|
βc

|βc|
(
eiφ + e−iφ

)
(50)

vm = −av

2

(
eiφ + e−iφ

)
+ av , (51)

so that ones sees that it is composed in such a way from the three normal modes that

both ψm and vm are initially approximately cancelled, whence due to subsequent removal

of this cancellation especially the latter quickly rises in amplitude. This case of transient

growth is thus a clear example of the interference effect behind optimal growth in general,

here acting to produce rapid growth in the transverse flow field.

4.2 Transverse singular vectors

For α = 90◦ one has βc = 0 and thus the two first WKB normal modes have no parallel-

velocity component vm. The leading optimal perturbation is composed from these so

that optimal growth is restricted to ψm and b. Now the available shear is parallel to the

horizontal wavenumber vector of the perturbation, so that the so-called Orr mechanism

(Orr, 1907) can extract energy from the transverse flow-field component V0 of the shear

layer. In this case the perturbation leans initially against the shear and intensifies as it

is sheared over, thus producing strong vertical velocities. Kt is time dependent so that
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the variation of g has an important impact. As also shown in Appendix A one has at

|Ntot|2 /N2 ¿ 1

σ2
1 ≈ e−2Dg1/2 N2

|N |2tot





sin2 φ a < 1

sinh2 |φ| a > 1

. (52)

Also for this case both shear (via g) and reduced static stability (via an enhanced collinear-

ity of the involved normal modes) act to enforce the transient growth, which is reduced

by viscous-diffusive damping. Once again a = 1 is no real instability threshold.

At fixed initial vertical wavenumber m the squared growth factor σ2
1 peaks at the

maximum of g where K2
t minimizes. This is at k‖ = m/βτ . There

g = 1 + β2τ 2 (53)

D = νm2τ

(
1

β2τ 2
+

1

3

)
(54)

φ = −Ntot

β
ln

(√
1 + β2τ 2 − βτ

)
, (55)

so that the growth factor is of the order N2/ |Ntot|2 for small τ , and diverges for large τ

as long as viscous-diffusive damping is unimportant. This divergence is ∝ τ for a < 1 and

∝ τ
√

4/|Ri|+1 for a > 1, i.e. in contrast to the parallel case algebraic and not exponential.

For λ‖ = 0.1Λz = 600 m and four representative combinations of a and τ the leading

growth factors are shown in figure 3, giving also a good confirmation of the WKB approach

and approximation (52). For the exact values the propagator matrix has been determined

from numerical integration of (24)–(26), followed by a numerical solution of the eigenvalue

problem (34).

The structure of the leading optimal perturbation reveals a similar interference effect

as in the case above. To lowest approximation in |Ntot|2 /N2 ¿ 1 one finds (Appendix A)
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a+ ≈ −a− so that

ψm = −a+
g3/4

K0

(
eiφ − e−iφ

)
(56)

bm = a+Ntotg
1/4

(
eiφ + e−iφ

)
, (57)

i.e. there is initially near-cancellation in ψm whence in the integration it rapidly rises

in amplitude due to removal of the destructive interference, so that this structure is

dominated by growth in kinetic energy in ψm. For both cases, i.e. parallel and transverse

propagation, one finds the buoyancy growth to be relatively weak.

4.3 Dependence on azimuth angle

In order to give an impression of the general dependence of optimal growth in the shear-

layer approximation we show in figure 4 for the same four cases as in Figs. 2 and 3 the exact

growth factors for the azimuth angles α = 0◦, 30◦, 60◦, and 90◦. In a comparison between

the growth of parallel and transverse perturbations one finds the former to dominate for

a > 1. This is a result of the exponential dependence on optimization time in the parallel

case, while optimal growth of transverse perturbations only rises algebraically with τ .

At a < 1 parallel optimal growth dominates for small τ , due to the additional factor

4/ |Ri| in σ2
1, while transverse optimal growth takes the lead for larger τ , since the growth

factors of parallel perturbations cannot be larger than (4/ |Ri|) (N2/N2
tot), while σ2

1 ∝ τ

in the other case. Interestingly for a < 1 the growth factor gets largest for intermediate

azimuth angles. This is in good agreement with the synergism between Orr mechanism

and roll mechanism observed by Farrell and Ioannou (1993b) in unstratified shear layers.

Only at larger a and τ the growth of parallel perturbations dominates as a result of the

strong exponential dependence of the corresponding growth factor on τ . The dependence
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of the optimal wavenumber, at which optimal growth maximizes, on optimization time

is for oblique SV, due to the factor g, quite similar to the behavior in the transverse

case, i.e. we find optimal growth near k‖ = m/βsτ , so that the optimal wavelength rises

in proportion with the optimization time. One also recognizes the dependence of the

optimal wavelength of parallel optimal growth on τ as predicted for a < 1 by (46) (n = 0

for τ = 1 h) and (47) (for τ = 10 min). The only case where the optimal wavenumber

stays independent of τ is for parallel SV at a > 1.

5 Normal modes and singular vectors for the 1D pro-

file

In the approximation of an IGW by a one-dimensional vertical profile one obtains the

independent subsystems (12)–(16), one for each combination of k and l, i.e. k‖ and

α. Moreover total energy can be written, up to an irrelevant constant factor, as E =

∫∞
−∞ dk

∫∞
−∞ dlEkl with Ekl = |v|2 /2 + |b|2 /2N2, so that the energy norm also does not

couple different horizontal wave vectors. Thus both the normal modes and the singular

vectors must be determined separately for each combination of k‖ and α. This has been

done using sparse-matrix techniques, as described in Appendix B.

5.1 Short-term normal-mode growth vs singular-vector growth

First we have analyzed a statically unstable IGW packet (a = 1.5) with vertical wavelength

Λz = 6 km. The development time considered is τ = 10 min, i.e. approximately one

Brunt-Vaisala period. The growth factors (exp γντ for the normal modes and σν for
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the singular vectors) of the leading patterns (with largest growth rates, i.e. for ν = 1)

obtained in both analyzes are shown for different azimuth angles and parallel wavelengths

in figure 5. Because of the Coriolis effect there is a weak asymmetry in the growth factors

between (for any β) α = 90◦ ± β. It is however so small that we only show results for

0◦ ≤ α ≤ 90◦. In comparing the normal mode growth curves to corresponding results by

Dunkerton (1997) and Kwasniok and Schmitz (2003) minor differences are to be expected,

since in those studies the impact of the Coriolis effect was taken into account as far as

the shape of the basic wave is concerned, but not in the linear model itself. However, we

actually find quite good agreement for this value of a. Thus, also two main features in the

growth curves obtained there are reproduced. First, at parallel wavelengths of the order

of the vertical wavelength of the basic wave we find a local maximum which is especially

pronounced for transverse propagation (α = 90◦). Secondly, towards shorter wavelengths

the growth factors for non-transverse propagation rise again to an even higher level. Most

pronounced here is the growth factor for parallel propagation (α = 0◦), maximizing at

λ‖ ≈ 400 m to a value near 30. At even shorter scales viscosity takes over and leads

to weaker growth rates, and finally decay. This is in close correspondence to the strong

growth of small-scale parallel normal modes in the constant-shear layer discussed above.

The two peaks, as well as the general finding that instability exists at all azimuths, can

also be interpreted via the local Richardson number Ri = N2
tot/(∂U‖/∂z)2 (Rit as defined

in (9) is the minimum of Ri over all azimuth angles). Motivation for the use of the local

Richardson number is that for a purely z-dependent background without vertical wind the

well-known Taylor-Goldstein equation can be derived from the linear equations (12) – (16)

without rotation, which has been the basis of the analysis by Fritts and Yuan (1989b),
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Yuan and Fritts (1989), Dunkerton (1997), and Kwasniok and Schmitz (2003). This

equation had previously been analyzed by Howard (1961) and Miles (1961) who showed

that no normal-mode growth can exist if Ri > 1/4 everywhere. As a necessary condition

for normal-mode instability the local Richardson number should therefore be less than

1/4 anywhere in the domain. Neglecting viscosity and diffusivity, setting K · x − ωt =

Kx0 + Mz = π + φ with local phase φ = Mz, and applying (5) – (7) one finds

Ri =
(1−R2)(1− a cos φ)

a2(R sin α cos φ + cos α sin φ)2

1

1− Ω2−/N2
. (58)

For (R, a) = (0.65, 1.5) we have plotted Ri(α, φ) in figure 6 (assuming Ω2
− ¿ N2). The

instability at all azimuths is consistent with the observation that for all α there is a wave

phase where Ri < 1/4. Furthermore we find at φ = 0 negative singularities at α = 0,±π,

and saddle points at α = ±π/2, indicating the most pronounced instabilities to occur at

parallel propagation. Lelong and Dunkerton (1998a) show a similar plot for a < 1 where

the minimum of Ri lies at α = ±π/2. It appears that the growth rate peaks we find for

transverse propagation are related to these minima which here at a > 1 become masked

by the negative singularities at α = 0,±π.

Now turning to the singular vectors (right panel of figure 5) we observe conspicuous

similarities to the normal modes. Again we find the most intense growth at short scales

and parallel propagation with a secondary peak at longer scales and transverse propa-

gation. The peaks are less pronounced, and the azimuth dependence is also somewhat

weaker. Furthermore, the most rapidly growing transverse singular vectors have smaller

scales. Whereas the most rapid transverse normal mode growth is at λ‖ ≈ 8 km, the

respective nonmodal growth maximizes at 5 km. The most important difference, how-

ever, is that nonmodal growth within τ =10 min is more rapid, by about a factor 3, than
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normal-mode growth. At other wave amplitudes we get the same result. Figure 7 shows

the normal-mode and singular-vector growth curves for parallel and transverse propaga-

tion at a = 0.9 and 0.5. At slightly subcritical amplitudes (a = 0.9) optimal growth is still

quite strong (nearly a factor 10 for parallel propagation) while the normal modes grow

only by an insignificant rate. The largest growth factor we find is exp (γ1τ) = 1.006 at

(
α, λ‖

)
= (90◦, 8.9km). The slightly more intense normal-mode instabilities found by Yau

et al. (2004) for subcritical monochromatic IGW seem to be due to their neglect of viscos-

ity and diffusion, and their use of larger values for a and R than ours. Even at rather small

amplitudes (a = 0.5) optimal growth still exists. This, however, should perhaps not be

overrated, since growth by a factor 2 might usually not be sufficient for really destabilizing

the basic wave packet. These results verify the prediction from the constant-shear-layer

approximation that at short optimization times strong transient growth of nonmodal per-

turbations can exist, dominated by near-parallel propagation. This persists for a < 1,

while there modal growth is basically suppressed. We also reproduce the scales of paral-

lel and transverse optimal perturbations, the former being considerably shorter than the

latter. A major difference is that no synergism between roll and Orr mechanism is seen in

the sense that it is always the parallel perturbations which grow most rapidly, while the

shear layer would predict most rapid growth for slightly oblique propagation directions,

as also visible in figure 4.

The impact of the vertical wavelength of the basic wave on optimal growth can be seen

in figure 8. There we show the leading growth factors (for parallel and transverse singular

vectors) for different basic wave amplitudes and vertical wavelengths. As R is increased

or Λz decreased (R = 0.86, 0.65, and 0.50, for Λz = 3, 6, and 9 km, respectively) the
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singular-vector growth gets stronger. It appears that the tendency for subcritical growth

(at a < 1) occurs mainly in inertia-gravity waves with smaller vertical wavelengths (i.e.

large R). This is in close analogy to the predictions from normal-mode theory (Fritts and

Rastogi, 1985; Dunkerton, 1997). Once again we find this also to be a prediction from the

constant-shear-layer approximation where it is found that parallel optimal growth obeys

the proportionality σ1 ∝
√

4/ |Ri| = 2β/ |Ntot| while for transverse perturbations one has

σ1 ∝ (1 + β2τ 2)
1/4

. Thus smaller vertical wavelengths with larger shear in the transverse

wind β = afM/K lead to stronger nonmodal instabilities. Furthermore, also here we

find for all examined waves stronger short-term growth for parallel singular vectors. We

also find a tendency for longer instability wavelengths λ‖ as Λz is increased. At least

partially this might be explained as an effect of viscosity and diffusion since the shear-

layer approximation would predict, due to the corresponding damping, strongest growth

at smallest m which however is limited below by the vertical wavenumber of the wave

packet. Smaller M thus allow smaller m not in contradiction to the basic assumption that

the perturbative scales are smaller than those of the IGW, while the optimal k‖ scales

roughly with m.

5.2 Nonmodal structure and growth mechanisms

The similarity between the growth-factor curves obtained in the constant-shear-layer ap-

proximation and for the more general 1D profile suggest the singular vectors to be well

enough localized in the region of least static stability for the former approximation to

hold. Indeed, as can be seen in figure 9, this is the case. There we show the distribution

of energy density Ekl, within the innermost wavelength (Λz = 6 km) of the IGW packet
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with a = 1.5, for leading normal mode and singular vector (τ = 10 min) at four represen-

tative azimuth angles. For α ≤ 30◦ both types of perturbations are highly concentrated

in the innermost region of the wave packet. For larger azimuth angles the normal modes

are rather smoothly spread over the wave packet, while the optimal perturbations are

still well localized, although for the leading transverse singular vector this localization is

smeared out in the course of its further time development. At other values of a and Λz

the localization turns out to be comparable (not shown).

Next comes the question how well the optimal perturbations can be approximated

by a monochromatic wave in the vertical, as is done in the shear-layer approximation.

Figure 10 gives a representative impression. There we show for Λz = 6 km and a = 0.9

and 1.1 the real part of the structure of the leading parallel and transverse optimal

perturbations. One does see a wavy structure with wavelengths very roughly of the order

of 0.1 Λz, as was assumed in the shear-layer calculations above. Beyond this, however,

we also note a dependence of the dominant vertical wavelength on azimuth angle which

cannot be predicted by the shear-layer considerations. Furthermore the wave trains are

all but constant in local wavelength. Nonetheless, even these rough agreements seem to

be satisfactory enough for the shear-layer picture to provide valuable information.

Finally we look at the relative growth of the various model variables. The shear-layer

approximation predicts for the parallel singular vectors dominant growth in v⊥ while that

of b should be negligible. For the leading transverse perturbation one obtains growth

mainly in ψ with at most weak amplification in b, and no growth in v⊥. For a comparison

we have calculated how much in an optimal perturbation the contribution of each of these

variables to Ekl increases within the optimization time. For the same perturbations as

26



shown in Fig. 10 these amplifications (e.g. |v⊥ (τ)|2 /
〈
|v⊥ (0)|2

〉
for v⊥ where angle brack-

ets denote a vertical average) are shown in figure 11. For the parallel perturbation one

finds the picture from the shear-layer approximation basically verified. More interesting

here is the leading transverse perturbation. While indeed the amplification of ψ domi-

nates in the innermost region, we also find a strong contribution from growth in v⊥ away

from there. This indicates that the gradient in U0, neglected in the constant-shear-layer

assumption, but non-vanishing for z 6= 0, plays an important role so that via the roll

mechanism growth of v⊥ becomes possible. The elliptic polarization of the IGW is thus

leaving traces.

6 Summary and discussion

The significance of rapid transient growth of nonmodal structures in the incipient in-

stability of gravity waves in the middle atmosphere had not been given a systematic

focus so far. Our study represents a first step in this direction. Here we have looked at

inertia-gravity waves (IGW) with rather long horizontal scales (500 km) and low intrin-

sic frequencies (0.5 ≤ R = f/|ωintr| ≤ 0.86). Their linear stability has been studied in

a Boussinesq model with realistic viscosity and diffusion. Motivated by the scenario of

an IGW propagating upwards from some source below and gaining in amplitude due to

the decreasing ambient density we have not looked at a single monochromatic wave, but

rather an upwardly propagating wave packet of limited vertical extent. For different in-

ternal frequencies, i.e. vertical wavelengths, and different wave amplitudes we have picked

from the wave packet the vertical profile of wind and buoyancy initially exhibiting least

static stability. This has then been used as a horizontally uniform and time-independent
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basic state for the stability analysis. Both standard normal modes have been calculated

and singular vectors. The latter are those among all possible perturbations maximizing

the growth of total energy in the disturbance over some finite time, which we have mostly

taken to be 10 min, i.e. roughly one Brunt-Vaisala period.

In all cases examined we find the leading singular vector to amplify significantly more

rapidly than the leading normal mode. Most importantly, at wave amplitudes slightly

below the static instability limit (a = 0.9), where normal modes exhibit only insignificant

growth over 10 min, the energy amplification in the leading singular vector can be as large

as two orders of magnitude. The problem being separable with respect to the horizontal

wavenumber of the perturbation, we find among a rather broad spectrum (both with

respect to the wavelength and the propagation direction of the perturbation) two main

types of nonmodal instabilities. One of these has rather long horizontal wavelength of a

few kilometers and propagates in the horizontal perpendicular to the propagation direction

of the basic wave (transverse singular vector). The other type is a singular vector with

rather short horizontal wavelength (a few 100 m), propagating in the horizontal parallel

to the IGW (parallel singular vector). Among the two we always find the latter to amplify

more rapidly than the former.

Interestingly, much of the diagnosed transient growth can be understood in a most

simple approximation of the examined vertical IGW profile where only the reduced Brunt-

Vaisala frequency N2
tot and the transverse-wind shear β at the altitude of least static

stability is taken into account. This admits analytic treatment of the two limit cases of

parallel and transverse propagation. Basic mechanisms discussed by Farrell and Ioan-

nou (1993a,b) and Bakas et al. (2001) for stratified constant-shear layers turn out to be
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responsible for the optimal growth, here however with a significant enhancement by the

locally reduced static stability. For parallel perturbations this is the roll mechanism which

leads to preferential amplification of the transverse-wind component in the perturbation.

Transverse singular vectors are driven by the Orr mechanism where the transverse-vertical

circulation is extracting energy from the basic wave. In both cases optimal growth can be

explained explicitly via a simple interference effect between contributing normal modes.

The scale-difference between the two types of optimal perturbations is reproduced, i.e. at

a given vertical wavenumber the growth of parallel optimal perturbations maximizes at

shorter wavelengths than that of transverse perturbations. Also the relative amplitudes

of the respective growth factors are predicted well by the constant-shear layer approxi-

mation. One finds that the energy amplification of parallel perturbations in the statically

stable case (a < 1) has an upper limit (4/ |Ri|) (N2/N2
tot), with Ri = N2

tot/β
2, while

that of transverse perturbations increases algebraically with optimization time, as long

as viscosity and diffusion are of weaker importance. This indicates that at intermediate

optimization times transverse singular vectors might be more important. For very long

optimization times we expect the weaker viscous-diffusive damping of parallel perturba-

tions (with constant vertical wavenumber in contrast to the oblique cases) to eventually

take the lead, just as shown for the case N2 = N2
tot by Bakas et al. (2001). One major

difference between the results from the shear-layer approximation and the more general

calculations is that the shear-layer synergism between roll and Orr mechanism is not

found in the more general case, i.e. instead of obliquely propagating perturbations it

is always the parallel structures which grow most strongly. Another interesting differ-

ence is that the transverse SV seems in reality to be also influenced, via a respective roll
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mechanism, by the parallel-wind shear at some distance from the altitude of least static

stability (where it vanishes). As a consequence the parallel wind amplifies significantly in

this structure. This is in interesting difference to the dynamics of normal modes where

the growth rate is only influenced by the gradients in the IGW wind component parallel

to the propagation direction of the perturbation, as follows from the Taylor-Goldstein

equation (e.g. Dunkerton, 1997; Kwasniok and Schmitz, 2003). It should however be

noted that also the normal modes determined here always have a strong amplitude in

v⊥ (not shown). What this implies for the feedback of the growing perturbation on the

basic wave must remain unclear at this stage. It can, however, be anticipated that it is

to a large part the corresponding IGW structure in this component (v⊥) which will be

modified. This would influence both the upward momentum transport in the wave, but

also the instability dynamics of perturbations propagating at oblique angles.

The parameter dependence of our results seems worth some discussion. The impact

of vertical wavelength of the basic wave on the instability is as expected from previous

normal mode analyzes and the shear-layer approximation: As it decreases, and thus β

increases, the instability gets more vigorous, and both parallel and transverse leading

singular vector move to smaller scales. Since the value of the Brunt-Vaisala frequency

used here is actually a bit low for the middle atmosphere, although it has e.g. also been

employed by Fritts et al. (2003), we have also done calculations with N = 2 · 10−2s−1

at 70◦ latitude. The results there have been very similar to the ones reported here, with

the major difference that the overall instability time scale was shorter by a corresponding

factor 2. For better readability we had chosen not to nondimensionalize our equations.

By doing so, however, using Brunt-Vaisala period and vertical basic-wave wavelength as
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time and length scales, one can see that at zero viscosity and thermal diffusivity the only

external controlling parameter for a wave with given scales is f/N . Thus, at fixed f/N

and spatial IGW scales, varying N simply implies a proportional variation of the inverse

time scale of the problem, thus explaining the above mentioned factor 2. The remaining

influence of the different ratio f/N found in our second set of calculations is due to a

corresponding variation of R (or β), i.e. an IGW with vertical wavelengths 3, 6, or 9 km

has R = 0.75, 0.5, or 0.35, respectively. Accordingly the identified growth factors (within

5 min now) are slightly weaker, while the results described here would strictly rather

apply to a basic wave with longer horizontal wavelength, i.e. approximately 650 km.

Another important factor might be viscosity and thermal diffusion, the more so as

in the atmosphere both rise exponentially with growing altitude due to the decrease in

ambient density. We have therefore also done calculations with a value ν = µ = 5m2/s.

Due to its comparatively large spatial scales we find no impact of increased viscosity and

diffusion on the leading transverse singular vector. Because of its smaller spatial scales

the leading parallel singular vector, however, is affected. Its growth factors decrease and it

moves to larger spatial scales. For the latter effect the shear layer-approximation predicts

λ‖ ∝ ν1/4, which is roughly reproduced by our calculations. Due to this the comparative

importance of parallel singular vector and transverse singular vector seems to be altitude-

dependent, as well as the spatial scales of the leading parallel singular vector.

It is certainly too early for a final statement on the relevance of transient nonmodal

growth for the problem of IGW breaking in the middle atmosphere, although our results

seem to support it. Further investigations are necessary to shed more light on the issue.

So it will have to be answered what remains of the identified patterns as the instability
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problem with the complete time-dependent IGW packet is treated, and it might also be

interesting to examine the development of optimally growing structures on longer time

scales than considered here. Due to limited space also the energetics of the identified

perturbations has not been given sufficient attention in this study. Their nonlinear devel-

opment will have to be studied in order to assess their role in wave saturation or damping,

and in turbulence generation. Another very important question relates to the ambient

perturbations present in the middle atmosphere which must serve to initialize the mod-

elled transient behavior. It will have to be shown that their amplitude can at times be

large enough to favor nonmodal over modal growth (which will be comparatively more

important the stronger the NM growth rates are), and the role of their spectrum in se-

lecting certain initial perturbations over others will have to be examined. Some of these

questions are addressed in a companion paper (Achatz and Schmitz, 2005), but much

remains for the future.
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Appendix A Optimal growth in the stratified-shear-

layer approximation

Using Eklm as norm one finds from application of (37) and (41)–(43) that

Eklm = atΦ
tMΦa , (A1)

where

a = (a+, a−, av)
t (A2)

Φ
tMΦ =

e−2D

2




g1/2e−i(φ−φ) g1/2ei(φ+φ) ε−
ε+

g1/4eiφ βc√
ε+Ntot

g1/2e−i(φ+φ) ε−
ε+

g1/2ei(φ−φ) −g1/4e−iφ βc√
ε+Ntot

g1/4e−iφ βc√
ε+Ntot

−g1/4eiφ βc√
ε+Ntot

1




(A3)

with ε− = 1 − β2
c / |Ntot|2 − |Ntot|2 /N2. M (t = 0) results from (A3) by setting g = 1,

D = 0, and φ = 0. The optimal perturbations are given by the three eigenvectors aν

satisfying

(
Φ

tMΦ
)

(τ) aν = σ2
νM (0) aν (A4)

with a corresponding eigenvalue equation det
[(

Φ
tMΦ

)
(τ)− σ2

νM (0)
]

= 0. This yields

a third-order polynomial for σ2
ν which can be solved analytically, albeit by rather compli-

cated expressions for the eigenvalues. More interesting, however, is that in the two cases

βs = 0 (parallel perturbation with g = 1 and φ = Ntotkτ/
√

k2 + m2) and βc = 0 (trans-

verse perturbation) there is the exact solution σ2
2 = exp (−2D). With this knowledge the

characteristic polynomial can be reduced to second order with the comparatively simple

solutions

σ2
1,3 = g1/2e−2D


δ

2
±

√
δ2

4
− 1


 , (A5)
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where for βs = 0

δ = 2− N2

4N2
tot

(
1− N2

tot

N2

)2 (
eiφ − e−iφ

)2

+
β2

c N
2

4N4
tot

[(
eiφ/2 − e−iφ/2

)4 − N2
tot

N2

(
eiφ − e−iφ

)2
]

, (A6)

and for βc = 0

δ =
N2

4 |Ntot|2
(

1 +
|Ntot|2

N2

)2

×

e−i(φ−φ) + ei(φ−φ) −

(
1− |Ntot|2 /N2

1 + |Ntot|2 /N2

)2 (
e−i(φ+φ) + ei(φ+φ)

)
 . (A7)

In the limit β2
c / |Ntot|2 = 1/ |Ri| À 1 À |Ntot|2 /N2 one obtains from (A6)

δ ≈ β2
c N

2/
(
4N4

tot

) (
eiφ/2 − e−iφ/2

)4 À 1 , (A8)

whence results (44). Similarly one obtains (52) from (A7) in the limit |Ntot|2 /N2 ¿ 1.

The structure of the optimal perturbations is derived by reinserting the growth factor

into (A4). One finds at βs = 0 for the i-th perturbation

a±
av

=
βc√

ε+N tot

1
[
e−i(φ−φ) − s2

i

] [
ei(φ−φ) − s2

i

]
− ε2−

ε2+

∣∣∣∣e−i(φ+φ) − s2
i

∣∣∣∣
2

×





−
(
eiφ − s2

i

) [
ei(φ−φ) − s2

i

]
− ε−

ε+

(
e−iφ − s2

i

) [
ei(φ+φ) − s2

i

]

(
e−iφ − s2

i

) [
e−i(φ−φ) − s2

i

]
+ ε−

ε+

(
eiφ − s2

i

) [
e−i(φ+φ) − s2

i

] , (A9)

where s2
i = e2Dσ2

i . In the limit of β2
c / |Ntot|2 = 1/ |Ri| À 1 À |Ntot|2 /N2, and hence

large s2
1, this reduces for i = 1 to (48). At βc = 0 the second optimal perturbation is just

(a+, a−, av) = (0, 0, 1) while for i = 1, 3 one obtains av = 0 and

a+

a−
=

ε−
ε+

s2
i − ei(φ+φ)

e−i(φ−φ) − s2
i

, (A10)

where s2
i = e2Dg−1/2σ2

i . For i = 1 this yields in the limit |Ntot|2 /N2 ¿ 1 the approximate

relation a+ ≈ −a−, as long as s2
1 is large.
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Appendix B Technical aspects of the algorithms for

normal modes and singular vectors

For not too high-dimensional problems one can calculate normal modes or optimal per-

turbations directly via eigenvalue analysis of A or singular value analysis of L, respec-

tively. For the latter one needs the propagator matrix which can either be determined

by initializing the tangent linear model with all possible unit vectors or (in the case of

a time-independent background) by first doing an eigenvalue analysis of A, transforming

to the eigenvector basis, integrating the tangent linear model analytically via (30), and

transforming back to the original grid-point representation. In the case of large problems

where storage of A and Φ is too demanding for the available computer memory iterative

techniques are required. Since high-dimensionality is a problem in the singular-vector cal-

culations for the full two-dimensional IGW packet reported in a companion paper we have

used such techniques in our analysis. Provided only a few leading patterns are desired

this can also speed up the calculations.

For the calculation of leading normal modes of a time-independent background we

use the fact that these are also eigenvectors of Φ(τ) with eigenvalue exp(−iωντ + γντ).

With the help of the software package ARPACK (Lehoucq et al., 1998) a desired number

of leading eigenvectors (with largest eigenvalue modulus exp(γντ)) have been determined

via an implicitly restarted Arnoldi Method. In this approach Φ(τ)q is required for initial

states q determined in the algorithm at each iteration. Integrating from t = 0 to t = τ this

mapping is obtained from the linear model. The iterations stop when the required normal

modes, eigenfrequencies, and growth rates have been calculated at a chosen accuracy.
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The same software package is also employed in the determination of a required number

of leading optimal perturbations. For this we solve the eigenvalue problem (35). As in the

normal-mode analysis, ARPACK requires the user at each iteration to provide LtLq for

initial states q determined by the algorithm. After having obtained r = N tNΦ(τ)N−1q

with the help of the linear model this necessitates also taking the product Φ
t
(τ)r. For

this we used the adjoint Boussinesq model extracted from the linear model code with the

help of the adjoint model compiler TAMC (Giering and Kaminski, 1998). Also in this

analysis the iterations stop when a required accuracy for the desired number of leading

optimal perturbations is reached.

There is one additional aspect to the problem here which needs special treatment. The

Boussinesq equations require the flow field to be non-divergent, i.e. purely rotational. The

pressure is determined so that the divergence of a flow field is conserved. In the search of

the optimal rotational perturbation one must therefore modify the propagator matrix by

first decomposing the initial flow field v into its rotational and its divergent part. For this

we have determined a velocity potential χ such that ∇2
1χ = ∇1 ·v. The projection is done

by mapping v 7→ v −∇1χ. Since the kinetic energy of the flow field can be split up into

its contributions from the rotational part and the divergent part, this leads to a reduction

of the kinetic energy. By maximizing the energy growth in the course of the integration

the singular-vector algorithm then automatically identifies among all flow fields with the

same rotational part their least energetic purely rotational member.
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Figure 1: Squared total Brunt-Vaisala frequency in a gravity wave packet with a = 1.5

(left panel, negative values are indicated by dashed contours), and at x = Λx/2 its vertical

dependence and that of the three-dimensional velocity field (right).
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Figure 2: For the shear-layer approximation of optimal growth of parallel perturbations

(α = 0, vertical wavelength λz = 600 m) in an IGW packet (Λz = 6 km) with two different

amplitudes a the leading growth factors for optimization times τ = 10 min and 1 h, in

dependence of the horizontal wavelength of the perturbation. Shown are both the exact

values and the approximation given by equation (44). In the case (a, τ) = (1.1, 10min)

the growth factors have been divided by a factor 1000.
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Figure 3: For the shear-layer approximation of optimal growth of transverse perturbations

(α = 90◦, vertical wavelength λz = 600 m) in an IGW packet (Λz = 6 km) with two

different amplitudes a the leading growth factors for optimization times τ = 10 min and

1 h, in dependence of the horizontal wavelength of the perturbation. Shown are both the

exact values, their WKB approximation by equation (A5), and the approximation given

by equation (52). In the case (a, τ) = (1.1, 10min) the growth factors have been divided

by a factor 2.

46



Figure 4: For the same four cases shown in Figs. 2 and 3, the optimal growth factors for

the azimuth angles α = 0◦, 30◦, 60◦, and 90◦.
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Figure 5: For the vertical profile at the horizontal location of maximal static instability,

of a statically unstable (a = 1.5) IGW packet with vertical wavelength Λz = 6 km, the

growth factors of the most unstable normal modes (left panel) and leading singular vectors

(right panel), propagating in the horizontal at various azimuth angles α with respect to

the basic wave, as a function of the parallel wave length. Integration time is τ = 10 min.
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Figure 6: As a function of instability azimuth α and wave phase φ, the local Richardson

number in the vertical IGW profile used in the analysis shown in figure 5. Only values

−2 ≤ Ri ≤ 1/4 are shown.
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Figure 7: As Fig. 5, but just for transverse and parallel perturbations, and the basic wave

amplitudes a = 0.9 and 0.5.
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Figure 8: For the basic-wave vertical wavelengths Λz = 3 km and 9 km, the wavelength-

dependence of the leading growth factors for parallel and transverse perturbations, at

basic-wave amplitudes a = 0.7, 0.9, 1.1, and 1.3.
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Figure 9: For an IGW packet with Λz = 6 km and a = 1.5 and azimuth angles α =

0◦, 30◦, 60◦, and 90◦ the energy density Ekl of the leading normal modes (left panels) and

the leading singular vectors at initialization (upper right) and optimization time (lower

right, divided by σ2
1), in arbitrary units.

52



Figure 10: For an IGW packet with Λz = 6 km and a = 0.9 (left column) or 1.1 (right)

and azimuth angles α = 0◦ (top row) and 90◦ (bottom) the altitude-dependence of the

real part of the four model variables in the leading optimal perturbation, in arbitrary

units.
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Figure 11: For an IGW packet with Λz = 6 km and a = 0.9 (left column) or 1.1 (right)

and azimuth angles α = 0◦ (top row) and 90◦ (bottom) the altitude-dependence of the

relative amplification during the optimization time τ = 10 min in the four model variables

in the leading optimal perturbation.
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