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Abstract

The breaking of an inertia-gravity wave (IGW), initiated by its leading normal

modes (NMs) or singular vectors (SVs), and the resulting small-scale eddies are

investigated by means of direct numerical simulations of a Boussinesq fluid char-

acterizing the upper mesosphere. The focus is on the primary nonlinear dynamics,

neglecting the effect of secondary instabilities. It is found that the structures with

the strongest impact on the IGW and also the largest turbulence amplitudes are the

NM (for a statically unstable IGW) or short-term SV (statically and dynamically

stable IGW) propagating horizontally transversely with respect to the IGW, possi-

bly in agreement with observations of airglow ripples in conjunction with statically

unstable IGWs. In both cases these leading structures reduce the IGW amplitude

well below the static and dynamic instability thresholds. The resulting turbulent

dissipation rates are within the range of available estimates from rocket soundings,

even for IGWs at amplitudes low enough precluding NM instabilities. SVs thus

can help explain turbulence occurring under conditions not amenable for the clas-

sic interpretation via static and dynamic instability. Due to an important role of

the statically enhanced roll mechanism in the energy exchange between IGW and

eddies the turbulent velocity fields are often conspicuously anisotropic. The spatial

turbulence distribution is determined to a large degree by the elliptically polarized

horizontal velocity field of the IGW.
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1. Introduction

The importance of gravity waves for the dynamics of the middle atmosphere via their mo-

mentum and energy deposition has been known for a long time (Hines 1960; Houghton 1978;

Lindzen 1981; Holton 1982, 1983; Garcia and Solomon 1985). In addition, turbulence with dis-

sipation rates possibly of relevance for the mesospheric energy balance (Lübken 1997) might

at least partially be traced back to gravity-wave breaking (Becker and Schmitz 2002). Since

the major part of the corresponding wave spectrum is at scales which cannot be resolved within

state-of-the-art general circulation models these can only incorporate gravity-wave effects via

parameterizations. With this regard there are still considerable uncertainties since many details

of (mostly tropospheric and stratospheric) gravity-wave radiation, propagation through the mid-

dle atmosphere, and breaking, predominantly in the mesosphere-lower-thermosphere (MLT),

are not sufficiently understood yet (Fritts and Alexander 2003).

Numerical studies of the nonlinear breaking process, which is the focus of this paper, have

traditionally resorted to some kind of large-eddy simulation (LES) with a flux-gradient type tur-

bulence parameterization (Winters and D’Asaro 1994; Andreassen et al. 1994; Fritts et al. 1994;

Isler et al. 1994; Lelong and Dunkerton 1998a,b). Direct numerical simulations (DNS) with

their least ambiguous results on the corresponding turbulence dynamics have only recently be-

come possible (Fritts et al. 2003, 2006). One might expect these to represent a useful laboratory

for tests of gravity-wave parameterizations, but they are computationally still very expensive.

So much the more interesting are linear studies yielding a-priori information about instability

thresholds and the scales and structures of the most relevant initial perturbations in a breaking

wave. While a DNS of wave breaking initialized by purely random perturbations sheds light on

some aspects of the process, an alternative approach, equally interesting from the conceptual
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point of view, is the study of the nonlinear development of a gravity wave after having been dis-

tinctly perturbed by its leading normal mode or another dynamically distinguished perturbation

structure. Such studies can promote additional insight into the process by identifying its most

paradigmatic features.

In this respect it seems appropriate to recognize that, roughly speaking, gravity waves fall

under two main classes, differing in the importance of rotation for their dynamics. While high-

frequency gravity waves (HGW) are mostly unaffected by the Coriolis force, inertia-gravity

waves (IGWs), with nearly vertical phase propagation and periods of the order of the inertial

period, exhibit an elliptic polarization of their velocity field which is a direct result of rotation.

Correspondingly, their dynamics differ appreciably so that the breaking of these wave types

should be studied separately. The present work represents an investigation of IGW breaking

initialized by typical perturbations derived from linear theory.

Linear studies of modal IGW instability (Fritts and Yuan 1989; Yuan and Fritts 1989;

Dunkerton 1997; Kwasniok and Schmitz 2003; Yau et al. 2004) have identified as basic pa-

rameters the ratioR = |f/ω| between inertial frequency and intrinsic wave frequency, the wave

amplitudea with respect to static stability (a = 1 corresponding to the margin of static insta-

bility, i.e. local overturning of the contours of density or potential temperature), the Richard-

son number Ri at the statically least stable location, and the azimuthal angleα between the

horizontal directions of propagation of a perturbation and the IGW. Neglecting the horizontal

gradients in a monochromatic IGW one can derive from the inviscid-nondiffusive equations,

after a Galilei transformation into the reference frame moving with the wave phase velocity, a

modified Taylor-Goldstein equation of the type analyzed by Howard (1961) and Miles (1961).

They have shown that a necessary condition for the existence of unstable normal modes (NMs)
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in this equation is that there is a location whereRi < 1/4. With certain restricting modifications

(Lelong and Dunkerton 1998a, e.g.) this was also identified as a rough sufficient condition for

NM instability. The NMs are preferentially parallel (α = 0) for moderateR with not too steep

an IGW wave vector, but more isotropic, i.e. with nearly equal amplification rate for transverse

modes (α = 90◦), asR → 1.

A limitation of these studies is their reliance on the existence of a reference frame within

which the examined IGW is stationary, as is the case for a monochromatic wave, or, in view

of the long period of an IGW, the simple neglect of its time dependence. Since stationarity of

the examined reference solution (here the IGW) is a necessary condition for a NM analysis, a

stability theory must be generalized to get rid of this limitation. This leads to the additional

aspect that even for stationary reference states NM analyses only provide information about

possible time-asymptotic wave instabilities at infinitely small perturbation level. It is however

known from several other fields of fluid dynamics that under conditions when no growing NMs

exist rapid transient growth of so-called optimal perturbations or singular vectors (SVs) can

still be possible (Farrell 1988a,b; Boberg and Brosa 1988; Butler and Farrell 1992; Trefethen

et al. 1993). Provided a sufficiently high, but possibly yet small initial perturbation level is

available this can lead to the onset of turbulence even when such a result would not be expected

from a NM analysis. Moreover, even if growing NMs exist, it may happen that they take much

longer in their amplification so that the incipient instability is better characterized by transient

growth leading directly into the nonlinear decay phase. Luckily, a SV analysis by which such

possibilities are investigated does not rely on the stationarity of the wave examined. Motivated

by such considerations, recent studies of optimal perturbations of IGWs (Achatz 2005; Achatz

and Schmitz 2006a,b) have indeed shown that nonmodal transient perturbation growth by nearly
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an order of magnitude in amplitude is possible for IGW amplitudes precluding unstable NMs.

The propagation characteristics of the identified SVs are similar to that of NMs at largera but

they are typically more locally confined to the statically least stable location in the IGW, and

they have shorter horizontal wavelengths.

While the linear dynamics of NMs and SVs of IGWs have thus been studied in some detail1,

their nonlinear development has not really been looked at yet in a DNS. Among the four studies

coming nearest to this, Lelong and Dunkerton (1998a,b), on the one hand, have simulated IGW

breaking in an LES without explicit treatment of the turbulent scales. With the intention of

reducing the horizontal scale of the IGW for a givenR they have also used a ratiof/N between

inertial and Brunt-Vaisala frequency which exceeds typical values for the MLT by about an

order of magnitude. Fritts et al. (2003, 2006), on the other hand, have treated either the case

of HGW breaking or the instability of a simple shear layer, thus not including possible effects

of the elliptic polarization of the IGW velocity field. The present study has the intent of going

a step farther towards the simulation of the nonlinear development of an IGW perturbed by

either a NM or a SV. Major points of interest are the change of the IGW amplitude, the energy

exchange between IGW and perturbation, the distribution of perturbation energy between the

various dynamical fields in question, its spatial distribution, and the strength and distribution of

the occurring turbulent dissipation rates.

With this aim the paper is structured as follows: Section 2 describes the general setup of the

model and the numerical experiments. Section 3 discusses a way of describing the energetics

of the breaking process which facilitates an easier comparison with the previous linear studies.

Section 4 gives an account of the simulations of a statically unstable IGW perturbed by a NM or

1A further interesting aspect not pursued here any further is the possible existence of packets of small-scale
vortical perturbations growing due to a parametric resonance with the IGW (Miyazaki and Adachi 1998).
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a SV, while section 5 discusses a statically and dynamically stable IGW (a < 1, Ri > 1/4, no

NM instability) perturbed by one of its SVs. Section 6 compares the theory with some relevant

observational findings, and section 7 gives a summary and discussion of the most important

results.

2. Model setup

The equations used are the Boussinesq equations on anf plane, i.e.

∇ · v = 0 (1)

∂v

∂t
+ (v · ∇)v + fez × v +∇p− ezb = ν∇2v (2)

∂b

∂t
+ (v · ∇)b + N2w = µ∇2b . (3)

Herev = (u, v, w) denotes the 3D velocity field. The buoyancyb = g(θ − θ(z))/θ0 is a

measure of the deviation of the potential temperatureθ from a merely vertically dependent

reference profileθ(z), normalized by a characteristic valueθ0. g is the vertical gravitational

acceleration. The squared background Brunt-Vaisala frequency isN2 = (g/θ0)dθ/dz. An

equivalent interpretation of buoyancy and Brunt-Vaisala frequency isb = −g(ρ− ρ(z))/ρ0 and

N2 = −(g/ρ0)dρ/dz whereρ, ρ(z), andρ0 are density, a corresponding reference field, and

a characteristic value, respectively.p is the pressure field, normalized by a constant reference

density,f the Coriolis parameter, andez the vertical unit vector. For viscosity and thermal

diffusivity the typical upper-mesospheric valuesν = µ = 1m2/s are taken. Thef plane is

located at70◦ latitude. The Brunt-Vaisala frequency isN = 2 · 10−2s−1. For better readability

for a broader audience it has been decided not to non-dimensionalize the equations. One should,
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however, keep in mind that a non-dimensionalization, using the gravity-wave wavelengthΛ

(specified below) and the Brunt-Vaisala periodT = 2π/N as length and time scales, would

leave as the only controlling parameters the ratiof/N , the Reynolds numberRe = Λ2/(νT ),

and the Prandtl numberPr = ν/µ.

In the inviscid-nondiffusive limit the equations admit as exact solutions monochromatic

gravity waves with wavenumberk = (kx, ky, kz) and frequencyω satisfying the dispersion

relation

ω = ±
√

N2 cos2 Θ + f 2 sin2 Θ . (4)

HereΘ is the inclination angle of the gravity-wave wave vector with respect to the horizontal so

that (cos Θ, sin Θ) =
(
kx/

√
k2

x + k2
z , kz/

√
k2

x + k2
z

)
. Without loss of generality it is assumed

thatky = 0. At kz > 0 the−-branch of the dispersion relation represents a wave with upward

directed group velocitycg = ∇kω, but downward directed phase velocityc = (ω/k) (k/k),

wherek = |k|. Such a wave is examined in the present study. Following Mied (1976) and

Drazin (1977) a coordinate system is introduced in which the representation of the gravity

wave is especially simple. It is obtained by a rotation about they-axis so that the new vertical

coordinate points in the direction of the wavenumber vector, a translation along this axis with

the phase velocity, and a rescaling of the vertical axis in units of the wave phaseφ = k · x− ωt

(see also Fig. 1). The new coordinates are(ξ, y, φ) with

(ξ, φ) = [x sin Θ− z cos Θ, k (x cos Θ + z sin Θ)− ωt] (5)

The rotated velocity components along the new axes beinguξ, v, anduφ, the gravity wave takes
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in this representation the time-independent form

(uξ, v, uφ, b)GW = −ac

(
sin φ

sin Θ cos Θ
,− f/ω

cos Θ
cos φ, 0,

N2/ω

sin Θ
cos φ

)
, (6)

wherec = ω/k. The phase convention (Yau et al. 2004) is such that the buoyancy gradient

minimizes (maximizes) atφ = 3π/2 (π/2). The largest shear due touξ occurs atφ = 0, π,

and the largest shear due tov is at the extrema of the buoyancy gradient. The nondimensional

amplitudea is defined so that the wave is statically stable fora < 1, i.e. at these values one has

N2 + ∂b/∂z > 0 everywhere.

In the stability analysis the equations have been linearized about the gravity-wave state

(6). This has been done with viscosity and diffusion, but neglecting the weak IGW decay re-

sulting from these. Abstractly denoting the perturbations by a state vectorx (allowed to be

complex), the linear model is then given bydx/dt = Ax with some model operatorA. The

corresponding NMs are simply defined as the eigenvectorsnν of the model operator, satisfying

Anν = −i (ων + iγν)nν , with an eigenvalue consisting of an eigenfrequencyων and a growth

rateγν . An initial state given up to an amplitudeaν by a NM, i.e. x(0) = aνnν , leads in the

linear limit to a time dependent solutionx(t) = aνe
γνteiωνtnν , so that the existence of a growing

NM with γν > 0 implies linear instability. While a NM analysis thus searches perturbations

growing exponentially in time, a SV analysis explores the possibility of rapid transient growth.

Within the framework of a given norm‖x‖2 = xtMx, here the energy norm defined by the

appropriate metricM, the SV analysis asks what initial perturbationx(0) would maximize for

some given finite timeτ the ratio‖x(τ)‖2 / ‖x(0)‖2. For an answer one needs the propagator

matrix mapping the initial perturbation to its state att = τ via x(τ) = Φ(τ)x(0). Variational

analysis tells us that the desired perturbation initializing strongest growth is the leading eigen-
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vectorpν satisfyingM−1Φ
t
(τ)MΦ(τ)pν = σ2

νpν with the largest possible eigenvalueσ2
ν ,

which is the squared growth factor‖x(τ)‖2 / ‖x(0)‖2 if x(0) = pν . The time-dependent state

Φ(τ)pν developing from an optimal perturbationpν is the corresponding SV. Since the IGW

is symmetric with respect to the ”horizontal” directionsξ andy, one obtains here NMs and

SVs for each combination of corresponding wave numbers. The resulting perturbations have

the form(v′, b′) = <
{(

v̂, b̂
)

(φ, t) exp [i (κξ + λy)]
}

with (κ, λ) = 2π
λ‖

(cos α, sin α) being the

horizontal wave-vector components.λ‖ andα are the corresponding horizontal wavelength and

the azimuthal angle between(κ, λ) and theξ-axis. For details see eg. Achatz (2005).

In the simulations reported here the initial state for the nonlinear model is always obtained

by a superposition of the gravity wave and the state of one of the linear NMs or SVs att = 0.

It is symmetric with respect to the direction in theξ − y plane transverse to the direction of

propagation of the perturbation, and the model equations conserve this symmetry. It therefore

makes sense to introduce a horizontally rotated system of coordinates

(
x‖, y⊥

)
= (ξ cos α + y sin α,−ξ sin α + y cos α) (7)

respectively pointing in the directions parallel and transverse to the direction of the horizontal

wavenumber vector of the perturbation. In this representation the equation of continuity (1)

stays formally the same while (2) and (3) are replaced by

Du‖
Dt

− f (sin Θv⊥ − sin α cos Θuφ) +
∂p

∂x‖
+ b cos α cos Θ = ν∇2u‖ (8)

Dv⊥
Dt

+ f
(
sin Θu‖ + cos α cos Θuφ

)
+

∂p

∂y⊥
− b sin α cos Θ = ν∇2v⊥ (9)

Duφ

Dt
− f

(
sin α cos Θu‖ + cos α cos Θv⊥

)
+ k

∂p

∂φ
− b sin Θ = ν∇2uφ (10)
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Db

Dt
+ N2

(
− cos α cos Θu‖ + sin α cos Θv⊥ + sin Θuφ

)

︸ ︷︷ ︸
w

= µ∇2b , (11)

where
(
u‖, v⊥

)
are the velocity components corresponding to

(
x‖, y⊥

)
, andD/Dt = ∂/∂t +

v‖∂/∂x‖+v⊥∂/∂y⊥+(kuφ − ω) ∂/∂φ. This representation, up to the last rotation (7) identical

to the one also used by Fritts et al. (2003, 2006), seems to be best suited for a study of the

breaking of a monochromatic gravity wave, so that it provides the framework for the simulations

reported here. Moreover, the periodicity of the initial conditions with respect toφ andx‖ also

implies a conservation of this property in the ensuing time development, so that the boundary

conditions of the problem can be taken as periodic in all spatial directions.

For a numerical treatment the model equations have been discretized on a standard staggered

C-grid, as discussed e.g. in Durran (1999), with periodic boundary conditions. The model

domain extends from 0 to2π in φ and 0 toλ‖ in x‖. Consistent with the here chosen initial states

there is no dependence ony⊥. The model might be called 2.5D since it describes buoyancy and

a 3D velocity field depending on two spatial coordinates. Pressure is obtained by applying the

divergence to the momentum equations and solving the resulting Poisson equation by a Fourier

transform technique. The equations are integrated using a third-order Runge-Kutta time step

(Durran 1999). The model resolution was always chosen fine enough to resolve both the inertial

and the viscous subrange of the resulting turbulence spectra. Details are provided in table 1.

It shall be stressed that the 2.5D approach with periodic boundary conditions, as convenient it

might be for computational reasons, is also a desired simplification for better conceptual insight.

Only with reference to the results from such an idealized study can more complex behavior,

such as from local non-periodic initial perturbations or the full 3D behavior after secondary

perturbations with a spatial dependence iny⊥–direction, be understood most clearly.
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3. Energetics

Since the basic IGW is horizontally symmetric (i.e. with respect tox‖ andy⊥) it seems helpful to

analyze the interaction between IGW and perturbation in terms of the energy exchange between

the horizontal mean
(
v, b

)
and the horizontally-dependent deviations(v′, b′) = (v, b)−

(
v, b

)

(for simplicity henceforth called ”eddy” part). It is a standard procedure to derive from (1)

and (8)–(11) the following budget equations for the kinetic energy densitiesK = |v|2 /2 and

K ′ = |v′|2/2 and the densities of available potential energyA = b
2
/2N2 andA′ = b′2/2N2:

∂K

∂t
+ k

∂

∂φ

[
(uφ − c) K + v · u′φv′ + uφp− νk

∂K

∂φ

]
= wb− PS − ε (12)

∂K ′

∂t
+ k

∂

∂φ


(uφ − c) K ′ + u′φ

|v′|2
2

+ u′φp′ − 2νv′iS
′
i3


 = w′b′ + PS − ε′ (13)

∂A

∂t
+ k

∂

∂φ

[
(uφ − c) A +

b

N2
u′φb′ − µk

∂A

∂φ

]
= −wb− C −D (14)

∂A′

∂t
+ k

∂

∂φ

[
(uφ − c) A′ + u′φ

b′2

2N2
− µk

∂A′

∂φ

]
= −w′b′ + C −D′ . (15)

The contributing terms on the right-hand sides are shear production of eddy kinetic energy

PS = −u′φv · (k∂v/∂φ), convective production of eddy available potential energyC =

−u′φb′ (k/N2) ∂b/∂φ, dissipation of the horizontal-mean kinetic energyε = 2νSijSij (summing

as usual over all double indices), eddy dissipationε′ = 2νS ′ijS
′
ij, diffusive losses of horizontal-

mean available potential energyD = (µ/N2) k2
∣∣∣∂b/∂φ

∣∣∣
2
, and diffusive losses of the eddy avail-

able potential energyD′ = (µ/N2) |∇b′|2. With the notations(x1, x2, x3) =
(
x‖, y⊥, φ/k

)
and

(v1, v2, v3) =
(
u‖, v⊥, uφ

)
the shear-stress tensors are defined asSij = (∂vi/∂xj + ∂vj/∂xi) /2

andS ′ij =
(
∂v′i/∂xj + ∂v′j/∂xi

)
/2. The divergence terms on the left-hand sides of (12)–(15)

serve to redistribute energy between different gravity-wave-phase locations, but they do not
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contribute to the budget of the mean of all reservoirs in phase direction. In fact even many of

the results below on the development of theφ−dependence of the four energies can be under-

stood without resorting to these terms. A graphic visualization of the energy cycle is given in

figure 2. There〈K〉 denotes the mean ofK overφ, and likewise for all other quantities.

From the definitions ofPS andC one can derive for the total eddy energyE ′ = A′ + K ′ the

tendency∂〈E ′〉/∂t = 2Γ〈E ′〉 with an instantaneous amplification rateΓ = Γ‖ + Γ⊥ + Γb + Γd

where the amplification-rate parts

(
Γ‖, Γ⊥, Γb, Γd

)
= 〈γ‖, γ⊥, γb, γd〉

= −〈u′φu′‖k
∂u‖
∂φ

, u′φv
′
⊥k

∂v⊥
∂φ

, u′φb′
k

N2

∂b

∂φ
,D′ + ε′〉/2〈E ′〉 , (16)

as in the linear dynamics (Achatz 2005), describe consecutively the impact of the eddy fluxes

of momentum inx‖- and y⊥-direction against the corresponding gradients in the horizon-

tal mean, as well as the effect of the counter-gradient buoyancy fluxes and of diffusive and

viscous damping. The relative strengths ofΓ‖, Γ⊥, andΓb tell us, in close analogy to the

linear case, which part of the gain (or loss) of〈E ′〉 can be attributed to respective direct

changes in〈K ′
‖〉 = 〈u′2‖ /2〉, 〈K ′

⊥〉 = 〈v′2⊥/2〉, and 〈A′〉. The respective contributions to

b′w′/〈2E ′〉, i.e. − cos α cos Θu′‖b
′/〈2E ′〉, sin α cos Θv′⊥b′/〈2E ′〉, and sin Θu′φb′/〈2E ′〉, indi-

cate buoyant transfer from〈A′〉 to 〈K ′
‖〉, 〈K ′

⊥〉, and〈K ′
φ〉 = 〈u′2φ /2〉. In the IGW case where

(cos Θ, sin Θ) ≈ (0, 1) buoyant exchange occurs mainly betweenA′ and〈K ′
φ〉 ≈ 〈w′2/2〉.
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4. NMs and SVs of a statically unstable IGW

The first set of experiments is meant to give an overview of the dynamics of modal and non-

modal perturbations of statically unstable IGWs. For this an IGW is considered withΘ = 89.5◦

andΛ = 2π/k = 6km, so thatR = 0.62. The IGW period isP = 2π/ω ≈ 7.87h ≈ 94τ .

Its amplitude isa = 1.2. The linear dynamics of the NMs and SVs used as perturbations

are described in Achatz (2005). The SVs exhibit optimal growth over an optimization time

τ = 300s, which is approximately one Brunt-Vaisala period2π/N . Among the multitude

of possible NMs and SVs the leading structures at azimuthal angleα = 0, 90◦ were taken

since they represent limit cases of the range of possible angles. In the linear limit NMs and

SVs at intermediate azimuthal angles (0◦ < α < 90◦) show a kind of transitional behavior

between these two. A choice had to be made concerning the perturbation amplitudes. The

final decision was to choose an amplitude characterizing the peak strength of the energy den-

sity e′
(
x‖, φ

)
=

(
u′2‖ + v′2⊥ + u′2φ + b′2/N2

)
/2 in relation to the corresponding energy density

of the IGW. From (6) one can see that the latter is uniform and identical toE = K + A at

t = 0, which isE (t = 0) = (a2/2) c2/ (sin Θ cos Θ)2. In all cases reported here the initial ratio

maxx‖,φ (e′) /E is 10−3, ensuring an initial behavior in agreement with linear theory.

Figure 3 shows the corresponding ratioE ′/E at t = 0. While the three other perturbations

are confined to the phase range nearφ = 3π/2, i.e. the statically most unstable region, the

leading NM atα = 90◦ is quite smoothly spread over the whole range of IGW phases and,

although it has the same peak energy as the other SVs and NM, its horizontal-mean energyE ′

is larger. As a consequence this pattern exhibits the largest fluxes and thus also the strongest

interaction with the IGW. Figure 4 shows for all four integrations the decay in the energy in the

horizontal mean. In the NM case atα = 90◦ the energy seems to already approach byt = 2P

13



an asymptotic limit near0.4E(t = 0), while the other three cases show a much slower decay.

This has to be put into contrast with the growth factors the four patterns have according to the

linear theory betweent = 0 andt = τ , where the NM atα = 90◦ shows the least vigorous

behavior.

An interesting feature in the development of the contributions to the eddy energy, i.e.〈K ′
⊥〉,

〈K ′
‖〉, 〈K ′

φ〉, and〈A′〉 (not shown), is that in all cases but the one of the NM atα = 90◦ the

dominating term is〈K ′
⊥〉. This is consistent with the time dependence of the amplification-

rate decomposition shown in Fig. 5 for0 ≤ t ≤ 10τ . For the three cases one sees the later

phase to be dominated by a balance between energy gain due to the counter-gradient flux of

v⊥ and viscous-diffusive losses. This is in agreement with predictions from the linear theory

where the corresponding statically enhanced roll mechanism always shows up as a strong energy

source (Moffat 1967; Ellingsen and Palm 1975; Landahl 1980; Farrell and Ioannou 1993; Bakas

et al. 2001; Achatz and Schmitz 2006a,b; Achatz 2005). A further agreement with the linear

theory is visible in the energetics for0 ≤ t ≤ τ where the transient behavior with strong peak

amplification rates is visible for the SVs, and a nearly constant amplification-rate decomposition

for the NMs. Also the details agree with those predictions: Initially the growth of both SVs

is triggered by buoyant exchange, later followed by growth due toΓ⊥ (statically enhanced

roll mechanism) forα = 0◦ and growth due toΓ‖ for α = 90◦, as in a statically enhanced

Orr mechanism (Orr 1907; Farrell and Ioannou 1993; Bakas et al. 2001; Achatz and Schmitz

2006a,b). In the latter case finally the roll mechanism also takes over.
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4a. Parallel modes (α = 0◦)

Consistent with the initial distribution (Fig. 3) the eddy energy density in the two cases for

α = 0◦ (left column of Fig. 6) stays more or less confined to the most unstable phase range,

while splitting up into two peaks which are gradually moving away fromφ = 3π/2. The

mechanism behind this is illustrated for the SV atα = 0◦ in Fig. 7. One sees thereγ⊥ and its

two contributors, i.e. the counter-gradient flux−u′φv
′
⊥ andv⊥ (the latter entering intoγ⊥ via its

phase gradient). One sees that byt = τ the fluxes have reversed the gradient of the horizontal

mean, leading to a damping of the perturbation in the innermost part of the active region. The

reversal of the internal gradient, however, has also led to an increased gradient at the edges of

the active region, so that there the perturbation can continue to grow. Byt = 1.2τ it has thus

led to small subregions on the internal side of the edges of the active regions where the same

repeats itself on a smaller scale. At the same time the momentum fluxes, damped in the internal

region, but further excited on the outside, push the increased gradients at the edges farther out.

This process continues, and thus leads to the energy-density distribution observed in Fig. 6.

At a later phase the fluxes have reduced the gradients inv⊥ enough so that the growth in eddy

energy is stalled. Even later, however, it bursts up again (neart = 9τ , e.g.). A closer analysis

can explain this in terms of partially reorganized gradients∂v⊥/∂φ allowing stronger transient

(i.e. optimal) growth of perturbations there (not shown). The NM atα = 0◦ turns out to be

similar in behavior.
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4b. Transverse modes (α = 90◦)

As already in its linear dynamics the SV atα = 90◦ shows in its early development phase

behavior as in a statically enhanced Orr mechanism, where a combination of static instability

and counter-gradient fluxes ofu‖ in the statically most unstable phase region triggers its growth.

Later the perturbations radiate away into regions where the∂v⊥/∂φ 6= 0 (see Fig. 6). As visible

in Fig. 8, there a roll mechanism takes over and further amplifies the perturbation by the action

of counter-gradient fluxes inv⊥. Also here edges of increased gradientsk∂v⊥/∂φ form where

the perturbation can experience further transient growth. Roughly betweent = τ andt = 5τ

one sees the fluxesu′φv
′
⊥ oscillating about a zero mean. This is consistent with a roll mechanism

without feedback on the horizontal mean (Achatz and Schmitz 2006a,b). Seemingly in this

phase the impact onv⊥ is not strong enough to prevent this oscillation which later, at least at

the lower edge, dies down in favor of a permanently positiveγ⊥. In the linear dynamics that

mode also shows a critical-layer behavior nearφ = π/2. Although weakly discernible, it is not

that important a process in the nonlinear development of the SV at the given initial amplitude.

At equal peak energy density the most vigorous, but also the most complex mode is the NM

at α = 90◦. This one is somewhat less dominated by the statically enhanced roll mechanism

than the others. Figure 9 shows for0 ≤ t ≤ P/2 the time and phase dependence of the four

contributing eddy energy densities, while Fig. 6 shows the total. Still, however, much of the

eddy energy is inv′⊥ which maximizes nearφ = π. This is the region where forα = 90◦ the

gradient∂v⊥/∂φ in the original IGW is largest, so indeed also here one seems to see the roll

mechanism at work. Another important term is the eddy available potential energyA′ which

gets large nearφ = π/2. This seems to be a case of a critical-layer interaction similar to the one

found in the linear dynamics of the leading SV atα = 90◦ (Achatz 2005; Achatz and Schmitz
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2006a,b). This is further borne out by a comparison of the divergence terms in (15) with∂A′/∂t

which exhibit a considerable resemblance (also not shown), indicating that radiation and thus

nonlocal effects seem to play a role here.

5. SVs of a statically and dynamically stable IGW

The second set of experiments addresses the nonlinear dynamics of SVs for an IGW ampli-

tude (a = 0.87) precluding the existence of unstable NMs. Achatz (2005) describes the linear

dynamics of these SVs for an IGW with againΘ = 89.5◦ andΛ = 2π/k = 6km (so that

R = 0.62). It is shown that at an optimization timeτ = 5min the most strongly growing

SV is atα = 0◦, with a growth factor near 10, while the so-called global optimal, i.e. the most

strongly growing SV for all optimization times, is found to be the SV for(τ, α) = (30min, 90◦),

with a growth factor near 20. Based on these results the present study discusses integrations of

the IGW after a perturbation by its leading SVs atτ = 5min and 30min, andα = 0◦ and

90◦. Given the finite growth factors one expects a purely linear behavior of these at very small

initial amplitude but possibly nonlinear dynamics with feedback on the IGW at larger initial

amplitude. For an overview integrations have been done with ratios between initial peak energy

density and IGW energy densityA2
SV = maxx‖,φ (e′) /E = 10−2, 10−1, and100.

For A2
SV = 10−1 the initial horizontal-mean energy densityE ′ (normalized byE) of the

SVs is shown in Fig. 10. As one sees they are all located nearφ = 3π/2. The broadest and

most energetic structure is the SV for(τ, α) = (5min, 90◦). Consistent with this, that SV has

the strongest effect on the IGW. Figs. 11 and 12 show the time dependence of〈E ′〉 and〈E〉 for

all integrations. One sees that largerA2
SV imply a stronger decay in〈E〉, which can go as far

as by a factor 0.75, for the case of the SV for(τ, α) = (5min, 90◦) with an initial amplitude
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A2
SV = 100. That case also shows a sustained initial rise of〈E ′〉 indicating linear behavior.

For the other SVs such a strong initial amplitude leads, however, rather quickly to a decay of

the eddy energy, showing that for these cases the initial SV amplitude is too large to allow an

initial dynamics in agreement with the linear theory. One also sees that the initial growth phase

gets longer as the initial SV amplitude is decreased, since larger initial eddy energy leads to

an earlier impact of nonlinearity. Finally, as a major difference to the case of the statically

unstable IGW, the development is more rapid in the sense that the eddies have no more than two

optimization periods time to interact with the IGW before their energy decays again.

The amplification-rate decompositions for the four integrations with initialA2
SV = 10−1 are

shown in Fig. 13. The initial development is as in the linear theory, with an initial energy gain

due toΓb, leading viab′w′ to a growing energy inu′φ, thus enabling a statically enhanced roll

mechanism forα = 0◦ (i.e. growth of〈K ′
⊥〉 via Γ⊥) and a statically enhanced Orr mechanism

for α = 90◦ (growth of〈K ′
‖〉 via Γ‖). In the case of(τ, α) = (5min, 90◦) in the late phase〈K ′

⊥〉

gains by the same mechanism as described above fora = 1.2, but in the case ofτ = 30min

this is blocked by a rapid decrease of the amplification rate aroundt = 0.3τ , an effect which

is also visible in the two cases forα = 0◦. Seemingly, nonlinear interactions stall any further

growth of the eddy energy to be expected from the linear theory. This is followed by a rise of

viscous-diffusive damping indicating an increased role from turbulent dissipation. The spatial

distribution of the eddy energy is shown in Fig. 14.

5a. Short optimization timeτ = 5min

From the two SV cases forτ = 5min the one forα = 0◦ is less spectacular. Closer inspection

shows its initial dynamics to be quite relate to the corresponding case discussed above fora =
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1.2, with the same leading contribution fromK ′
⊥ (not shown). As seen from Fig. 15, the SV for

α = 90◦ also shows behavior relate to the corresponding structure fora = 1.2, however with a

stronger contribution from the statically enhanced Orr process which shall be shortly illustrated

here. First comes a decrease inA′. As visible in Fig. 16, this results from a contribution

γb > 0 in the statically least stable region, which fora < 1 automatically leads to a contribution

γb−b′w′/〈2E ′〉 < 0 there so that the eddy energy ends up inK ′
φ (Achatz and Schmitz 2006a,b).

As in the classic Orr process this swings back after some time, here followed by a second similar

oscillation with opposite tendencies inA′ andK ′
φ. Accompanying this is an enhanced counter-

gradient flux ofu′‖ (Fig. 17), leading to transient growth ofK ′
‖. As visible in Fig. 17, the effect

of the eddies is to invert the gradientk∂u‖/∂φ nearφ = 3π/2, thus weakening the further

growth of K ′
‖. Simultaneously the gradient is increased at the outer edges, so that there an

enhanced eddy growth is possible. Similar to the classic Orr process, growth in eddy energy

is stopped neart = τ , followed by a decay and a weaker second oscillation of a similar kind,

after which the horizontal mean shows an increasingly turbulent structure. Also here, however,

the gain inK ′
⊥ is considerable, once again after the eddies have radiated outwards into regions

where∂v⊥/∂φ 6= 0. Another feature visible here in the later phase is an accumulation ofA′

nearφ = π/2, which is a visible consequence of the critical-layer interaction predicted by the

linear theory (see Fig. 15).

An interesting question is why the leading transverse SV can follow its linear development

for a longer time, so that even forA2
SV = 1 a corresponding phase is observable. At least part

of the answer can be read from Fig. 18 where the time development ofv⊥ up to t = τ/2

is shown for the parallel (α = 0◦) and the transverse SV (α = 90◦). One sees the parallel

SV developing considerably stronger gradients (note thatλ‖ for the parallel SV is also shorter
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than for the transverse SV), which can lead both to faster viscous damping and to stronger

instabilities. Indeed corresponding calculations have shown that the parallel SV in its early

stage allows stronger tangent linear instabilities than the other structure, so that it cannot go

unimpeded through its full linear growth phase, while the opposite is true for the transverse SV

(not shown).

5b. Long optimization timeτ = 30min

As much in contrast to the linear theory as the stronger growth of transverse SV vs. parallel

SV for smallτ is the second result that overall the SVs for longerτ cannot grow considerably

in eddy energy. Indeed, due to its larger initial energy the leading parallel SV forτ = 30min

has some impact on the IGW, which is however weaker than that of the leading transverse SV

for τ = 5min. The early development ofv⊥ for the two SVs analyzed here is shown in Fig.

19. In comparison to Fig. 18 one sees at the samet/τ a stronger impact from the nonlinear

advection, which already explains the reduced ability of the SVs to go unimpeded through their

whole linear growth. It is just the fact thatτ is larger but the nonlinear interactions are not

correspondingly smaller and thus act faster over the normalized timet/τ which keeps these

SVs from attaining the full energy they would acquire according to the linear theory.

6. Comparison to observations

A detailed comparison of the breaking of a monochromatic IGW in a background without ver-

tical shear, as discussed here, with observations where these conditions are never met in purity,

will probably never be possible. Nonetheless an attempt shall be made to point out a few obser-

20



vational facts indicating at least some consistency between the theory and the real world. Some

of these refer to observations of so-called ripples in the airglow layer, which are commonly

interpreted as instability structures from GW breaking (Hecht 2004). The literature seems to

indicate that in cases where ripples are observed simultaneously with a statically unstable IGW

(Hecht et al. 1997, 2000) they have a tendency to propagate in a more or less transverse hor-

izontal direction with respect to the IGW. The wavelength of these structures is below 10km.

A simulation of ripples from a statically unstable IGW has been done by Fritts et al. (1997),

where the IGW (plus an additional HGW) has been perturbed by random noise. The results

here, where the leading transverse NM appears as the most effective perturbation of an IGW

with a > 1, might give an explanation for why the occurring ripples have the observed direction

of propagation. Additional support for this hypothesis might come from the wavelength of the

NM (about 8km) which is consistent with the empirical results.

Another point of interest are estimates of turbulent dissipation rates where spectra of vertical

profiles of relative density fluctuations from in-situ rocket measurements are fitted to models of

the spectrum of a passive tracer advected in homogeneous isotropic turbulence. Essentially

the location of the transition from the inertial to the viscous subrange of the spectrum is then

used to determine the dissipation rate. These analyses (Lübken 1997; M̈ullemann et al. 2003)

lead to values ofε in the middle atmosphere between 1 and 1000mW/kg. Interesting is also

that not in all cases turbulence can be clearly attributed to either static or dynamic instability.

The long-term development of the eddy dissipation ratesε′ resulting from the above-discussed

integrations for the statically unstable IGW is shown in Fig. 20. The dissipationε of the

horizontal mean is found to be much weaker (not shown). One sees that the former are in all

four cases in the range of observed values. The eddy dissipation rates from developing SVs
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of the statically and dynamically stable IGW are shown in Figs. 21 and 22. While most SVs

produce values of a few 10 mW/kg, the leading transverse SV for the short optimization time

can lead to dissipation rates of a few 100 mW/kg, provided its initial amplitude is large enough.

SVs thus seem to offer a possibility to explain the occurrence of turbulence in cases where

neither static nor dynamic instability predict corresponding NM growth2. Also here, however,

a caveat applies. Fig. 23 shows the horizontally averaged spectra of the vertical profiles (i.e.

in φ-direction) of all four model variables att = 40τ from the integrations of the IGW with

a = 1.2 and its leading parallel or transverse SV or NM. The dominance ofK ′
⊥ noted before

obviously extends down into the viscous subrange, and also at all scalesu‖ carries more energy

thanuφ. Similar results are found for the cases witha = 0.87 (not shown). This anisotropy

might point to either (1) a limitation of the 2.5D approach taken here or (2) a fundamental

property of turbulence from IGW breaking. A corresponding analysis is beyond the scope of

this paper but at the present stage one should at least keep this apparent inconsistency with the

basic assumptions behind the retrieval of turbulent dissipation rates from the spectra of density

fluctuations in mind. Nonetheless, the author sees the agreement in the orders of magnitude

between empirical and theoretical dissipation rates still as an indication of consistency between

theory and measurements.

7. Summary and discussion

As a step towards the construction of a comprehensive picture of the nonlinear development

of monochromatic inertia-gravity waves (IGWs) after being perturbed by their leading normal

2In passing it shall also be noted that the spatial distribution ofε′ for the short-time transverse SV results from
the action of the roll mechanism at the flanks of the maximum ofv⊥, an effect not to be expected in turbulence
generated by a Kelvin-Helmholtz layer. It is also interesting that it stays clearly away from the phase region
φ = π/2 which can be explained via the critical-layer effect predicted by the linear theory
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modes (NMs) or singular vectors (SVs) the present study reports corresponding direct numer-

ical simulations for IGWs which are either statically unstable (amplitudea with respect to the

overturning threshold larger than 1) or dynamically and statically stable (a < 1, Ri > 1/4, no

NM instabilities). The two spatial dimensions of the problem are given by the direction along

the IGW wave vector and the horizontal wave vector of the perturbation, while the velocity field,

simulated together with the buoyancy field within the framework of the nonlinear Boussinesq

equations, is fully 3D. The model parameters are typical for the upper mesosphere.

An interesting aspect of the results is how much of the observed dynamics can be understood

based on the corresponding linear theory (Achatz 2005; Achatz and Schmitz 2006a,b). An

especially prominent role in the turbulence onset can be attributed to the statically enhanced

roll mechanism, where the counter-gradient flux (i.e. against the corresponding gradient in the

horizontal mean) of the eddy horizontal velocity componentv′⊥, in the direction perpendicular

to the horizontal direction of propagation of the perturbation, leads to a corresponding gain in

the eddy kinetic energy, thus producing a considerable anisotropy in the turbulent velocity field.

This must be seen in connection with the role of the elliptic polarization of the IGW horizontal

velocity field. It provides the key for understanding the spatial distribution of the eddy energy

and turbulent dissipation with respect to the wave phase. This refers on the one hand to its

role in determining where the roll mechanism can work. On the other hand it also leads to

critical layers for the transverse perturbations (azimuthal angle between the horizontal direction

of propagation of the perturbation with respect to that of the IGWα = 90◦), half a wavelength

away from the statically least stable location, which the flux of turbulent energy typically does

not cross. The present study thus adds interesting facets to the results from studies on turbulence

onset via Kelvin-Helmholtz instabilities (with a one-dimensional shear) where these phenomena
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are not visible.

In contrast to expectations from the linear theory, in the case of the statically and dynam-

ically stable IGW the leading SVs for longer optimization times (τ = 30min) are not able to

grow to the largest observed eddy energies since, at initial SV amplitudes large enough for

triggering nonlinear behavior, nonlinear advection acts too fast for allowing the perturbation to

go through its full linear growth phase. In a comparison between the impact of the remaining

leading parallel (α = 0◦) or transverse short-time SVs (forτ = 5min) or NMs (for a > 1)

on the IGW the overall finding is that, at equal local peak energy density, the more vigorous

effect comes from the spatially broadest structure (in IGW-phase direction), which is the lead-

ing transverse NM fora > 1 and the leading transverse SV fora < 1 andRi > 1/4. These

structures, with horizontal wavelengths roughly of the order of the total wavelength of the IGW,

are the most energetic and thus have the largest eddy fluxes with a corresponding effect on the

horizontal mean. They might help explain the wavelengths and preferentially more or less trans-

verse orientation of airglow ripples typically observed in conjunction with a statically unstable

IGW (Hecht et al. 1997, 2000).

One should also note that the reduction of the horizontal-mean energy, the square root of

which gives an upper limit of the reduction of IGW amplitude, is stronger than to be expected

from standard static or dynamic stability considerations. So it is found that the energy in the

statically unstable IGW is reduced by a factor near 0.4, although removal of dynamically unsta-

ble regions withRi < 1/4 would only necessitate a reduction ofa by a factor 0.7 (e.g. see Fig.

2 in Achatz, 2005) and correspondingly of the energy by a factor 0.5. Likewise, a reduction

of the horizontal-mean energy by a factor less than 0.8 is also possible fora = 0.87, although

this case precludes static or dynamic NM instabilities. This depends on the initial strength of
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the perturbation which is not taken into account in standard parameterization schemes for the

impact of gravity waves on the large-scale circulation.

The resulting turbulent dissipation rates are in all cases examined within the range of values

determined from the spectra of vertical density fluctuation profiles (Lübken 1997; M̈ullemann

et al. 2003), even for the casea = 0.87. Optimal perturbations thus indeed seem to be a

candidate for the explanation of turbulence onset in IGWs where the wave amplitude precludes

NM instabilities. A major difference between statically unstable and stable IGWs is that the

turbulence in the latter occurs in rather short bursts over a time span of a few Brunt-Vaisala

periods2π/N , while in the former the turbulent layer is much more persistent.

Finally, what have we learned so far which might be relevant for parameterizations? Perhaps

the most important message is that wave breaking can set in earlier, and that a GW can deposit

more of its momentum than typically assumed nowadays. Partly this was already clear from the

previous linear NM theory of HGW instability (Mied 1976; Klostermeyer 1982, 1983, 1991;

Lombard and Riley 1996; Sonmor and Klaassen 1997) and corresponding 3D DNS by Fritts

et al. (2003, 2006), but it is supplemented by the additional option of IGW decay due to the

impact of nonmodal perturbations, and as a whole none of these findings has yet found its way

into a parameterization scheme. Unfortunately, a major problem remaining is the question as

to whether it is possible to understand and predict the final amplitude of the GW. Next to the

GW properties, this also seems to be sensitively dependent on the specific initial perturbations

and their strength. Much work remains to be done here. It shall also be remarked that to all

expectations the present results will be subject to modifications once the effect of secondary

instabilities is taken into account, probably leading to a full three-dimensionalization of the

turbulent fields (Klaassen and Peltier 1985; Winters and D’Asaro 1994; Andreassen et al. 1994).
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Among other aspects it will be interesting how much of the spectral anisotropy found here will

also be obtained under such conditions. Corresponding studies will have to be done in the

future, for which the present one shall then serve as a reference.
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Figure 1: The rotated and translated coordinate system for the simplest representation of a
gravity wave. The (orthogonal)ξ- andφ-axes lie in thex− z plane. They-axis points vertically
into that plane. The new coordinate system moves with the phase velocityc of the gravity wave,
rendering the latter stationary.
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Figure 2: The budget for the exchange between the gravity-wave-phase averaged available po-
tential energyA and kinetic energyK of the ”horizontal” mean (denoted by an overbar, ”verti-
cal” meaning parallel to the direction of the gravity-wave wave vector) and the deviations from
this mean (the eddies, denoted by a prime). For an explanation of the contributing terms see the
main text.
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Figure 3: For the statically unstable IGW (a = 1.2) at (Θ, Λ) = (89.5◦, 6km), the initial pertur-
bation energy density of the leading NMs and SVs at azimuthal anglesα = 0, 90◦, normalized
by the spatially independent energy densityE of the IGW. All four perturbations have a local
peak energy densitymaxx‖,φ e′ = 10−3E.
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Figure 4: For the statically unstable IGW (a = 1.2) at (Θ, Λ) = (89.5◦, 6km), perturbed by the
leading NMs or SVs (optimization timeτ = 300s) at azimuthal anglesα = 0, 90◦ with an initial
local peak energy densitymaxx‖,φ e′ = 10−3E (see also Fig. 3), the time dependent energy in
the horizontal mean, normalized by the initial value.
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Figure 5: From the initial time span0 ≤ t ≤ 10τ of the integrations shown in Fig. 4 (left and
right column forα = 0◦ and90◦, top and bottom row for SV and NM perturbation), the time
development of the instantaneous amplification-rate decomposition.
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Figure 6: From the initial time span0 ≤ t ≤ 20τ of the integrations shown in Figs. 4 and 5,
the time development of the dependence of the eddy energy on the IGW phase. All plots show
normalized valuesE ′/E(t = 0). The shading scale in all four panels is identical. The contour
interval is 0.1, starting at 0.1.
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Figure 7: From the integration of the statically unstable IGW (a = 1.2) after a perturbation by
its leading SV atα = 0◦, from between (from left to right)t = τ andt = 2τ in steps of0.2τ ,
the instantaneous IGW-phase-dependent amplification-rate contributionγ⊥ (fat black line) from
eddy fluxesv′⊥u′φ (normalized negative, thin black line) ofv⊥ against the phase-gradient in the
horizontal-meanv⊥ (grey line). All quantities have been re-scaled to make them fit into one
graph. Only the relevant phase range0.6 ≤ φ/2π ≤ 0.9 is shown.
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Figure 8: From the integration of the statically unstable IGW (a = 1.2) after a perturbation by
its leading SV atα = 90◦, the time dependence ofγ⊥ (top panel, contour interval5 · 10−3s−1)
and its contributing factors, i.e. the normalized counter-gradient flux−u′φv

′
⊥/ 〈2E ′〉 (middle,

contour interval 0.1) and the phase-gradientk∂v⊥/∂φ(bottom, contour interval2 · 10−2s−1).
In all panels the negative values are indicated by dashed contours and shading, and the zero
contour has not been drawn. Only the phase range0.5 ≤ φ/2π ≤ 1 is shown.
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Figure 9: From the integration of the statically unstable IGW (a = 1.2) after a perturbation by
its leading NM atα = 90◦, the time dependence of the four eddy energy densitiesK ′

‖, K ′
⊥, K ′

φ,
andA′. Shown are relative values with respect to the initial IGW energy density. The shading
scale in all four panels is the same. The contour indicates regions where the relative energy
density is larger than 0.1.
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Figure 10: For the statically and dynamically stable IGW (a = 0.87, no unstable NM) at
(Θ, Λ) = (89.5◦, 6km), the initial perturbation energy density of the leading SVs at azimuthal
anglesα = 0, 90◦ for the optimization timesτ = 5min, 30min, normalized by the spatially
independent energy densityE of the IGW. All four perturbations have a local peak energy
densitymaxx‖,φ e′ = 10−1E.
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Figure 11: For the statically and dynamically stable IGW (a = 0.87, no unstable NM) at
(Θ, Λ) = (89.5◦, 6km), the time dependence of the eddy energy〈E ′〉, normalized by the
initial IGW energy, from integrations after a perturbation by one of the leading SVs at az-
imuthal anglesα = 0, 90◦ (left and right column, respectively) for the optimization times
τ = 5min, 30min (top and bottom row, respectively), and initial relative perturbation ampli-
tudesA2

SV = maxx‖,φ e′/E = 10−2, 10−1, and100.

49



Figure 12: As Fig. 11, but now showing the time dependence of the energy in the horizontal
mean.
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Figure 13: From the integrations of the leading SVs (α = 0, 90◦, τ = 5min, 30min, in all cases
the initial A2

SV = 10−1) of the statically and dynamically stable IGW (a = 0.87, no unstable
NM), the time development of the instantaneous amplification-rate decompositions.
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Figure 14: From the integrations shown in Fig. 13, the time development of the dependence
of the eddy energy on the IGW phase. All plots show normalized valuesE ′/E(t = 0). The
shading scale in all four panels is identical. The contour interval is 0.1, starting at 0.1.
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Figure 15: From the integration of the statically and dynamically stable IGW (a = 0.87) after a
perturbation by its leading SV at(τ, α) = (5min, 90◦) with initial amplitudeA2

SV = 10−1, the
time dependence of the four eddy energy densitiesK ′

‖ (upper left panel),K ′
⊥ (lower left), K ′

φ

(upper right), andA′ (lower right). Shown are relative values with respect to the initial IGW
energy density. The shading scale in all four panels is the same. The contour indicates regions
where the relative energy density is larger than 0.1.
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Figure 16: From the same integration as shown in Fig. 15, the time dependence of the IGW-
phase dependent amplification-rate contributionγb (upper left panel, contour interval0.01s−1)
from the buoyancy flux in phase direction (lower left panel, negative shown normalized by
2N 〈E ′〉, contour interval 0.2) against the corresponding gradient of the horizontal mean (upper
right, normalized byN , contour interval0.01s−1). The lower right panel shows the difference
γb − b′u′φ/ 〈2E ′〉 characterizing the net growth and decay ofA′ (contour interval0.01s−1). In
all panels negative values are indicated by shading.
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Figure 17: From the same integration as shown in Figs. 15 and 16, the time dependence of the
IGW-phase dependent amplification-rate contributionγ‖ (top panel, contour interval0.002s−1)
from the flux ofu′‖ in phase direction (middle, negative shown normalized by2 〈E ′〉, contour
interval 0.1) against the corresponding gradient of the horizontal mean (bottom, contour interval
0.005s−1). In all panels negative values are indicated by shading.
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Figure 18: From the integration of the statically and dynamically stable IGW (a = 0.87) after
a perturbation by its one of its leading SVs atτ = 5min (left columnα = 0◦, right column
α = 90◦), the spatial dependence ofv⊥ at t = τ/6 (top row), t = τ/3 (middle) andt = τ/2
(bottom). Only the phase range0.5 ≤ φ/2π ≤ 1 is shown. The contour interval is 1m/s. The
maximum value in the right column is between 20 and 21 m/s (all panels). Negative values are
indicated by dashed contours.
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Figure 19: As Fig. 18, but forτ = 30min.
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Figure 20: From the integration of the statically unstable IGW (a = 1.2) after a perturbation by
its leading SVs or NMs atα = 0◦, 90◦, the time dependence of thelog10[ε

′/ (mW/kg)]. The
shading scale is the same in all four panels. Only values larger than 1 mW/kg are shown. The
contour encloses regions withε′ > 10mW/kg.
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Figure 21: From the integration of the statically and dynamically stable IGW (a = 0.87) after
a perturbation by the leading parallel SVs forτ = 5min (top panel) or 30min (middle) or the
leading transverse SV forτ = 30min (bottom, initial amplitude in all casesA2

SV = 10−1), the
time-dependent (0 ≤ t ≤ 2τ ) eddy dissipation rateε′ in the phase rangeπ ≤ φ ≤ 2π. Shown is
log10 [ε′/ (mW/kg)]. The contour interval is 1, with the lowest contour also at 1.
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Figure 22: As Fig. 21, but now from integrations of the leading transverse SV forτ = 5min
with initial amplitudeA2

SV = 10−1 (top panel) and100 (bottom) between0 ≤ t ≤ 5τ .
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Figure 23: Fort = 40τ in the integrations shown in Fig. 20, half the horizontally averaged
spectra of the profiles ofu‖, v⊥, uφ, andb/N in φ-direction, and the sum, i.e. the spectrum of
total energy. For better orientation the two lower panels also show a spectral slope∝ m−5/3,
wherem is the wavenumber inφ-direction.
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Θ/◦ a Λ/km perturbation type τ/min α/◦ λ‖/km n‖ nφ

89.5 1.20 6 SV 5 0 0.398 144 2304
89.5 1.20 6 SV 5 90 3.981 2304 2304
89.5 1.20 6 NM – 0 0.501 288 2304
89.5 1.20 6 NM – 90 7.943 4608 2304
89.5 0.87 6 SV 5 0 0.631 288 2304
89.5 0.87 6 SV 5 90 3.162 1152 2304
89.5 0.87 6 SV 30 0 7.943 4608 2304
89.5 0.87 6 SV 30 90 5.012 2304 2304

Table 1: Model extentλ‖ in the horizontal andΛ in IGW-phase direction, as well as the corre-
sponding number of grid pointsn‖ andnφ, for all discussed integrations, of either leading SV
(optimization timeτ ) or NM (azimuthal angleα), of an IGW with an amplitudea with respect
to the overturning limit.Λ is also the IGW wavelength, whileλ‖ agrees with the horizontal
wavelength of the respective perturbations.Θ is the inclination angle between the IGW wave
vector and the horizontal.
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