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Motivated by the useful new insights from optimal-perturbation theory into the onset of turbulence
in other fields singular vectors �SVs� in stable and unstable gravity waves have been determined
within the framework of the Boussinesq equations on an f plane. The difference between the
dynamics of normal modes �NMs� and SV is characterized by a time invariance in the comparative
role of the various possible exchange processes between NM and basic wave, while SV can have a
highly time-dependent structure, allowing a more efficient energy exchange over a finite time. Both
inertia-gravity waves �IGWs� and high-frequency gravity waves �HGWs� have been considered. At
Reynolds numbers typical for the middle to upper mesosphere IGW admit rapid nonmodal growth
even when no unstable NMs exist. SV energy growth within one Brunt-Vaisala period can cover two
orders of magnitude, suggesting the possibility of turbulence onset under conditions where this
would not be predicted by a NM analysis. HGWs show a dependence of short-term optimal growth
on the direction of propagation of the perturbation with respect to the wave which is, at weak to
moderate wave amplitudes, quite different from that of NM but reproduced in ensemble integrations
from random initial perturbations. Their SVs are sharply peaked pulses with negligible group
velocity which are repeatedly excited as the rapidly propagating wave passes over them. The
transition of these to the leading NM, which is not moving with respect to the wave and which is
typically broader in structure, is very slow, so that in many cases the turbulence onset via local
perturbations of a gravity wave might be more appropriately described using optimal-perturbation
theory. This might contribute to a better understanding of the often observed occurrence of thin
turbulent layers in the middle atmosphere. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2046709�
I. INTRODUCTION

It is widely recognized that internal gravity waves play
an important role in both oceanic and atmospheric
dynamics.1,2 In the atmosphere, they are typically excited in
the troposphere �between the ground and about 10-km alti-
tude�. Due to energy conservation in a vertically decreasing
ambient density field they gain in amplitude as they propa-
gate upwards and thus become increasingly unstable.3 The
resulting wave breaking, possibly supplemented by critical-
layer interactions,4,5 leads to a deposition of momentum and
energy which is essential for an understanding of the mean
circulation in the mesosphere �about 50–90-km altitude�. As
a further consequence turbulence can be excited6 which
might be of relevance for the heat budget in the upper
mesosphere.7 While this overall picture is commonly agreed
upon, many details in gravity-wave excitation, propagation,
and finally breaking are not sufficiently understood yet, so
that one is confronted with an uncomfortably large number
of widely accepted, but quite different, schemes for the pa-
rametrization of the impact of gravity waves on the large-
scale flow in the middle atmosphere.6,8–12

Many of the uncertainties are due to the lack of a simple
picture of nonlinear gravity-wave breakdown. There is hope
that direct numerical simulations will eventually help us in
getting a better understanding of this complex process. Con-

13–20
siderable progress has been made in this field, but, also
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in view of the high demand such calculations put on pres-
ently available computer resources, good a priori knowledge
of the developing scales and structures seems highly desir-
able. It thus appears important to have a very good under-
standing of the initial linear phase of the wave instability. It
sets the stage for the nonlinear wave decay, and correspond-
ing studies not only provide us with possible instability
thresholds but also with perturbation patterns and wave-
lengths to be focused on in the simulations. Indeed much has
already been learned in the past. A widespread misconcep-
tion is that instability does not set in before the wave ampli-
tude causes local vertical gradients of density �or potential
temperature� and flow field allowing for convective or dy-
namic instability. In the former case, one needs overturning
of density or potential-temperature layers, while in the latter
case, the local Richardson number Ri must fall due to suffi-
cient vertical shear below a certain threshold. This picture
rests on the work of Howard21 and Miles22 who have shown
that in plane-parallel vertically stratified flow Ri�1/4 is a
necessary condition for instability. In high-frequency gravity
waves �HGWs� with slantwise phase propagation �i.e., at a
nonvertical inclination angle to the horizontal� these studies
are not applicable. Indeed we know by now that these waves
show instabilities at all amplitudes, unless damped by
viscosity.23–28 As shown by Lombard and Riley27 it is neither

the wave-related shear nor the corresponding stratification
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which is solely responsible for the growth of linear normal
modes �NMs�, but a mixture of the two. The leading pertur-
bations are found to often propagate obliquely with respect
to the gravity wave so that the instability process is three
dimensional right from the initial linear phase. Moreover, the
whole depends considerably on the gravity-wave inclination
angle. Finally, while in a nonrotating fluid all gravity waves
are linearly polarized in their horizontal flow field, rotation
causes their polarization to be increasingly circular as their
direction of phase propagation changes from horizontal to
vertical. The instability dynamics of nearly vertically propa-
gating inertia-gravity waves �IGWs� in a rotating fluid is in-
fluenced by this. For IGW packets the linear instability has
been examined in various investigations,29–32 and a study for
monochromatic IGW has been made by Yau et al.33 At con-
vectively unstable wave amplitudes, rapidly growing leading
NMs are found, with a direction of propagation in the hori-
zontal with respect to the IGW which changes from trans-
verse to parallel as the gravity-wave inclination angle gets
more and more vertical. However, as for gravity waves in a
nonrotating fluid, obliquely propagating growing NMs are
always found so that also the IGW breaking process is in-
trinsically three dimensional. At convectively stable ampli-
tudes NM growth is, even in the inviscid-nondiffusive limit,
rather weak, unless the IGW inclination angle is extremely
steep.

Despite all the knowledge we have acquired on the lin-
ear stability problem there is an additional interesting aspect
which is just beginning to get a systematic focus. Since the
studies mentioned above use NM analyses, they provide in-
formation about possible time-asymptotic wave instabilities
at infinitely small perturbation level. It is, however, known
from several other fields that under conditions when no
growing NMs exist rapid transient growth of so-called sin-
gular vectors �SVs� is often still possible.34–38 Provided a
sufficiently high, but possibly yet small, initial perturbation
level is available this can lead to the onset of turbulence even
when such a result would not be expected from a NM analy-
sis. Moreover, even if growing NMs exist, it may happen that
they take much longer in their amplification so that the in-
cipient instability is better characterized by transient growth
leading directly into the nonlinear decay phase. In two stud-
ies Achatz and Schmitz39,40 �henceforth referred to as AS12�
have examined the relevance of this concept for the IGW
packet stability problem in the mesosphere. Indeed it is
found that quite rapid growth of SVs occurs at wave ampli-
tudes not permitting any NM to grow. This suggests a study
on the relevance of SV for the general gravity-wave stability
problem, i.e., for all inclination angles.

Such an investigation is described here. For greatest pos-
sible simplicity this study focuses on monochromatic waves,
and indeed it will be seen that what has been found in AS12
on the linear dynamics of IGW packets is basically retrieved
in this more simple scenario. The paper is structured as fol-
lows: Sec. II defines the gravity waves which are analyzed
for their stability. Section III briefly reviews the linear sta-
bility theory for such waves and compares the concepts of
NM and SV. In Sec. IV these are applied to the gravity-wave

stability problem, and the growth intensity and dynamics of
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both types of perturbations are compared with each other.
Section V contains a short analysis of the impact of Reynolds
number and rotation on these results. Section VI gives an
assessment of the relevance of optimal growth for the propa-
gation of a gravity wave in a medium with random ambient
fluctuations. Finally everything is summarized and discussed
in Sec. VII.

II. GRAVITY WAVES IN A ROTATING BOUSSINESQ
FLUID

The stability problem is discussed in the simplest pos-
sible framework, i.e., the Boussinesq equations on an f plane

� · v = 0, �1�

�v

�t
+ �v · ��v + fez � v + �p − ezb = ��2v , �2�

�b

�t
+ �v · ��b + N2w = ��2b . �3�

Here v= �u ,� ,w� denotes the three-dimensional velocity

field. The buoyancy b=g��− �̄�z�� /�0 is a measure of the
deviation of the potential temperature � from a merely ver-

tically dependent reference profile �̄�z�, normalized by a
characteristic value �0. g is the vertical gravitational accel-
eration. The squared background Brunt-Vaisala frequency is

N2= �g /�0�d�̄ /dz. An equivalent interpretation of buoyancy
and Brunt-Vaisala frequency is b=−g��− �̄�z�� /�0 and N2=
−�g /�0�d�̄ /dz, where �, �̄�z�, and �0 are density, a corre-
sponding reference field, and a characteristic value, respec-
tively. p is the pressure field, normalized by a constant ref-
erence density, f the Coriolis parameter, and ez the vertical
unit vector. The Boussinesq equations can be expected to
give a reasonably good approximation of the full gravity-
wave dynamics as long as the focus is on the processes with
vertical scales of the order or less than the atmospheric or
oceanic scale height. This is the case throughout this study.
For viscosity and thermal diffusivity the typical upper-
mesospheric values �=�=1 m2/s are taken �unless stated
otherwise�. The f plane is located at 70° latitude. The Brunt-
Vaisala frequency is N=2�10−2 s−1. For better readability
for a broader audience it has been decided not to nondimen-
sionalize the equations. One should, however, keep in mind
that a nondimensionalization, using the gravity-wave wave-
length � �specified below� and the Brunt-Vaisala period T
=2	 /N as length and time scales, would leave as the only
controlling parameters the ratio f /N, the Reynolds number
Re=�2 / ��T�, and the Prandtl number Pr=� /�. For later ref-
erence also the energy density e=1/2��v�2+b2 /N2� is intro-
duced which obeys

�e

�t
+ � · �v�e + p� − � �

�v�2

2
− � �

b2

2N2�
= − ��

i=1

3

���i�2 − �	�
b

N
	2

. �4�
In the inviscid-nondiffusive limit with typical �e.g., periodic�
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boundary conditions the volume integral of energy density is
obviously a conserved quantity.

The equations admit as exact solutions monochromatic
gravity waves of the form


v

b
� = R�
ṽ

b̃
�ei
� . �5�

The amplitudes �ṽ , b̃� will be specified below. The phase is

=K ·x−�t, with wavenumber K= �k , l ,m� and frequency
� satisfying the dispersion relation

� = ± �N2cos2 � + f2sin2 � . �6�

Here � is the inclination angle of the gravity-wave vector
with respect to the horizontal so that �cos � , sin ��
= �k /�k2+m2 ,m /�k2+m2�. Without loss of generality it is

FIG. 1. The rotated and translated coordinate systems for the simplest rep-
resentation of a gravity wave. The �orthogonal� � and 
 axes lie in the x-z
plane. The y axis points vertically into that plane. The new coordinate sys-
tem moves with the phase velocity c of the gravity wave, rendering the latter
stationary.
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assumed that l=0. At m
0 the—branch of the dispersion
relation represents a wave with upward directed group veloc-
ity cg=�k�, but downward directed phase velocity c
= �� /K��K /K�, where K= �K�. This is the wave examined in
the present study. Following Mied23 and Drazin41 a coordi-
nate system is introduced in which the representation of the
gravity wave is especially simple. It is obtained by a rotation
about the y axis so that the new vertical coordinate points in
the direction of the wavenumber vector, a translation along
this axis with the phase velocity and a rescaling of the ver-
tical axis in units of the wave phase �see also Fig. 1�. The
new coordinates are �� ,y ,
� with

� = x sin � − z cos � , �7�


 = K�x cos � + z sin �� − �t . �8�

The rotated velocity components along the new axes being
u�, �, and u
, the gravity wave takes in this representation the
time-independent form

u� = − a
�/K

sin � cos �
sin 
 , �9�

� = a
f/K

cos �
cos 
 , �10�

u
 = 0, �11�

b = − a
N2/K

sin �
cos 
 . �12�

For easier comparability to some of the literature24,33 we note
that there the nondimensional u� amplitude 2A=
−�a� /N� / �sin � cos �� is used for a characterization of the
wave. The phase convention �following Yau et al.33� is such
that the buoyancy gradient minimizes �maximizes� at 


FIG. 2. The minimal Richardson num-
ber Rimin in a gravity wave in its de-
pendence on the wave amplitude a
with respect to the convective instabil-
ity and its inclination angle � with re-
spect to the horizontal. The upper
panel shows the range of 30° ��
�90°. The isolines are between 0.25
�leftmost contour� and −50.25 in steps
of 5. The lower panel shows the range
of 89° ���90°. Here the contours
are between 0.25 and −0.5 in steps of
0.05.
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=3	 /2�	 /2�. The largest shear due to u� occurs at 
=0,	,
and the largest shear due to � �only relevant for IGW where
R= �f /�� is not negligible� is at the extrema of the buoyancy
gradient. The nondimensional amplitude a is defined so that
the wave is statically stable for a�1, i.e., at these values one
has N2+�b /�z
0 everywhere. In other words it is the am-
plitude relative to the overturning or static instability thresh-
old. Its relationship to the amplitude of u� and to energy
density integrated over one wave train is given by

E = 

0

2	

d
e = 	
a2�f2 sin2 � + N2 cos2 ��

K2 sin2 � cos2 �
= 	
2A

N

K
�2

.

�13�

In view of its frequent application, the local Richardson
number in the wave also deserves a short discussion. It ap-
pears in a NM analysis of a shear flow obtained by neglect-
ing in the gravity wave all vertical motions, its time depen-
dence, and the horizontal dependence. The resulting Taylor-

21,22,31,42
Goldstein equation contains a height-dependent

�19�
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Richardson number which also depends on the horizontal
direction of propagation of the NM with respect to that of the
gravity wave. A necessary condition for a NM to grow is that
its respective Richardson number is less than 1/4
anywhere.21,22 Of most interest therefore is the minimum of
the Richardson number, both over all horizontal directions of
mode propagation and over all altitudes �or phases�. At a
given phase, the minimum over all directions of propagation
is

Rim =
N2 + �b/�z

��u/�z�2 + ���/�z�2 . �14�

Inserting the wave fields �9�–�12� and using the coordinate
transformations �7� and �8� and the dispersion relation �6�
one finds

Rim =
1 − R2

a2�1 − �2/N2�
1 + a sin 


1 − �1 − R2�sin2 

. �15�
The minimum of Rim over all phases is at
sin 
 = � − 1 if a 
 2�1 − R2�/�2 − R2�

− 1/a + �1/a2 − 1/�1 − R2� else.
� �16�
This minimal value Rimin is shown as a function of a and �
in Fig. 2. As is well known, only for IGW the Richardson-
number criterion Ri�0.25 for dynamic instability can be
satisfied for a�1.

III. GRAVITY-WAVE INSTABILITY

A. The linear model

For the stability analysis the Boussinesq equations are
linearized about the gravity-wave fields, henceforth denoted
by �V ,B�. Due to the symmetry of the problem in � and y
different perturbation wavenumbers in the corresponding
plane are not coupled by the linear equations. It therefore

makes sense to use the ansatz23,24,41 �v̂ , b̂�=R��v ,b�
��
 , t�exp�i���+�y��� so that the componentwise equations
in the rotated and translated coordinate systems become,
with v= �u� ,� ,u
�,

i�u� + i�� + K
�u


�

= 0, �17�

Du�

Dt
+ Ku


dU�

d

+ i�p + b cos � − sin �f� = ��2u�, �18�

D�

Dt
+ Ku


dV

d

+ i�p + f�sin �u� + cos �u
� = ��2� ,
Du


Dt
+ K

�p

�

− b sin � − cos �f� = ��2u
, �20�

Db

Dt
+ Ku


dB

d

+ N2�sin �u
 − cos �u�� = ��2b , �21�

using the shortcuts D /Dt=� /�t−�� /�
+ i��U�+�V� and
�2=−��2+�2�+K2�2 /�
2.

Since the coefficients of Eqs. �17�–�21� are periodic in 

with period 2	, Floquet theory27,43 tells us that it is possible
to consider independently solutions of the form �v ,b�
=exp�i�
��v� ,b���
 , t� with �v� ,b���
+2	 , t�= �v� ,b��
��
 , t� and −1/2���1/2. In line with Lombard and
Riley27 the present analysis is restricted to �=0. At least for
IGW Yau et al.33 have shown that this generally captures the
leading NM. Obvious respective generalizations are left to
future studies.

For a numerical treatment �17�–�21� have been dis-
cretized on a standard staggered grid in 
 �u�, �, p, and b on
full levels, and u
 on intermediate half levels, see, e.g.,
Durran44� with periodic boundary conditions. The model do-
main extends from 0 to 2	. Pressure is obtained by applying
the divergence on the momentum equations, using �17�, and
solving the resulting Poisson equation by a Fourier transform
technique. Lining up the complex grid-point values of all
model variables �v ,b� in one complex state vector x an ab-
stract condensation of the model equations is dx /dt=Ax,

with a model operator A depending on the basic wave and
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on � and �. The time integration is done by two initial
fourth-order Runge-Kutta time steps, followed by third-order
Adams-Bashforth time steps.44

B. Normal modes

Once the linear equations have been discretized the cor-
responding NMs are simply defined as the eigenvectors n� of
the model operator, satisfying

An� = − i��� + i���n� �22�

with an eigenvalue consisting of an eigenfrequency �� and a
growth rate ��. An initial state given up to an amplitude a�

by a NM, i.e., x�0�=a�n�, leads to a time-dependent solution

x�t� = a�e
��tei��tn�, �23�

so that the existence of a growing NM with ��
0 implies
linear instability. In addition, in typical cases where all NMs
form together a complete set, every initial state can be writ-
ten as a superposition of NM behaving in time as given by
�23� so that, if an initial state projects even to the least onto
the leading NM (if there is one, with largest ��), this NM will
be approached asymptotically as t→�.

C. Singular vectors

While a NM analysis searches perturbations growing ex-
ponentially in time, a SV analysis explores the possibility of
rapid transient growth. For this one needs a definition of the
strength of a perturbation, i.e., a norm �x�2= x̄tMx, where
the metric M is positive definite and symmetric. The upper
index t denotes transposition, the overbar taking the complex
conjugate. Among the different possible choices the present
study uses the discretized version of

�x�2 = 

0

2	

d
� = 

0

2	

d

1

2

�v�2 +

�b�2

N2 � , �24�

with an integrand � which is twice the average of energy
density over one horizontal wavelength of the perturbation.
The metric thus takes a simple diagonal form. Given a norm,
a SV analysis asks what initial perturbation x�0� would
maximize for some given finite time � the ratio
�x����2 / �x�0��2. For an answer one needs the propagator ma-
trix ��t�=exp�At� mapping the initial perturbation to its
state at t=� via x���=����x�0�. The variational analysis tells
us that the desired perturbation initializing the strongest
growth is the leading eigenvector p� satisfying

M−1�̄t���M����p� = ��
2p� �25�

with the largest possible eigenvalue ��
2, which is the squared

growth factor �x����2 / �x�0��2 if x�0�=p�. M being symmet-
ric and positive definite there is a Cholesky factorization

M=N̄tN, where N is upper triangular �diagonal in our
case�. Inserting the factorization into �25� and defining q�

=Np� the eigenvalue problem can be rewritten as L̄tLq�

=��
2q� with L=N����N−1, showing that all eigenvalues are

positive. The eigenvectors q� are orthogonal with respect to
the Euclidean metric, and henceforth also the optimal pertur-

bations p� with respect to M. The time-dependent state
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����p� developing from an optimal perturbation p� is the
corresponding SV.

NM and SV differ in several regards. So one observes
that NMs always have the same oscillating structure which is
simply growing or decaying in time. This is not the case for
SV. Their structure can differ quite a lot between initializa-
tion and final time. As a consequence, the exchange pro-
cesses between perturbation and background responsible for
the change in amplitude are always the same for a NM, while
they can vary considerably in the development of a SV. For a

non-normal model operator �where ĀtA�AĀt� it can also
be shown that the leading SV and leading NM only agree as
�→�.

IV. A COMPARISON BETWEEN NORMAL MODES AND
SINGULAR VECTORS FOR GRAVITY WAVES
WITH DIFFERENT INCLINATION ANGLES

In the following a comparison is given between the NM
and SV for typical gravity-wave scales. The wavelength of
the gravity wave has been chosen to be �=2	 /K=6 km,
implying a Reynolds number Re=1.1�105. In comparing
the results for different inclination angles a choice had to be
made about how to treat the wave amplitude a with respect
to convective instability. One option would be keeping a
fixed. This, however, leads to infinite energy, and corre-
spondingly infinite gradients, at �=0° and �=90°. This
study therefore follows Yau et al.33 and keeps in comparisons
between different inclination angles the amplitude in U� �or
equivalently the energy� fixed so that, using �13�,

a��� =
2A sin �

�1 + �f/N�2 tan2 �
. �26�

For an overview of the effect of wave amplitude and incli-
nation angle on the intensity of the respective NM and SV
instabilities the study focuses on the representative inclina-
tion angles �=89.5°, 70°, 50°, and 30°. This way an IGW is
included ��=89.5° � with not too extreme a value for R
�0.62�, as well as three HGW with periods 2	 /�=920, 490,
and 360 s. The examined amplitudes A=0.45, 0.55, and 0.76
have been chosen so that the IGW is either well below �a
=0.71�, slightly below �a=0.87�, or above �a=1.2� the over-
turning threshold. For the reader’s convenience the most im-
portant parameters of all examined waves are also listed in
Table I.

As described above, a separate set of NM or SV belongs
to each horizontal perturbation wave vector, which will in
the following be defined by its wavelength �� �or wavenum-
ber k� =2	 /���, and the azimuthal angle � between wave
vector and � axis, so that

��,�� =
2	

��

�cos �,sin �� . �27�

In a complete analysis it is not necessary to survey the whole
�-� plane. Due to the invariance of Eqs. �17�–�21� under the
simultaneous transformations �� ,��→−�� ,�� and complex

conjugation �v ,b�→ �v̄ , b̄� it is sufficient to consider the sub-
range 0° ���180°. In addition, in the absence of rotation,

so that both f and V vanish, one would also have invariance
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under the transformations �→−� and �→−�. It turned out
that, although this symmetry is broken by rotation, there is
not much difference in the results between �=90° ±�.
Therefore here only the subrange 0° ���90° is discussed.

For the practical determination of the leading NM and
optimal perturbations �22� and �25� are solved, using an im-
plicitly restarted Arnoldi method45 and �for the optimal per-
turbations� the adjoint Boussinesq model extracted from the
linear model with the help of the tangent and adjoint model
compiler �TAMC�.46 Details are given in AS12. The number
of grid points used in the model discretization, usually 1024,
was always chosen so as to well resolve all relevant scales.

TABLE I. For all examined gravity waves, their inclination angle � with
respect to the horizontal, their amplitude a with respect to the overturning
threshold, the nondimensional amplitude A of the u� wind, the ratio R
= f / ��� between Coriolis parameter and wave frequency, and the smallest
Richardson number in the whole phase range and among all directions of
propagation of a perturbation, Rimin.

�
�°� a A R Rimin

89.5 0.71 0.45 0.62 0.88

70 0.85 0.45 2.0�10−2 1.2

50 0.69 0.45 1.1�10−2 3.1

30 0.45 0.45 7.9�10−3 19

89.5 0.87 0.55 0.62 0.28

70 1.0 0.55 2.0�10−2 0

50 0.84 0.55 1.1�10−2 1.9

30 0.55 0.55 7.9�10−3 12

89.5 1.2 0.76 0.62 −0.23

70 1.4 0.76 2.0�10−2 −5.8�102

50 1.2 0.76 1.1�10−2 −2.1�103

30 0.76 0.76 7.9�10−3 5.7
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A. Growth factors

Since optimal growth should show the largest differ-
ences from NM behavior at short-optimization times this
study mainly focuses on �=300 s, which is approximately
one Brunt-Vaisala period. Longer-optimization times are dis-
cussed briefly in order to give a rough overview of the vari-
ous possibilities.

Looking first at the shorter-optimization time �=300 s,
Fig. 3 shows for A=0.45 the growth factors �1=e�1� of the
leading NM of the four gravity waves, as a function of wave-
length �or wavenumber� and azimuthal angle of the horizon-
tal wavenumber vector of the mode. A glance at Table I
shows that in none of the four cases an instability would
have to be expected from an �inappropriate� application of
the theory of Howard21 and Miles.22 Indeed the IGW case,
best approaching the conditions examined by these authors,
has no growing NM. It might be that in the inviscid-
nondiffusive limit weak instabilities such as the ones pub-
lished by Yau et al.33 exist, but these seem to be damped by
viscosity and diffusion. The other three cases are in agree-
ment with previous findings on waves with slantwise phase
propagation �e.g., Lombard and Riley27�. All three examined
gravity waves are unstable. While parallel perturbations �i.e.,
with �=0°� grow most rapidly, there also is a second impor-
tant azimuthal-angle range of 50° ���70°. Moreover, the
instability increases with decreasing inclination angle �.

A quite different picture is presented by the most rapidly
growing SV. Their growth factors �1 are shown in Fig. 4.
Although it has no unstable NM at all, even the IGW admits
optimal growth by nearly a factor of 4. In agreement with the
results in AS12 on IGW packets the most rapidly amplifying
SVs propagate parallel to the IGW, but at a somewhat larger
wavelength transverse perturbations ��=90° � also amplify.
From the NM analysis it does not come as a surprise that the
three HGWs exhibit stronger instabilities. The ratio between

FIG. 3. The growth factors �1

=exp��1�� �integration time �=300 s�
for the leading NM of four gravity
waves with different inclination angles
but identical energy or u� amplitude
�in nondimensional units A=0.45�, as
a function of the wavelength �� �or the
corresponding wavenumber normal-
ized by that if the basic wave, see the
top axis�, and the azimuthal angle � of
the horizontal wave vector of the
mode with respect to the � axis. The
inclination angle and wave amplitude
with respect to the convective over-
turning threshold of the four waves are
�� ,a�= �89.5° ,0.71� �top-left panel�,
�70°,0.85� �bottom-left�, �50°,0.69�
�top-right�, and �30°,0.45� �bottom-
right�. The contour interval is 0.2, val-
ues less than 1, i.e., the regions with-
out NM growth, are indicated by
shading. In the graph for �=89.5° the
contour range is between 0.2 �leftmost
contour� and 0.9 �rightmost� in steps
of 0.1.
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optimal growth and growth of the leading NM increases with
increasing inclination angle, ranging between 2 for �=30°
and 4 for �=70°. The most active wavelengths and azi-
muthal angles are quite different from those for the NM. In
all HGW cases transverse instabilities are favored over par-
allel ones. At intermediate inclination angles they are the
most rapid ones in the whole azimuthal-angle range, but for
�=30° a propagation at �=70° with respect to the � axis is
favored. Another difference is that here it is not the smallest
inclination angle which leads to the strongest instability. The
most rapid transient instabilities are found for �=50°. Fi-
nally, the leading SVs tend to be at smaller wavelengths
Downloaded 03 Nov 2005 to 195.37.145.100. Redistribution subject to
�between a few 100 m and 1 km� than the most unstable
NMs which have scales more of the order of the wavelength
of the basic wave.

Increasing the wave energy so that A=0.55, i.e., a
=0.87 at �=89.5°, leads to the NM and SV growth factors
shown in Figs. 5 and 6. The main effect is to intensify the
instabilities while leaving the favored scales and azimuthal
angles the same. Still the IGW case shows no growing NM.
Its optimal perturbations, however, amplify by nearly an or-
der of magnitude. The growth-factor ratio between SV and
NM for the HGW ranges between 2 at �=30° and 6 at �
=70°.

FIG. 4. As Fig. 3, but now the growth
factors �1 of the leading SV. The con-
tour interval is 0.2 everywhere.

FIG. 5. As Fig. 3, but now with an
increased wave energy so that A
=0.55. For the IGW ��=89.5° � the
leftmost contour is at 0.2, the right-
most contour at 0.9, and the contour
interval at 0.1. For the other cases the
contour interval is 0.5.
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An essential modification is caused by a further increase
of the wave energy to a value of A=0.76, corresponding for
the IGW to a=1.2. The growth factors for these cases can be
seen in Figs. 7 and 8. As a consequence of considerable
convective and dynamic instabilities the IGW now has un-
stable NM, as already shown by Dunkerton31 and Yau et al.33

The distribution of the instabilities over the �-�� plane is
very similar to the one for optimal growth on the two IGWs
with smaller amplitudes, favoring parallel propagation over a
secondary maximum at transverse propagation. The SV
growth factors for this IGW are, however, still larger than
those for the NM by a factor of 5. In addition, the wave-
lengths of the leading SV are smaller than those of the most
rapidly growing NM. With regard to the HGW, the NM
Downloaded 03 Nov 2005 to 195.37.145.100. Redistribution subject to
growth maximum for �=70° now has shifted to transverse
propagation, but at a wavelength which is about an order of
magnitude larger than the one of the leading, also transverse,
SV. In a comparison between the different inclination angles
NM instability still is most intense at the smallest inclination
angle �=30°, although this is the only case not satisfying
the instability criteria of Howard21 and Miles22 �see Table I�.
In contrast to the other two weaker wave amplitudes now,
however, oblique propagation at �=50° is favored there over
parallel propagation. For all inclination angles the optimal
perturbations are found to amplify by more than an order of
magnitude, with the most intense instability encountered at
�=70°. The growth-factor ratio between SV and NM ranges
between 2.5 at �=30° and 10 at �=70°.

FIG. 6. As Fig. 5, but now for the
leading SV.

FIG. 7. As Fig. 3, but now with an
increased wave energy so that A
=0.76. The contour interval is 1.0
everywhere.
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For longer-optimization times one must distinguish be-
tween the two main cases where either growing NMs exist or
not. In the latter case, one typically searches for the so-called
global optimal, i.e., one attempts to find a value for � where
optimal growth maximizes. Such an analysis suggests itself
for the subcritical �a�1� IGW examined here. In the former
case nearly all initial perturbations eventually converge to-
wards the set of leading NM so that within the linear ap-
proximation perturbation growth usually is not limited. This
is the case for all HGWs examined here. Instead of searching
for a global optimal it seems for these to be more meaningful
to consider the longest time scale of dynamical relevance
within the model framework. In the present context this
Downloaded 03 Nov 2005 to 195.37.145.100. Redistribution subject to
could be the time needed by the basic wave to cover one
atmospheric scale height, after which its amplitude would
have changed by a factor of e1/2, an effect not described
within the Boussinesq approximation. Another interesting
time scale is the HGW period P=2	 / ���. Since it is here
also not too far from the time needed by the wave to cover
one atmospheric scale height, it has instead been chosen as
examined long-optimization time.

The SV growth factors for the slightly subcritical IGW
�a=0.87� are shown in Fig. 9 for �=15 min, 30 min, 1 h,
and 2 h. Three aspects are interesting. Firstly, at longer-
optimization times transverse SVs are favored. Secondly, op-
timal growth is strongest around �=30 min, with a value

FIG. 8. As Fig. 7, but now for the
leading SV.

FIG. 9. As a function of parallel
wavelength �� �or wavenumber k�, top
axis� and azimuthal angle �, the
growth factors of the leading SV of the
slightly subcritical IGW ��=89.5°
and �a ,A�= �0.87,0.55��, for the opti-
mization times �=15 min, 30 min,
1 h, and 2 h. The contour interval is 1,
and values less than 1, i.e., the regions
without SV growth, are indicated by
shading.
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near 20. Thirdly, the dominant scales generally increase with
�. For the IGW packet case the increase in the growth factors
for longer � �here between 5 and 30 min�, as well as the
increase in horizontal wavelength and the tendency of trans-
verse perturbations to grow most rapidly at larger �, is ana-
lyzed in detail in AS12. Under the assumption that only the
local conditions near the statically least stable location 

=3	 /2 enter, it is found that the mechanism responsible for
optimal growth at �=0 allows a maximal growth, ap-
proached for large �, of �1

2=4/RilN
2 /Ntot

2 , where Ril
=Ntot

2 /�2 is the local Richardson number, determined by the
local vertical gradient of the transverse velocity in the IGW
�=af tan � and the local total squared Brunt-Vaisala fre-
quency Ntot

2 = �1−a�N2. At fixed vertical scale the horizontal
scale is ����. Transverse perturbations, on the other hand,
are amplified by a mechanism which allows optimal growth
to increase without bounds over a wider span of � �before
viscous-diffusive effects become important�. For these one
has the rough identity �=m0 / ��k��, where m0 is an initial
typical vertical scale of the perturbation. Indeed it is found
that, e.g., the structure of the leading transverse optimal per-
turbation for �=15 min is that of a wave packet near the
statically least stable location with vertical scale about twice
that of the corresponding structure for �=30 min �not
shown�, which fits well since the horizontal scale of both
optimal perturbations is about the same. The present calcu-
lations thus seem to reproduce the behavior described in
AS12. There also a local optimum in SV growth near the
same nondimensional �N has been found as here, however,
with the modification that at very long � of the order of the
IGW period optimal growth seems to rise again to even
larger values �in an approximation of the IGW packet by its
vertical profile at the initially statically least stable horizontal
location�. Corresponding calculations �not shown� indicate
no such effect for the monochromatic IGW. An analysis of

this discrepancy is beyond the scope of the present study, but
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the reason could be either in the slightly different wave pa-
rameters, the packet envelope, or the one-dimensional �1D�
approximation used in AS12 for the longest �.

Figure 10 shows for the two HGWs at �=70° and 50°
and A=0.55 the SV growth factors, along with those of the
NM, for �= P. As expected, one observes greater similarity
between NM and SV growths than at �=300 s, especially
with regard to the ��-� distribution. SV growth maximizes
near the locations of the largest NM growth. Thus they also
have much larger horizontal scales than the SV at shorter-
optimization times. Still, however, one finds about the same
ratio between the growth factors as for smaller �.

B. Energetics and time development

For an analysis of the growth and decay behavior of the
respective identified perturbations it seems helpful to resort
to energy considerations. For this purpose it is noted that �
satisfies due to �17�–�21�

��

�t
+ K

�

�

�−

�

K
� + R�ū
p� − �K

�

�


�v�2

2
− �K

�

�


�b�2

2N2�
= ru + r� + rb + D� + Db �28�

with

ru = − R�ū�u
�K
dU�

d

, �29�

r� = − R��̄u
�K
dV

d

, �30�

rb = − R�b̄u
�
K

N2

dB

d

, �31�

D = − � ��2 + �2��v�2 + K2 �v 2

, �32�

FIG. 10. For A=0.55 and as a function
of parallel wavelength �� �or wave-
number k�, top axis� and azimuthal
angle �, the growth factors of leading
NM �top row� and leading SV �bot-
tom� for growth over one wave period
�= P, for the HGW cases �=70° �left
column, P=920 s� and �=50° �right,
P=490 s�. The contour interval is 2,
and values less than 1, i.e., the regions
without NM or SV growth, are indi-
cated by shading.
� � 	
�

	 �
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D� = −
�

N2���2 + �2��b�2 + K2	 �b

�

	2� . �33�

Integrating �28� over a wave period in 
 removes, due to the
periodic boundary conditions, the phase derivative on the
left-hand side so that growth and decay can be attributed to
contributions from integrals over the right-hand side terms
over the wave phase 
. These describe the shear-related en-
ergy exchange with the basic wave due to countergradient
fluxes of u� and � �ru and r��, convective exchange by coun-
tergradient buoyancy fluxes �rb�, and viscous and diffusive
losses �D� and Db�. This decomposition can be represented in
terms of contributions to the instantaneous amplification rate
��t�=1/ �2����d��� /dt, which takes the time-independent
value �=�� for a NM. Here angular brackets denote an av-
erage over a wave phase so that actually ���= �x�2 /2	 in the
notation used above. Using the instantaneous amplification
rate and its decomposition

� = �u + �� + �b + �d =
�ru�
2���

+
�r��
2���

+
�rb�
2���

+
�D� + Db�

2���
,

�34�

the following gives an analysis of the processes responsible
for the growth and decay of the leading NM or SV. The focus
is on the latter, but a comparative analysis of the correspond-
ing NM seems in place as a reference.

With respect to NM a caveat shall be mentioned con-
cerning a possible misinterpretation of the amplification-rate
decomposition. It can happen that one of the amplification-
rate contributions introduced above is large and still the cor-
responding gradient in the basic-wave field does not cause
the NM growth behavior. To show this a further coordinate
transformation is applied in which the axes in the �-y plane
are rotated so that the axes for the new coordinates, denoted
by x� and y�, point in the direction of the horizontal wave-
number vector of the perturbation and orthogonal to it, i.e.,
x� =� cos �+y sin � and y�=−� sin �+y cos �. The corre-
sponding velocity components of v and V are �u� ,��� and
�U� ,V��. With k� =��2+�2 one obtains from �17�–�21�

ik�u� + K
�u


�

= 0, �35�

Du�

Dt
+ Ku


dU�

d

+ ik�p + b cos � cos �

+ f�sin � cos �u
 − sin ���� = ��2u� , �36�

D��

Dt
+ Ku


dV�

d

− b sin � cos �

+ f�sin �u� + cos � cos �u
� = ��2��, �37�

Du


Dt
+ K

�p

�

− b sin � − f cos ��sin �u� + cos ����

2
= �� u
, �38�
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Db

Dt
+ Ku


dB

d

+ N2�sin �u
 − cos ��cos �u� − sin �����

= ��2b , �39�

where here D /Dt=� /�t−�� /�
+ ik�U�. It turns out that ��

is coupled to the other variables only passively provided that
the Coriolis terms are negligible for the perturbation dynam-
ics, which seems always to be the case here, and
cos � sin ��0. The latter implies either the IGW case or
parallel horizontal propagation of the perturbation with re-
spect to the gravity wave. Then u�, u
, and b can be consid-
ered independently from ��, and taking all these to be pro-
portional to exp�−i��t+��t� the eigenfrequency and growth
rate of all NMs can be determined from Eqs. �35�, �36�, �38�,
and �39� alone. Thus, in the IGW case they do not depend on
V�. A contribution of the corresponding shear term to the
amplification rate indicates something different. Since in a
NM up to the oscillating phase factor all fields grow or decay
in strict proportion one also has for IGW �cos ��0�, with
the obvious transformations �ru,� ,�u,��→ �r�,� ,��,��, and ne-
glecting for the moment the generally weak impact from
viscosity and diffusion, the identity �r� +rw+rb� / ��u��2+ �w�2

+ �b�2 /N2��r� / �����2� so that

��

�� + �w + �b
�

�����2�
��u��2 + �w�2 + �b�2/N2�

. �40�

Thus a large contribution from �� tells us that the NM con-
tains a correspondingly large part of its energy in the flow
field �� which indeed is extracted from the wave via a mo-
mentum flux against the shear in V�, but at a rate indepen-
dent from this gradient.

In the case of SV the interpretation of the amplification-
rate decomposition must be somewhat different. In some
way it turns out to be less subtle. There the dynamical fields
do not grow in strict proportion. A single growth rate, char-
acterizing the identical rate at which energy is transferred
from the basic wave into the various perturbative fields, does
not exist. On the contrary the energetics of the perturbation is
determined by the sum of all the contributions listed above
which can be highly time dependent not only in their mag-
nitude but also in their relative importance. This time depen-
dence must be traced in order to comprehend the full dynam-
ics. Still, in the IGW case one finds that �� reacts only
passively to changes in the other perturbative fields. In con-
trast to the NM case, however, a large �� does not simply
tell us that much energy is in ��, which yet grows at a rate
determined by all fields in the basic wave except V�. It
rather indicates that the growth or decay of the energy in the
SV is to a large part to be attributed to a corresponding
growth or decay in the energy in ��, which indeed is induced
by the gradient in V� and a corresponding momentum flux
R��̄�u
� in the perturbation. In fact, widely differing values
in the amplification-rate contributions are often a sign of
considerably disproportionate amplifications of the energy

content in the various dynamical fields.
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1. Inertia-gravity waves

In the investigation of the dynamics of the identified
perturbations the beginning shall be made by a discussion of
those found in the stability analysis of the IGW ��=89.5° �.
Basically most results from AS12 are retrieved, now, how-
ever, for monochromatic IGW instead of IGW packets.

a. Short-optimization times. To begin with the case of
�=300 s, Fig. 11 shows for the convectively unstable case
�a=1.2� the spatial dependence of energy density � and the
IGW-phase-dependent amplification-rate decomposition �i.e.,
the right-hand side �RHS� terms of �28�, normalized by 2����
of the leading parallel ��=0° � and transverse ��=90° �
NMs. The structures are quite different. The parallel mode is
highly concentrated near the region of the strongest convec-
tive instability due to the wave-related negative buoyancy
gradient. The main contribution to its positive growth rate is
apparently from r�, with another one from rb. However, since
we are looking at the stability problem of an IGW the caveat
from above applies. For a parallel NM U� =U�, and thus its

TABLE II. For A=0.55, the growth-rate decomposit
�, amplitude a, and mode azimuthal angle � at the pe
IGW ��=89.5° � and the strongest SV growth else.

�
�°� a

�
�°�

�u

�10−3 s−1�

89.5 0.87 0 −0.15

89.5 0.87 90 1.1

70 1.0 0 −1.1

70 1.0 90 1.1

50 0.84 0 0.7

50 0.84 90 1.6

30 0.55 0 1.2

30 0.55 70 1.4
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growth rate is only determined by the gradients of U� and B.
Therefore the convective exchange seems to dominate the
dynamics of this mode while much of its energy turns out to
be in �. In comparison to this NM, the leading transverse
mode is much broader, but it also obtains its energy to an
important part via the convective exchange term rb in the
region of the strongest convective instability �near 
=3	 /2�.
As is seen in Table II, where the IGW-phase-averaged
amplification-rate decomposition is listed, �u makes the larg-
est contribution, but also here in reality �� and �b are the
essential terms in determining �to about equal contributions�
the growth rate of the NM. The large contribution from �u

indicates that much of the energy of the mode is contained in
u.

In comparison to NM, the IGW-phase dependence of
energy density and amplification-rate decomposition in a SV
is time dependent. Figure 12 shows for the optimal perturba-
tion �t=0� and the resulting SV at the optimization time �t
=300 s� these fields for the leading parallel perturbation ��

FIG. 11. IGW-phase dependence of
energy density �top row� and growth-
rate decomposition �bottom� of the
leading parallel and transverse NMs
for the convectively unstable IGW �a
=1.2, �=89.5°�. The IGW-phase aver-
age of the sum of all growth-rate parts
yields the total growth rate �=�1. The
unimportant contribution from viscous
and diffusive losses is indicated by a
dotted line. The amplitude of the NM
�in meaningless units� has been chosen
to normalize the IGW-phase average
of energy density ����=1�.

f the leading NM for gravity-wave inclination angle
ation wavelength of the strongest NM growth for the

��

�10−3 s−1�
�b

�10−3 s−1�
�d

�10−3 s−1�

5.4 1.4 −0.31

0.76 0.83 −0.01

0.01 3.1 −0.65

0.0 0.26 −0.17

0.0 3.9 −0.21

0.0 0.33 −0.30

0.0 4.6 −0.11

0.0 1.6 −0.23
ion o
rturb
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=0�. At first sight it looks similar to the leading NM, since it
is also highly concentrated in the convectively most unstable
phase region. The amplification-rate contributions are, how-
ever, quite different. At initialization virtually all of the en-
ergy transfer from basic wave to SV is done convectively,
while by t=� the state of the NM has been approached,
where the shear-related exchange r� is largest, followed by
the convective contribution. In Fig. 13 one can see the lead-
ing transverse SV ��=90° �. This perturbation is much more
concentrated in the convectively most unstable region than
Downloaded 03 Nov 2005 to 195.37.145.100. Redistribution subject to
the corresponding NM. Also here the convective energy ex-
change makes the largest contribution at the initialization,
followed by another important one from r�, while by the
optimization time ru also contributes significantly, and r� has
become rather unimportant. It is to be noted that in this case
at the perturbation wavelength where SV growth maximizes
no growing NM exists �see Figs. 7 and 8� so that by t=� the
SV structure cannot be explained in terms of a related NM.

This distinction gets even clearer as one looks at the
time-dependent amplification-rate decomposition, according

FIG. 12. IGW-phase dependence of
energy density �top row� and
amplification-rate decomposition �bot-
tom� of the leading parallel singular
vector ��=0� for the convectively un-
stable IGW �a=1.2, �=89.5°� at ini-
tialization �t=0� and optimization
times �t=300 s�. The IGW-phase aver-
age of the sum of all amplification-rate
parts yields the total instantaneous am-
plification rate �. The unimportant
contribution from viscous and diffu-
sive losses is indicated by a dotted
line. The amplitude of the perturbation
�in meaningless units� has been chosen
to normalize the IGW-phase average
of energy density ����=1� at t=0.
Only the IGW-phase range 	�

�2	 is shown where the SV has a sig-
nificant amplitude. At t=0 the total ef-
fective amplification rate is nearly
identical with the convective contribu-
tion rb /2���.

FIG. 13. As Fig. 12, but now for the
leading transverse SV ��=90° �.
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to �34�, and energy density � from somewhat longer integra-
tions. These are shown for an integration over 30 min in Fig.
14. The parallel SV exhibits a time-dependent amplification-
rate decomposition with a maximum total value around t
=1 min, when the initially dominant contribution from con-
vective energy exchange is supplemented by that from the
countergradient flux in �. By t=9 min a state is reached
where the amplification rate does not vary anymore, both in
its total value and in its decomposition in the various contri-
butions �a leading contribution from shear in V with an ad-
ditional weaker term from convective energy exchange�.
This indicates that the perturbation has assumed the structure
of the leading NM and keeps on growing from there on. The
energy density supports this picture. One sees a perturbation
basically invariant in structure which is simply growing ex-
ponentially in time. The leading transverse SV, on the other
hand, does not approach such an asymptotic behavior. Its
amplification rate maximizes around t=2 min then decreases
until decay sets in at about t=9 min which at late times is
dominated by viscous and diffusive losses ����d�. But even
then the amplification-rate decomposition stays time depen-
dent. The energy density shows that the SV is split up into
two main substructures, one of these at the original location
of the initial perturbation, i.e., near the strongest convective
instability, and the other one near the other zero line of the
transverse wind in the IGW �
=	 /2�. As is shown in AS12
for a similar case the SV radiates gravity waves which are
approaching a quasicritical layer near the transverse-wind
zero line, where their propagation is blocked and very small
scales develop, thus explaining the observed behavior. A
short discussion of this effect is given in the Appendix.

At a weaker IGW amplitude �a=0.87�, where NM can
no longer grow, basically the same type of parallel and trans-
verse SVs is found. Their time-dependent behavior is plotted
in Fig. 15. Now one sees both eventually decay in time, with
a maximum in energy around t=7 min. The time-dependent
decomposition of the instantaneous amplification rate is very

similar to the one seen at the stronger IGW amplitude. In
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both cases convective instability seems to act as a trigger of
the instability, while later shear-related exchange plays an
important, if not even dominant, role, as in the parallel SV.
Although only nonmodal growth is possible the gain in en-
ergy covers several orders of magnitude, indicating that at a
suitable initial perturbation level SV might be able to initial-
ize nonlinear behavior and onset of turbulence. An interest-
ing observation also is that in all cases shear in V� plays an
important role, indicating that the amplification of the SV is
to a large part due to energy growth in ��.

b. Long-optimization times. Getting to the case of the
longer-optimization times the focus shall be on the global
optimal �=30 min for a=0.87. Time-dependent
amplification-rate decomposition and energy density of the
leading parallel and transverse SVs for a=0.87 are shown in
Fig. 16. Similar to the results in AS12 the time dependence
scales with �, i.e., energy growth persists until t=�, after
which decay sets in �the same behavior is also seen for all
other �, not shown�. Also here convective exchange acts as a
trigger, followed by the action of the countergradient fluxes
in the horizontal velocity field. In comparison to the short-
optimization time, the flux in � takes a less prominent role
for the leading parallel SV but a dominant role in the trans-
verse case. The energy density indicates in the latter case
similar critical-layer interactions as for �=300 s. Indeed the
time-dependent buoyancy field in Fig. 17 shows this behav-
ior, i.e., a tendency towards increasingly smaller scales near
the zero lines of V, a behavior which has been analyzed in
depth in AS12 �but see also the Appendix�. For the leading
parallel SV a quite different behavior can be seen. In contrast
to the transverse SV the vertical scales progressively increase
near 
=	 /2. This is different to the behavior seen in AS12,
where the wave-packet envelope allowed the outwards radia-
tion of high-frequency gravity waves. Here one sees a dy-
namics modified essentially by the periodic flow field in the
basic IGW, leading to a ducting effect, where the SV, oscil-

FIG. 14. �Color� Time-dependent
amplification-rate decomposition �top
row� and energy density �bottom� from
30-min integrations of the leading par-
allel �left column� and transverse
�right� SVs for the convectively un-
stable IGW �a=1.2, �=89.5°�. The
optimization time is �=5 min. The
viscous and diffusive losses are indi-
cated by a dotted line. The contour in-
terval in the lower panels is 0.5 in
log10��� �starting at −1�. The negative
contours are dashed.
lating at a frequency �=�U��
=3	 /2�, is prevented from
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radiating through the maximum of U�. Details are given in
the Appendix.

A comparison of the relevance of the SV for short- and
long-optimization times, although desirable, must remain in-
complete on the level of the present linear analysis. Note
that, although showing larger overall growth, the long-
optimization-time SVs grow at a smaller growth rate than the
SVs for shorter �. This makes cases conceivable where, at
sufficiently large initial perturbation level, the latter SVs lead
the IGW into nonlinear behavior, before the ones for longer �
have fully developed. A case of weaker initial perturbations
Downloaded 03 Nov 2005 to 195.37.145.100. Redistribution subject to
where the stronger overall growth of the slower developing
SV is necessary for an initialization of the nonlinear devel-
opment might, however, also be thought about. More conclu-
sive answers to such questions must wait for a nonlinear
treatment of this transition problem.

2. High-frequency gravity waves

In contrast to the two subcritical IGW cases examined
here, i.e., with a�1 and Ri
0.25 �see Table I�, HGWs show
NM activity at virtually all amplitudes. Thus after nearly

FIG. 15. As Fig. 14, but now for an
IGW amplitude a=0.87 excluding the
possibility of NM instabilities.

FIG. 16. As Fig. 14, but now for an
IGW amplitude a=0.87 excluding the
possibility of NM instabilities �as in
Fig. 15� and optimization time �
=30 min.
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every initialization of the linear model eventually the set of
the most unstable NM will emerge as the final asymptotic
state. The question only is how long it takes until this state is
reached. As will be seen below, this time can be quite long,
so that under realistic circumstances optimal growth can be
of relevance even for these waves.

a. Short-optimization times. The focus shall first be on
the short-optimization time �=300 s. At least qualitatively
the different HGW cases turn out to be very similar in the
comparative dynamics of NM and SV. As an example here
the case �=70° and a=1 �i.e., A=0.55� is discussed in some
detail. Figure 18 shows for these parameters the HGW-phase
dependence of energy density and amplification-rate decom-
position for the leading parallel and transverse NMs, each for
the wavelength at which optimal growth maximizes �see Fig.
6�. In addition, Table II also lists the HGW-phase integral of
the growth-rate decomposition. The results agree with those
from Lombard and Riley27 in that the parallel mode is mainly
excited convectively, while the transverse mode extracts its
energy from the gravity wave predominantly via shear-
related exchange. Only dU� /d
 enters the latter since the
gravity-wave amplitude in V is negligible. The HGW-phase
Downloaded 03 Nov 2005 to 195.37.145.100. Redistribution subject to
dependence of the leading exchange terms is consistent with
the wave structure. For the parallel mode convective ex-
change is strongest near 
=3	 /2, where dB /d
 is most
negative, and the shear exchange for the transverse mode
peaks near 
=2	 where the wave shear reaches one of its
two extrema. As for the complementary exchange terms, one
sees wave shear near 
=2	 to act against the growth of the
parallel mode, while the transverse mode experiences con-
vective excitation at 
=	 /2, where dB /d
 becomes largest,
an effect which is, however, quite eliminated by strong nega-
tive contributions near the flanks of this region so that there
is no essential net convective impact on the transverse mode.
The respective dominance of the different exchange terms is
also reflected in the HGW-phase distribution of the energy
density of the NM. The parallel NM is concentrated near 

=3	 /2, where the convective exchange is largest, and the
transverse mode peaks in energy density near 
=2	 where
the shear-related exchange also maximizes.

Time dependence of amplification-rate decomposition,
according to �34�, and energy density � is shown for
30-min integrations of the corresponding SV in Fig. 19. If a
single leading NM exists, the final asymptotic behavior can

FIG. 17. Corresponding to Fig. 16, the development of
the buoyancy field in the respective SVs. The contour
intervals are constant in arbitrary units. The zero con-
tour has not been drawn.

FIG. 18. HGW-phase dependence of
energy density �top row� and growth-
rate decomposition �bottom� of the
leading parallel �left column� and
transverse �right� NMs for the high-
frequency gravity wave �HGW� with
�� ,a�= �70° ,1�, at the perturbation
wavelength where optimal growth
over 300 s maximizes. The HGW-
phase average of the sum of all
growth-rate parts yields the total
growth rate �=�1. The negligible con-
tribution to the growth rate from shear
in the transverse wind of the wave is
indicated by a short-dashed line. The
amplitude of the NM �in meaningless
units� has been chosen to normalize
the HGW-phase average of energy
density, i.e., ���=1.
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be expected as a time-independent amplification-rate decom-
position identical to that of that NM �Table II� and an energy
density growing in time but not moving with respect to the
wave. One notes a slow approach towards this state in two
regards. The amplification-rate contributions oscillate with
slowly decaying amplitude about the NM values �see Table
II�, and the energy densities of the two SVs, which indicate
highly peaked pulses propagating upwards through the wave,
are slowly broadening. As expected from the growth factors,
the transverse SV shows more intensive growth than the par-
allel SV �note the logarithmic color and contour scale�. The
corresponding behavior after a long time �160 h� is shown in
Fig. 20. Indeed the parallel SV has approached the structure
of the leading NM, while the transverse SV has split up in
finer pulses still moving through the wave, however, with an
amplification-rate decomposition seemingly oscillating about
Downloaded 03 Nov 2005 to 195.37.145.100. Redistribution subject to
the corresponding values of the leading NM. The difference
between the two cases arises from the fact that for �=0° a
single leading NM exists, while for �=90° two leading NMs
are found which are very close to each other in growth rate
�exp��1��=1.4494 and exp��2��=1.4491� and in their
growth-rate decomposition �not shown�. Seemingly those
two together constitute the basis of the late stage of the de-
velopment of the corresponding SV. In any case it seems
interesting that the eventual approach of the leading NM is
rather slow �e.g., by t=8 h the NM state has by far not been
reached yet, see Fig. 21� so that the transition from SV to
NM might take longer than one can expect the linear ap-
proximation to hold before nonlinear effects become impor-
tant. Another main feature one also notes is that the time
both SVs need for once covering the distance �
=2	 agrees
with the period of the gravity wave �920 s�, which means

FIG. 19. �Color� Time dependence of
the amplification-rate decomposition
�top row� and energy density �bottom�
from 30-min integrations of the lead-
ing parallel ��=0° � and transverse
��=90° � SVs for a HGW with
�� ,a�= �70° ,1�. The initial ampli-
tudes in the patterns �in meaningless
units� have been chosen to normalize
the HGW-phase average of energy
density, i.e., ���=1. Contouring starts
at log10���=−1. The contour interval is
1. The negative contours are dashed.

FIG. 20. �Color� As Fig. 19, but for a
later phase 160 h� t�160.5 h. � has
been normalized so that its phase av-
erage ���=1 at t=160 h.
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that the perturbation actually does not move in the original
reference system while the gravity wave passes over it, at the
same time repeatedly invigorating and damping the SV. In
the case of a transition to the leading NM one would see the
wave gradually picking up the slowly broadening perturba-
tion until its energy-density distribution no longer moves in
the translated coordinate system and is basically swept along
with the wave as observable for the parallel SV.

Besides this general observation the details of the two
time series are also interesting, especially as they reveal im-
pacts from the structures of both the NM and the basic wave.
Although the parallel NM grows due to convective exchange
the corresponding optimal perturbation is triggered by shear-
Downloaded 03 Nov 2005 to 195.37.145.100. Redistribution subject to
related exchange. Initially ���u which is consistent with
the perturbation being concentrated at 
=	 where the wave
shear maximizes. By t�4 min convective exchange takes
over, which is the time when the SV passes the convectively
most unstable HGW-phase 
=3	 /2. Shortly later, when 

=2	 is reached, where dU� /d
 is largest, shear-related ex-
change is strong again, now, however, damping the perturba-
tion. As the perturbation passes 
=	 /2 strong viscous and
diffusive damping sets in. This is due to a scale contraction
of the SV which for one subcycle in the movement between

=0 and 
=2	 is shown in Fig. 22. This behavior can be
explained in terms of a WKB-type propagation of the pertur-
bation in the flow field of the gravity wave �see Appendix 3�.

FIG. 21. As Fig. 19, but for a later
phase 8 h� t�8.5 h. � has been nor-
malized so that its phase average ���
=1 at t=8 h.

FIG. 22. As Fig. 19, but now showing
for one subcycle, corresponding to one
passage of the gravity wave over the
perturbation, the time-dependent struc-
ture of the real parts of u
 �upper row�
and b �bottom�. Both the shading scale
for the parallel perturbation and the
contour intervals for the transverse
perturbation are linear in arbitrary
units. In the latter case the zero con-
tour has not been drawn, and the nega-
tive values are indicated by a dashed
contour.
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The succession of processes sketched above is repeated
many times as the wave repeatedly passes over the perturba-
tion �not shown�. An interesting feature also becomes visible
in a comparison of the time-dependent amplification rate of
the parallel SV �Fig. 19� with the HGW-phase-dependent
analog in the parallel NM �Fig. 18�. It appears that in its
moving from 
=0 to 
=2	 the SV experiences the same
exchange processes as the NM exhibits at the respective
HGW phase. This goes as far as even expressing itself in the
HGW-phase-dependent energy density, i.e., the NM peaks at

=3	 /2 while the SV also shows a local maximum in en-
ergy density as it passes this HGW phase.

Very similar observations can also be made for the trans-
verse perturbations ��=90°, right columns in Figs. 18–22�.
Also the transverse SV is triggered by shear instability at

=	. As it passes 
=3	 /2 convective exchange takes over,
followed by another peak of �u as 
=2	 is reached. This
double peak in �u, responsible for the stronger overall
growth of the transverse SV in the first 300 s than that of the
parallel SV, occurs only once. In the following cycles it is
not repeated. Then growth due to shear is only observed at

=2	, preceded by convective growth at 
=3	 /2, just as
observed in the NM. One conspicuous difference between
parallel and transverse SVs is that, while the former is a
rather small-scale wave packet in its dependence on 
, the
latter is a larger-scale pulse changing its sign several times in
its apparent movement through the HGW. This is the reason
�see Fig. 22� why viscosity and diffusion are of less impor-
tance for the transverse SV than for the parallel SV. Besides
this, as the transverse SV moves from 
=0 to 
=3	 /2 the
instantaneous amplification rate undergoes rapid oscillations
which are once again a good copy of corresponding behavior

in the NM, as is also the phase distribution of the energy
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density. In order to facilitate a better comparison a cycle
between 
=0 and 
=2	 has been redrawn for each SV in
Fig. 23.

b. Longer-optimization times. As seen above, the parallel
wavelength �� of the SV for longer-optimization times ��
= P� is larger than for �=300 s, and their growth-factor dis-
tribution in the ��-� plane is more similar to that of the
corresponding NM. Interestingly, however, it turns out that
their dynamics is still quite similar to that of the SV for �
=300 s. Being once again, at least qualitatively, representa-
tive for all cases, here the SVs for the HGW with �� ,a�
= �70° ,1� are discussed shortly. Figure 24 shows the time-
dependent amplification-rate decomposition and energy-
density distribution for the leading SV at azimuthal angles of
0°, 60° �the case of the strongest optimal growth�, and 90°.
The similarity of the behavior of the leading parallel and
transverse SVs to that seen in Fig. 19 is obvious. As a major
difference, in comparison to there the initial amplification
rates are smaller, so that initial growth is not as rapid. Also
the patterns are broader in structure and thus nearer to the
structure of the corresponding NM. Remarkably, however,
also here the transition to the NM is far from complete after
30 min, which is nearly two basic-wave periods.

As discussed in the comparison between short- and long-
optimization-time SVs for IGW, also for HGW the respective
relevance of the corresponding SV can be expected to de-
pend on the properties of the available perturbation spec-
trum. Mainly its overall intensity will probably be of impor-
tance, but also the scales available in it, since the various
SVs differ not only in optimization time but also in their

FIG. 23. As Fig. 19, but now for one
subcycle corresponding to one passage
of the gravity wave over the
perturbation.
intrinsic wavelengths.
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V. IMPACT OF THE CONTROLLING EXTERNAL
PARAMETERS

For a complete picture one also needs an overview of
what happens as the chosen external model parameters are
varied. In the atmosphere, e.g., the inverse proportionality of
kinematic viscosity and diffusivity with the background den-
sity implies that at fixed wavelength of the gravity wave the
Reynolds number decreases from the surface of the earth to
the mesopause �at about 90-km altitude� by nearly six orders
of magnitude. Likewise varying at fixed altitude the basic-
wave wavelength would also imply a variation of the Rey-
nolds number. Another external parameter deserving some
examination is the factor f /N. While here f has been chosen
to be the Coriolis parameter at 70°N and N=2�10−2 s−1,
which is typical for the middle atmosphere, in the tropics,
where f �0, or in the lower atmosphere, where N=1
�10−2 s−1 is more appropriate a choice, a different dynamics
might occur. Without going into too great depth correspond-
ing effects shall be estimated here.

In varying the Reynolds number the above-mentioned
six orders of magnitude are not covered. Instead, for reasons
of computational economy, viscosity and diffusion have been
increased to �=�=5 m2/s or decreased to �=�=0.1 m2/s
�corresponding to a mid-mesospheric altitude near 70 km�,
and then the optimal growth over �=300 s has been deter-
mined for A=0.55. Figures 25 and 26 show the results. The
main effect is as expected. Larger Reynolds numbers mean
stronger instabilities. Concerning the ��� ,�� dependence one

FIG. 24. As Fig. 19, but now for the leading SV fo
finds that there is not much of an effect on the azimuthal
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angles where optimal growth is most vigorous. However, in
agreement with similar findings by Lombard and Riley27 on
the dependence of the leading NM for f =0 on the Reynolds
number, the scales are affected so that the wavelength of the
strongest optimal growth gets smaller as the Reynolds num-
ber is increased �for IGW AS12 suggest a dependence as
���Re−1/4, consistent with the results here�. An exception to
this is the leading transverse SV of the IGW. For this one
both the growth factor and its wavelength are found to be
basically the same for all three Reynolds numbers examined.
This is consistent with the identification of a comparable NM
growth-rate peak for a
1 by others31,32 in the calculations
for IGW packets with infinite Reynolds number. The main
effect here is that, as is visible from a cut at �=90° which is
not shown here, while the Reynolds number is increased
slowly, a secondary growth-factor peak at a shorter wave-
length emerges which is at �� �600 m for �=�=0.1 m2/s.
One might expect that this one gets stronger and moves to
smaller scales as the Reynolds number is increased even fur-
ther, while the one at the larger wavelength stays unaffected.
Decreasing the Reynolds number would at some stage, how-
ever, also damp the growth of that branch. Similarly one also
finds for �=30° at �� �� a parallel SV which is not much
affected by viscosity and diffusion, but also here at even
smaller Reynolds numbers the SV will probably be damped.
For the high-Reynolds-number case NM growth factors �not
shown� are found to slightly increase in comparison to Fig. 5
�maximal growth factors of 2.2, 4.0, and 5.8 at �=70°, 50°

=920 s and azimuthal angles �=0°, 60°, and 90°.
and 30°, with an overall ��-� dependence as before�. This
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case, however, still shows no NM instabilities of the IGW.
For an estimation of the impact of variations in f /N the

determination of the SVs for A=0.55 has been redone for
different latitudes. As expected only the IGW case showed
an impact so that only this one shall be given some attention.
Figure 27 shows the ��� ,�� dependence of the growth factors
of the leading SV obtained for the latitudes of 0°, 30°, 50°,
and 90°, to be compared to the upper left panel in Fig. 6. One
sees two main effects: As rotation becomes smaller optimal
growth gets weaker and the leading azimuthal angle moves
from parallel to �=60°. The former is consistent with the
previous observation that the energy exchange with the IGW
via shear in V plays an important role. As rotation gets less
the strength of this wind component in the wave is reduced
Downloaded 03 Nov 2005 to 195.37.145.100. Redistribution subject to
so that the energy reservoir of its kinetic energy provides for
the SV is reduced. In time integrations �not shown� the SVs
are found to finally decay in all cases, as also follows from
the absence of growing NM. It seems that optimal growth is
not so important for subcritical IGW in the tropics.

VI. MEAN GROWTH FROM RANDOM INITIAL
CONDITIONS

A critical question one might ask about rapid transient
growth from optimal perturbations is how relevant they are
for realistic circumstances where a gravity wave will encoun-
ter perturbations from ambient fluctuations which most prob-
ably will not project to the largest part onto a single optimal

FIG. 25. As Fig. 6, but now with de-
creased values of viscosity and diffu-
sivity �=�=0.1 m2/s.

FIG. 26. As Fig. 6, but now with in-
creased values of viscosity and diffu-
sivity �=�=5 m2/s.
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perturbation.47 If there is only one SV structure having rapid
growth, it may not be sufficient to compete with the leading
normal mode �if there is any�. If, however, the number of
growing optimal perturbations is large enough, and if these
are similar enough to each other, optimal growth might play
a role in explaining the observed behavior of turbulence on-
set in its linear phase.

In order to get some insight into this problem the linear
model has been integrated over 300 s from random initial
conditions. A possible option for a source spectrum would be
just white noise, but this would not be overly realistic.
Rather it is to be expected that a gravity wave will encounter
fluctuations with a typical turbulent spectrum, as observed7
Downloaded 03 Nov 2005 to 195.37.145.100. Redistribution subject to
and modeled19,20 by others. It has therefore been attempted to
mimic a spectrum in the wavenumber in 
 direction with a
typical 5 /3 power law. For this energetically equipartitioned
flow and buoyancy fields have been obtained from a random
number generator. The Fourier transforms of these have then
been modified to follow a 5/3 power law, and the resulting
random initial states have then been used in the model. For
each pair of azimuthal angle and perturbation wavelength in
the �-y plane the number of integrations has been doubled,
starting at a minimum of 16, until the observed mean growth
or decay in the square root of energy changed by less than a
percent.

For A=0.55 the resulting mean growth is shown in Fig.

FIG. 27. ��� ,�� dependence of the
growth factors of the leading SV for a
slightly subcritical “IGW” ��� ,a�
= �89.5° ,0.87�� at the latitudes �=0°,
30°, 50°, and 90°, determining the
magnitude of the Coriolis parameter.
The contour interval is 0.5. Values less
than 1 are indicated by shading.

FIG. 28. Similar to Fig. 6, but now
showing the mean growth �within
300 s� in the square root of energy
from initial random perturbations with
a 5/3 power law in the wavenumber in

 direction. The contour interval is 0.1
for the IGW case ��=89.5° � and 0.2
everywhere else. Values less than 1 are
indicated by shading.
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28. This is to be compared to Fig. 6. It is not surprising to
find that, in comparison to the optimal-growth factors, these
mean growth factors are smaller. On the other hand one also
finds even mean growth of random perturbations to be pos-
sible for the IGW case, although this one does not have a
single growing NM. Moreover, in all cases one sees a rea-
sonable reproduction of the dependence of the growth factors
on azimuthal angle and horizontal wavelength. So also here
the strongest mean growth is observed in the IGW case for
parallel perturbations. The HGW cases show transverse per-
turbations to extract most of the energy from the wave. For
�=70° and �=50° this is in agreement with the optimal-
growth results. In these cases also the scale of the strongest
growth matches quite well that of the strongest optimal
growth. In the case �=30° the leading optimal perturbation
is at �=70°, while the strongest mean growth is found at
�=90°, but also here one finds a trace of the optimal-growth
results in that at the respective azimuthal angle no maximum
exists but a plateau which is not found at the other inclina-
tion angles. This is to be seen in contrast to Fig. 5, where the
corresponding NM growth factors are shown, with no insta-
bility in the IGW case, and the strongest growth for parallel
perturbations in the HGW cases.

For the IGW case one sees in Fig. 29 for t=300 s the
mean energy density and amplification-rate decomposition of
parallel and transverse perturbations at the wavelength of the
strongest optimal growth. A comparison with the energy den-
sity of the SV, indicated by the dashed line in the upper row,
suggests that many of the features seen can be explained in
terms of optimal growth. This is further supported by the fact
that NM cannot be used here, since they all decay. For the
case �� ,a�= �70° ,1� the same fields are shown in Fig. 30.
For the transverse perturbations once again optimal-

perturbation theory seems to give a useful explanation. The
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energy density is much more strongly peaked near the loca-
tion of the SV than in the NM �see Fig. 18�. The same dis-
parity between NM and mean structures is also found for the
HGW-phase-dependent amplification-rate decomposition.
On the other hand, the parallel perturbations do not indicate
SV behavior. This is probably an effect of the small-scale
structure of the corresponding SV �see also Fig. 22 and Ap-
pendix 3�. By using a source spectrum with suppressed
small-scale activity such a perturbation is prevented to ap-
pear. Indeed, in a parallel calculation with random initial
states with a white spectrum the parallel SV can be identified
�not shown�.

VII. SUMMARY AND DISCUSSION

In an analysis within the framework of the Boussinesq
equations on an f plane optimal perturbations of monochro-
matic gravity waves have been determined and compared to
corresponding NM. The viscous-diffusive parameters have
been chosen so as to agree with the conditions in the middle
to upper mesosphere �between 70- and 90-km altitude�. The
identified SVs, able to extract �via a more flexible develop-
ment of the perturbation structure� over a finite period more
energy from the basic wave than a NM, show interesting
behavior in several regards.

Firstly, and similar to results in AS12, IGW can support
rapid transient growth by several orders of magnitude �in
energy� when no NM instability is found. This is the case for
IGW slightly below the overturning threshold �a=0.87, say�,
where NM instabilities are prevented by viscous-diffusive
effects. For such cases, optimal-perturbation theory suggests,
in contrast to the predictions from NM analyses, the possi-
bility of turbulence onset. This is certainly subject to the

FIG. 29. Corresponding to Fig. 28, the
mean energy density �top row� and
IGW-phase-dependent amplification-
rate decomposition �bottom� at t
=300 s for parallel and transverse per-
turbations at the wavelength of the
strongest optimal growth for �� ,a�
= �89.5° ,0.87�. In the upper panels the
mean energy density is indicated by
the solid line while the dashed line
shows the same field for the corre-
sponding SV. Both are normalized to
have a unit IGW-phase average.
condition that the ambient perturbations encountered by such
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an IGW are already sufficiently strong so that a further am-
plitude growth by at most a factor of 20 can lead into a
nonlinear development. A possible scenario where this might
be relevant could perhaps be an IGW propagating into a
region already prepared accordingly by a previous breaking
event. As for their structure, the leading SVs are all initially
closely confined to the convectively least stable region in the
wave. The favored horizontal directions of propagation
change from parallel �i.e., in x direction when the IGW
propagates in the x-z plane� at optimization times near a
Brunt-Vaisala period to transverse �in y direction� at longer
times. The dynamics of the SV are characterized by flux-
gradient interactions involving the whole circularly polarized
velocity field of the IGW, so that simple two-dimensional
�2D� approximations of the basic-wave state, e.g., as in a
Kelvin-Helmholtz instability, should be seen with caution.
Typically SV growth is triggered by convective energy ex-
change and further sustained by shear-related exchange pro-
cesses.

Secondly, the leading SVs of all examined HGWs with
weak to moderate amplitude, if determined for optimization
times shorter than a wave period, show propagation charac-
teristics with respect to the gravity wave, which differ from
that of the leading NMs. The latter propagate preferentially
in the x-z plane while the former generally favor transverse
propagation. Calculations of mean growth from random per-
turbations indicate just this behavior, which could not be
explained with the help of NM.

Thirdly, the leading SVs of the examined HGW differ
structurally in an interesting manner from the identified
NMs. Initially, they have the form of sharply peaked pulses
which are nearly immobile in the geostationary reference
frame. In its passage over the SV the HGW repeatedly in-

vigorates the perturbations as they get into contact with suit-
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able buoyancy and velocity gradients in the wave. In the long
run the SV structure is often transformed into the broader
structure of the leading NM, which moves with the wave
phase, but this transition is typically a very long process.
Thus, although eventually the leading NMs might take over,
SVs highlight the possibility of rapid growth of local pertur-
bations, which can get strong enough to initialize turbulence
onset before the leading broader NM has had time to develop
from the SV. As before, this does depend on the specific
initial perturbation encountered by a HGW in the real atmo-
sphere �or ocean�.

All in all this study seems to support the view that SVs
are a relevant factor in the dynamics of turbulence excitation
by gravity waves. A conclusive statement, however, is not
possible yet. For a full assessment we also need investiga-
tions of the nonlinear dynamics of these perturbations, ex-
ploring their direct nonlinear behavior as well as secondary
instabilities possibly leading to a full three-
dimensionalization of the turbulent spectrum. Also the turbu-
lence impact on the basic wave will have to be estimated. It
might be that the details of the initial linear dynamics, where
the difference between NM and SV is found, do not strongly
influence this latter question, but the present study rather
seems to suggest that in the interpretation of specific mea-
surements of gravity-wave-excited turbulence optimal per-
turbations might be helpful, especially as they seem better
suited to explain a certain confinement of turbulence to thin
layers seen in some observations.48,49 These also suggest that
turbulence in the middle atmosphere often does not coincide
with sufficiently small Richardson numbers, which also
might be better explainable within the framework of the
optimal-perturbation theory. For practical comparison one
will have to worry about the perturbation spectrum provided

FIG. 30. As Fig. 29, but now for
�� ,a�= �70° ,1�.
by the ambient fluctuations. Another extension which will be
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necessary at some stage is the introduction of a reference
medium with altitude-dependent density. Especially in the
atmosphere the Boussinesq equations are bound to reach
their limitations as longer time scales are considered in
which a gravity wave covers more than one scale height.
This might be most relevant for the faster high-frequency
gravity waves.
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APPENDIX: WKB THEORY FOR THE EXPLANATION
OF THE TIME DEPENDENCE OF THE SV
SCALES

To a large degree, the time dependence of the scales in
the various SVs discussed in the main text can be understood
on the basis of a standard WKB theory.4,50 This appendix
first describes the theory in general and then gives the appli-
cations.

1. General theory

The WKB theory assumes that the spatial scale over
which the wavelength of the SV varies is comparatively
long. The same holds for the time scale describing variations
of the period of the oscillations within the SV. One thus uses
the ansatz


v

b
��
,t� = 
ṽ

b̃
�� 
, t�ei!� 
, t�/ , �A1�

where  �1 is a slowness parameter and ! the local phase of
the wave packet. One then introduces the slow spatial and
time coordinates �= 
 and T= t, defines the local fre-
quency �=−�! /�T and the local wavenumber �=K�! /��,
and inserts �A1� into �17�–�21�. Assuming the gravity-wave
fields also only to depend on �, i.e., to be slowly dependent
on the phase, and neglecting rotation, viscosity, and diffusion
one finds to lowest order in  the WKB dispersion relation

���,T� = �̃����,T�,�� = U�� + V� −
�

K
�

± Ntot��2 + �� sin � + � cos ��2

�2 + �2 + �2 , �A2�

which simply is the dispersion relation for gravity waves in a
constant background flow without rotation, but with modi-
fied static stability Ntot

2 =N2+�B /�z, in the special rotated and
translated reference system used throughout this study. Since
�� /�T=−K�� /�� �A2� also gives rise to the eikonal equa-
tions


 �
+ cgK

� �� = 0, �A3�

�T ��
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 �

�T
+ cgK

�

��
�� = − K

��̃

��
, �A4�

where cg=��̃ /�� is the group velocity of the perturbation.
Along rays defined by this group velocity the frequency is
therefore a conserved quantity, so that for any frequency the
wavenumber � can be calculated from �A2� as a function of

.

2. Optimal perturbations of IGW

In the case of the SV for IGW one can use that, as shown
by AS12, the frequency of the developing optimal perturba-
tions is determined to a good approximation by the advection
of the perturbation in its direction of propagation by the cor-
responding horizontal flow-field component at the statically
least stable location 
=3	 /2, i.e., �=U��
=3	 /2�� �since
V vanishes at this location�. In addition, the phase velocity of
the IGW � /K is very small, so that it can be neglected in
�A2�.

Assuming also cos �=0 and sin �=1, one finds for par-
allel SV, where �=0, and assuming �
0,

U��3	/2� − U�

Ntot/�
= ±

1
�1 + �2/�2

. �A5�

Obviously, since the left-hand side is always negative �for
a�1�, only the branch with the minus sign in front of the
square root �the branch with upwards pointing group velocity
at �
0� can satisfy this equation. Note that, the nearer one
is to the maximum of U� at 
=	 /2, the smaller � must be,
so that near this location the vertical wavelength in the SV
gets largest. Moreover, propagation through 
=	 /2 is only
possible if there

1 

U� − U��3	/2�

Ntot/�
=

4A
�1 + a

�

K
. �A6�

Radiation is thus only possible for � small enough. At A
=0.55, and thus a=0.87, this is neither the case for the par-
allel SV for �=5 min, where � /K=9.5, nor for the parallel
SV for �=30 min, where � /K=0.76. In the latter case, how-
ever, one is nearer to the radiation condition, so that energy
can move close to 
=	 /2, explaining the near-vertical struc-
tures at 
=	 /2 in Fig. 17. For this case Fig. 31 also shows
the distribution of frequency and group velocity according to
�A2� in the �� ,
� plane. One also sees there that rays with
�=U��
=3	 /2���−0.167 cannot propagate through 

=	 /2 but get progressively larger in scale �i.e., smaller in ��
as they approach this location.

Similarly one derives for transverse SV, where �=0, and
assuming �
0,

−
V�

Ntot
= ±

1
�1 + �2/�2

. �A7�

One sees directly that near the zero lines of V, i.e., at 

=	 /2 ,3	 /2, the vertical scale of the SV collapses �i.e., �
→��, leading to the critical-layer behavior visible for all
transverse SVs of the IGW. Without neglect of the IGW-

phase velocity the divergence of � is modified to a develop-
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ment towards finite large wavenumbers,51 but the basic effect
remains as described.

3. Scale oscillation of parallel singular vectors in
high-frequency gravity waves

The oscillation between weak and strong viscous and
diffusive damping for the leading parallel SV for high-
frequency gravity waves, e.g., visible for �� ,a�= �70° ,1� in
Figs. 19 and 23, is due to an oscillation of the scale of this
perturbation in 
 direction which can be seen in Fig. 22. It
has the shape of a nearly monochromatic wave packet with a
wavelength which, consistent with the observed time depen-
dence of the viscous and diffusive losses, is especially small
when it passes 
=	 /2 and which maximizes as the SV is
near 
=3	 /2. Also this behavior can be explained using the
WKB theory.

Since the SV moves approximately with the negative
Downloaded 03 Nov 2005 to 195.37.145.100. Redistribution subject to
phase velocity of the gravity wave, i.e., cg�−� /K, the
square root in �A2�, i.e., the intrinsic-frequency contribution,
can be neglected, yielding

� = K�U�� − ��/� , �A8�

since for parallel perturbations �=0. The spatial dependence
of � thus results from that of U�.

For a test whether �A8� actually describes the scale be-
havior of the parallel SV shown in Fig. 32 ��
 , t� has been
determined diagnostically by minimizing

C��� = 	K
�

�


v

b
� − i�
v

b
�	2

. �A9�

Figure 32 shows the result, agreeing quite well with the
qualitative expectation of small � near 
=3	 /2 and large �
near 
=	 /2. In the same manner one also could have deter-
mined the frequency � from time derivatives. It turns out,

FIG. 31. For parallel SV of the sub-
critical IGW ��=89.5° � with A=0.55
and a=0.87, the dependence of fre-
quency �thick contours� and group ve-
locity �thin contours, negative values
indicated by shading� according to the
WKB theory on the IGW-phase 
 and
the wavenumber � in phase direction.
The isoline corresponding to the paral-
lel SV for �=30 min, where ��
−0.0167, is drawn extra fat. The
movement of a ray is along the iso-
lines of constant frequency, while the
velocity in 
 direction is given by the
group velocity.

FIG. 32. Time dependence in the
wavenumber � in 
 direction in the
subcycle of the parallel SV for the
gravity wave with �� ,a�= �70° ,1�
also shown in Fig. 23, as diagnosed
from the data of the linear model �left�
or predicted from the WKB theory
�right�. The shading scale is defined in
the shading bar.
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however, that the time oscillation in all fields is so regular
that one can just count peaks, which gave a single period of
about 35 s. This has been inserted into �A8�, yielding the
predicted wavenumber also shown in Fig. 32.
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